Advertisement

International Journal of Earth Sciences

, Volume 103, Issue 5, pp 1335–1357 | Cite as

The Ediacaran–Early Cambrian detrital zircon record of NW Iberia: possible sources and paleogeographic constraints

  • J. Fernández-SuárezEmail author
  • G. Gutiérrez-Alonso
  • D. Pastor-Galán
  • M. Hofmann
  • J. B. Murphy
  • U. Linnemann
Original Paper

Abstract

Ediacaran and Early Cambrian sedimentary rocks from NW Iberia have been investigated for detrital zircon U–Pb ages. A total of 1,161 concordant U–Pb ages were obtained in zircons separated from four Ediacaran samples (3 from the Cantabrian Zone and one from the Central Iberian zone) and two Lower Cambrian samples (one from the Cantabrian Zone and one from the Central Iberian Zone). Major and trace elements including REE and Sm–Nd isotopes were also analyzed on the same set of samples. The stratigraphically older Ediacaran sequence in the Cantabrian Zone has a maximum sedimentation age of ca. 600 Ma based on detrital zircon content and is intruded by ca. 590–580 Ma granitoids constraining the deposition of this part of the sequence between ca. 600 and 580 Ma. The stratigraphically younger Ediacaran sequence in the Cantabrian Zone has a maximum sedimentation age of ca. 553 Ma. The Ediacaran sample from the Central Iberian Zone has an identical within error maximum sedimentation age of ca. 555 Ma. The detrital zircon U–Pb age patterns are very similar in all the Ediacaran samples from both zones including the main age groups ca. 0.55–0.75 Ga, ca. 0.85–1.15 Ga and minor Paleoproterozoic (ca. 1.9–2.1 Ga) and Archean (ca. 2.4–2.6 Ga) populations. Kolmogorov–Smirnov statistical tests performed on this set of samples indicate that they all were derived from the same parent population (i.e., same source area). The same can be said on the basis of Nd isotopes, REE patterns and trace element concentrations. The two Cambrian samples, however, show contrasting signatures: The sample from the Cantabrian Zone lacks the ca. 0.85–1.15 Ga population and has a high proportion of Paleoproterozoic and Archean zircons (>60 %) and a more negative ε Nd and higher T DM values than the Ediacaran samples. The Early Cambrian sample from the Central Iberian Zone has the same U–Pb detrital zircon age distribution (based on KS tests) as all the Ediacaran samples but has a significantly more negative ε Nd value. These data suggest apparently continuous sedimentation in the NW Iberian realm of northern Gondwana between ca. 600 and 550 Ma and changes in the detrital influx around the Ediacaran–Cambrian boundary. The nature and origin of these changes cannot be determined with available data, but they must involve tectonic activity on the margin as evidenced by the angular unconformity separating the Ediacaran and Lower Cambrian strata in the Cantabrian Zone. The absence of this unconformity and the apparent continuity of detrital zircon age distribution between Ediacaran and Cambrian rocks in the Central Iberian Zone suggest that the margin became segmented with significant transport and sedimentation flux changes in relatively short distances. As to the paleoposition of NW Iberia in Ediacaran–Early Cambrian times, comparison of the data presented herein with a wealth of relevant data from the literature both on the European peri-Gondwanan terranes and on the terranes of northern Africa suggests that NW Iberia may have lain closer to the present-day Egypt–Israel–Jordan area and that the potential source of the hitherto enigmatic Tonian–Stenian zircons could be traced to exposed segments of arc terranes such as that described in the Sinai Peninsula (Be’eri-Shlevin et al. in Geology 40:403–406, 2012).

Keywords

Iberia Ediacaran Cambrian Paleogeography Detrital zircon U–Pb geochronology 

Notes

Acknowledgments

J.F.S. wishes to acknowledge the financial support from project CONSOLIDER CGL2007-65338-C02-01/BTE by the Spanish Ministry of Science and Technology. G.G.-A. and D.P.-G. were financially supported by Research Project ODRE II (“Oroclines and Delamination: Relations and Effects”) CGL2009-1367 from the Spanish Ministry of Economy and Competitivity. This paper is part of the IGCP Project from UNESCO No. 574: Buckling and Bent Orogens, and Continental Ribbons. Francisco Pereira and Dov Avigad are gratefully acknowledged for constructive and insightful reviews.

Supplementary material

531_2013_923_MOESM1_ESM.xls (34 kb)
Supplementary material 1 (XLS 34 kb)
531_2013_923_MOESM2_ESM.xls (28 kb)
Supplementary material 2 (XLS 27 kb)
531_2013_923_MOESM3_ESM.xls (86 kb)
Supplementary material 3 (XLS 86 kb)
531_2013_923_MOESM4_ESM.xls (92 kb)
Supplementary material 4 (XLS 91 kb)
531_2013_923_MOESM5_ESM.xls (70 kb)
Supplementary material 5 (XLS 70 kb)
531_2013_923_MOESM6_ESM.xls (86 kb)
Supplementary material 6 (XLS 86 kb)
531_2013_923_MOESM7_ESM.xls (84 kb)
Supplementary material 7 (XLS 84 kb)
531_2013_923_MOESM8_ESM.xls (94 kb)
Supplementary material 8 (XLS 94 kb)

References

  1. Abad I, Nieto F, Gutiérrez-Alonso G (2003) Textural and chemical changes in slate-forming phyllosilicates across the external-internal zones transition in the low-grade metamorphic belt of the NW Iberian Variscan Chain. Schweiz Mineral Petrogr Mitt 83:63–80Google Scholar
  2. Ábalos B, Gil Ibarguchi JI, Sánchez-Lorda ME, Paquette J (2012) African/Amazonian Proterozoic correlations of Iberia: A detrital zircon U–Pb study of early Cambrian conglomerates from the Sierra de la Demanda (northern Spain). Tectonics 31. doi: 10.1029/2011TC003041
  3. Abati J, Aghzer A, Gerdes A, Ennih N (2010) Detrital zircon ages of Neoproterozoic sequences of the Moroccan Anti-Atlas belt. Prec Res 181:115–128Google Scholar
  4. Altumi MM, Elicki O, Linnemann U, Hofmann M, Sagawe A, Gärtner A (2013) U-Pb LA-ICP-MS detrital zircon ages from the Cambrian of Al Qarqaf arch, central-western Libya: provenance of the West Gondwanan sand sea at the dawn of the early Palaeozoic. J Afr Earth Sci 79:74–97Google Scholar
  5. Álvaro JJ, Vennin E, Moreno-Eiris E, Perejón A, Bechstädt T (2000) Sedimentary patterns across the Lower-Middle Cambrian transition in the Esla nappe (Cantabrian Mountains, northern Spain). Sediment Geol 137:43–61. doi: 10.1016/S0037-0738(00)00134-2 Google Scholar
  6. Amidon WH, Burbank DW, Gehrels GE (2005) Construction of detritalmineral populations: insights from mixing of U–Pb zircon ages in Himalayan rivers. Basin Res 17:463–485. doi: 10.1111/j.1365-2117.2005.00279.x Google Scholar
  7. Angerer T (2007) Fossil Paleoweathering profiles and their relation to Deformation at Basement-Cover-Interfaces. Case studies from Israel, Sweden and Spain. PhD Thesis, Ruprecht-Karls-Universität Heidelberg, Germany, 273 ppGoogle Scholar
  8. Aramburu C, Truyols J, Arbizu M, Mendez-Bédia I, Zamarreño I, García-Ramos JC, Suárez de Centi C, Valenzuela M (1992) El Paleozoico Inferior de la Zona Cantábrica. In: Gutiérrez Marco JC, Rábano I, Saavedra J, Rábano I (eds) Paleozoico Inferior de Iberio-Armérica. University of Extremadura, Extremadura, pp 397–721Google Scholar
  9. Aramburu C, Méndez-Bedia I, Arbizu M (2002) The lower Paleozoic in the Cantabrian zone (Cantabrian Mountains, NW Spain). In: García-López S, Bastida F (eds) Paleozoic conodonts from north Spain, Cuad Mus Geomin 1 35:49Google Scholar
  10. Avigad D, Kolodner K, McWilliams M, Persing H, Weissbrod T (2003) Origin of northern Gondwana Cambrian sandstone revealed by detrital zircon SHRIMP dating. Geology 31:227–230Google Scholar
  11. Avigad D, Stern RJ, Beyth M, Miller N (2007) Detrital zircon U-Pb geochronology of Cryogenian diamictites and Lower Paleozoic sandstone in Ethiopia (Tigrai): age constraints on Neoproterozoic glaciation and crustal evolution of the southern Arabian Nubian Shield. Prec Res 154:88–106Google Scholar
  12. Avigad D, Gerdes A, Morag N, Bechstädt T (2012) Coupled U–Pb–Hf of detrital zircons of Cambrian sandstones from Morocco and Sardinia: implications for provenance and Precambrian crustal evolution of North Africa. Gond Res 21:690–703Google Scholar
  13. Barbeau DL Jr, Davis JT, Murray KE, Valencia V, Gehrels GE, Zahid KM, Gombosi DJ (2009) Detrital-zircon geochronology of the metasedimentary rocks of north-western Graham Land. Antarctic Sci. doi: 10.1017/S095410200999054X Google Scholar
  14. Basei MAS, Peel E, Sánchez Bettucci L, Preciozzi F, Nutman AP (2011) The basement of the Punta del Este Terrane (Uruguay): an African Mesoproterozoic fragment at the eastern border of the South American Río de La Plata cratón. Intern J Earth Sci 100:289–304Google Scholar
  15. Bea F, Montero P, Talavera C, Abu Anbar M, Scarrow JH, Molina JF, Moreno JA (2010) The palaeogeographic position of Central Iberia in Gondwana during the Ordovician: evidence from zircon chronology and Nd isotopes. Terra Nova 22:341–346Google Scholar
  16. Be’eri-Shlevin Y, Katzir Y, Whitehouse MJ, Kleinhanns CI (2009) Contribution of pre Pan-African crust to formation of the Arabian Nubian Shield: new secondary ionization mass spectrometry U–Pb and O studies of zircon. Geology 37:899–902Google Scholar
  17. Be’eri-Shlevin Y, Eyal M, Eyal Y, Whitehouse MJ, Litvinovsky B (2012) The Sa’al volcano-sedimentary complex (Sinai, Egypt): a latest Mesoproterozoic volcanic arc in the northern Arabian Nubian Shield. Geology 40:403–406Google Scholar
  18. Ramos E, Fernández-Suárez J, Barsó D, Marzo M, Tawengi KS, Khoja AA, Bolatti, ND (2008) Detrital modes and U–Pb ages of zircons from Middle Ordovician strata of the Murzuq Basin, Libya: Implications for provenance and tectonics of the western Gondwanan margin. 1st MAPG international conference, Marrakech, Morocco, Abstracts, #90074Google Scholar
  19. Carrington da Costa J (1950) Noticia sobre una carta geologica do Buçaco, de Nery Delgado. Com Serv Geol PortugalGoogle Scholar
  20. Cawood A, Strachan R, Cutts K, Kinny PD, Hand M, Pisarevsky S (2010) Atlantic Neoproterozoic orogeny along the margin of Rodinia: Valhalla orogen, North Atlantic. Geology 38:99–102Google Scholar
  21. Cawood PA, Hawkesworth CJ, Dhuime B (2012) Detrital zircon record and tectonic setting. Geology 40:875–878Google Scholar
  22. Cocks LRM, Torsvik TH (2006) European geography in a global context from the Vendian to the end of the Palaeozoic. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geol Soc Lond Mem 32:83–95Google Scholar
  23. Collins AS, Pisarevsky SA (2005) Amalgamating eastern Gondwana: the evolution of the Circum-Indian Orogens. Earth Sci Rev 71:229–270Google Scholar
  24. Cox R, Coleman DS, Chokel CB, DeOreo SB, Wooden JL, Collins AS, De Waele B, Kröner A (2004) Proterozoic Tectonostratigraphy and paleogeography of Central Madagascar derived from detrital zircon U–Pb age populations. J Geol 112:379–399Google Scholar
  25. Cox GM, Lewis CJ, Collins AS, Halverson GP, Jourdan F, Foden J, Nettle D, Kattan F (2012) Ediacaran terrane accretion within the Arabian–Nubian Shield. Gond Res 21:341–352Google Scholar
  26. de Sitter LU (1961) Le Précambrien dans le Chaîne Cantabrique. C Rend Soc Géol France 9:253Google Scholar
  27. De Waele B, Fitzsimons ICW (2007) The nature and timing of Palaeoproterozoic sedimentation at the southeastern margin of the Congo Craton; zircon U–Pb geochronology of plutonic, volcanic and clastic units in northern Zambia. Prec Res 159:95–116Google Scholar
  28. De Waele B, Wingate MTD, Mapani B, Fitzsimons ICW (2003) Untying the Kibaran knot: a reassessment of Mesoproterozoic correlations in southern Africa based on SHRIMP U-Pb data from the Irumide belt. Geology 31:509–512Google Scholar
  29. De Waele B, Kampunzu AB, Mapani BSE, Tembo F (2006) The Mesoproterozoic Irumide belt of Zambia. J African Earth Sci 46:36–70Google Scholar
  30. De Waele B, Fitzsimons ICW, Wingate MTD, Tembo F, Mapani B, Belousova EA (2009) The geochronological framework of the Irumide Belt: prolonged crustal history along the margin of the Bangweulu Craton. Am J Sci 309:132–187Google Scholar
  31. de Wit MJ, Bowring S, Dudas F, Kamga G (2005) The great Neoproterozoic CentralSaharan arc and the amalgamation of the North African Shield. GAC-MAC-CSPG-CSSS Joint Meeting, Halifax, Nova Scotia, Abstracts, 30:42–43Google Scholar
  32. DeGraaff-Surpless K, Mahoney JB, Wooden JL, McWilliams MO (2003) Lithofacies control in detrital zircon provenance studies: insights from the Cretaceous Methow basin, southern Canadian Cordillera. Geol Soc Amer Bull 115:899–915Google Scholar
  33. DePaolo DJ (1981) Neodymium isotopes in the Colorado Front Range and crust mantle evolution in the Proterozoic. Nature 291:193–196Google Scholar
  34. DePaolo DJ (1988) Neodymium isotope geochemistry: an introduction. Springer, New YorkGoogle Scholar
  35. Dias da Silva I (2013) Geology of the Central Iberian and Galicia-Trás-os-Montes Zones in the Eastern Part of the Morais Complex, Portugal/Spain. PhD thesis, Universidad de SalamancaGoogle Scholar
  36. Díaz García F (2006) Geometry and regional significance of Neoproterozoic (Cadomian) structures of the Narcea Antiform, NW Spain. J Geol Soc 163:499–508Google Scholar
  37. Dickinson WR, Gehrels GE (2009) U-Pb ages of detrital zircons in Jurassic eolian and associated sandstones of the Colorado Plateau: Evidence for transcontinental dispersal and intraregional recycling of sediment: Geol Soc Amer Bull 121:408–433Google Scholar
  38. Dickinson WR, Lawton TF, Gehrels GE (2009) Recycling detrital zircons: a case study from the Cretaceous Bisbee Group of southern Arizona. Geology 37:503–506Google Scholar
  39. Dickinson WR, Gehrels GE, Stern RJ (2010) Late Triassic Texas uplift preceding Jurassic opening of the Gulf of Mexico: evidence from U–Pb ages of detrital zircons. Geosphere 6:641–662Google Scholar
  40. Díez Balda MA (1986) El complejo esquisto-grauváquico, las series paleozoicas y la estructura hercínica al Sur de Salamanca. Ediciones Universidad de Salamanca, 162 ppGoogle Scholar
  41. Díez Fernández R, Martínez Catalán JR, Gerdes A, Abati J, Arenas R, Fernández-Suárez J (2010) U-Pb ages of detrital zircons from the Basal allochthonous units of NW Iberia: provenance and paleoposition on the northern margin of Gondwana during the Neoproterozoic and Paleozoic. Gondwana Res 18:385–399Google Scholar
  42. Díez Fernández R, Martínez Catalán JR, Arenas R, Abati J, Gerdes A, Fernández-Suárez J (2012) U–Pb detrital zircon analysis of the lower allochthon of NW Iberia: age constraints, provenance and links with the Variscan mobile belt and Gondwanan cratons. J Geol Soc 169:655–665Google Scholar
  43. Dostal J, Dupuy C, Caby R (1994) Geochemistry of the Neoproterozoic Tilemsi belt of Iforas (Mali, Sahara): a crustal section of an oceanic island arc. Prec Res 65:55–69Google Scholar
  44. Eglington BM (2006) Evolution of the Namaqua-Natal Belt, southern Africa—a geochronological and isotope geochemical review. J Afr Earth Sci 46:93–111Google Scholar
  45. Eyal M, Be’eri-Slevin Y, Eyal Y, Whitehouse MJ, Litvinovsky B (2013) Three successive Proterozoic island arcs in the Northern Arabian-Nubian Shield: Evidence from SIMS U-Pb dating of zircon. Gondwana Res. doi: 10.1016/j.gr.2013.03.016
  46. Fernández-Suárez J, Gutiérrez-Alonso G, Jenner GA, Jackson SE (1998) Geochronology and geochemistry of the Pola de Allande granitoids (northern Spain). Their bearing on the Cadomian/Avalonian evolution of NW Iberia. Can J Earth Sci 35:1439–1453Google Scholar
  47. Fernández-Suárez J, Gutiérrez-Alonso G, Jenner GA, Tubrett MN (1999) Crustal sources in Lower Palaeozoic rocks from NW Iberia: insights from laser ablation U–Pb ages of detrital zircons. J Geol Soc 156:1065–1068Google Scholar
  48. Fernández-Suárez J, Gutiérrez-Alonso G, Jenner GA, Tubrett MN (2000) New ideas on the Proterozoic–Early Palaeozoic evolution of NW Iberia: insights from U–Pb detrital zircon ages. Prec Res 102:185–206Google Scholar
  49. Fernández-Suárez J, Gutiérrez-Alonso G, Jeffries TE (2002a) The importance of along-margin terrane transport in northern Gondwana: insights from detrital zircon parentage in Neoproterozoic rocks from Iberia and Brittany. Earth Planet Sci Lett 204:75–88Google Scholar
  50. Fernández-Suárez J, Gutiérrez-Alonso G, Cox R, Jenner GA (2002b) Assembly of the Armorica microplate: a strike-slip terrane delivery? Evidence from U–Pb ages of detrital zircons. J Geol 110:619–626Google Scholar
  51. Fourie PH, Zimmermann U, Beukes NJ, Naidoo T, Kobayashi K, Kosler J, Nakamura E, Tait J, Theron JN (2011) Provenance and reconnaissance study of detrital zircons of the Palaeozoic Cape Supergroup in South Africa: revealing the interaction of the Kalahari and Río de la Plata cratons. Intern J Earth Sci 100(527):541Google Scholar
  52. Frei D, Gerdes A (2009) Accurate and precise in situ zircon U-Pb age dating with high spatial resolution and high sample throughput by automated LA-SF-ICP-MS. Chem Geol 261:261–270Google Scholar
  53. Gómez Barreiro J, Martínez Catalán JR, Arenas R, Castiñeiras P, Abati J, Díaz García F, Wijbrans J (2007) Tectonic evolution of the upper allochthon of the Órdenes complex (northwestern Iberian Massif): structural constraints to a polyorogenic peri-Gondwanan terrane. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian-Cadomian active margin to Alleghenian-Variscan collision. Geol Soc Am Spec Paper 423:315–332Google Scholar
  54. Gozalo R, Liñán E, Palacios T, Gámez Vintaned JA, Mayoral E (2003) The Cambrian of the Iberian Peninsula: an overview. Geol Acta 1:103–112Google Scholar
  55. Gutiérrez-Alonso G (1996) Strain partitioning in the footwall of the Somiedo Nappe: structural evolution of the Narcea Tectonic window, NW Spain. J Struct Geol 18:1217–1229Google Scholar
  56. Gutiérrez-Alonso G, Fernández-Suárez J (1996) Geología y geoquímica del granitoide pre-varisco de Puente de Selce (Antiforme del Narcea, Asturias). Rev Soc Geol España 9:228–239Google Scholar
  57. Gutiérrez-Alonso G, Nieto F (1996) White-mica “crystallinity”, finite strain and cleavage development across a large Variscan structure, NW Spain. J Geol Soc 153:287–299Google Scholar
  58. Gutiérrez-Alonso G, Fernández-Suárez J, Jeffries TE, Jenner GA, Tubrett MN, Cox R, Jackson SE (2003) Terrane accretion and dispersal in the northern Gondwana margin. An early Paleozoic analogue of a long-lived active margin. Tectonophysics 365:221–232Google Scholar
  59. Gutiérrez-Alonso G, Fernández-Suárez J, Jeffries TE (2004) Age and setting of the Upper Neoproterozoic Narcea Antiform volcanic rocks (NW Iberia). Geogaceta 35:79–83Google Scholar
  60. Gutiérrez-Alonso G, Fernández-Suárez J, Collins AS, Abad I, Nieto F (2005) Amazonian Mesoproterozoic basement in the core of the ibero-Armorican Arc: Ar-40/Ar-39 detrital mica ages complement the zircon’s tale. Geology 33:637–640Google Scholar
  61. Gutiérrez-Marco JC, Aramburu C, Arbizu M, Bernardez E, Hacar Rodríguez MP, Méndez-Bedia I, Montesinos Lopez R, Rabano I, Truyols J, Villas E (1999) Revisión bioestratigráfica de las pizarras del Ordovícico Medio en el noroeste de España (zonas Cantábrica, Asturoccidental-Leonesa y Centroibérica septentrional). Acta Geol Hisp 34:3–87Google Scholar
  62. Hargrove US, Stern RJ, Kimura JI, Manton WI, Johnson PR (2006) How juvenile is the Arabian–Nubian Shield? Evidence from Nd isotopes and pre-Neoproterozoic inherited zircon in the Bi’r Umq suture zone, Saudi Arabia. Earth Planet Sci Lett 252:308–326Google Scholar
  63. Horton BK, Hassanzadeh J, Stockli DF, Axen GJ, Gillis RJ, Guest B, Amini A, Fakhari MD, Zamanzadeh SM, Grove M (2008) Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: implications for chronostratigraphy and collisional tectonics. Tectonophysics 451:97–122Google Scholar
  64. Huang W, Wang P (2006) Sediment mass distribution in the South China Sea since the Oligocene. Sci China, Ser D Earth Sci 49:1147–1155Google Scholar
  65. Jensen S, Palacios T, Martí Mus M (2010) Revised biochronology of the Lower Cambrian of the Central Iberian zone, Southern Iberian massif, Spain. Geol Mag 147:690–703Google Scholar
  66. Johnson PR, Andresen A, Collins AS, Fowler AR, Fritz H, Ghebreab W, Kusky T, Stern RJ (2011) Late Cryogenian-Ediacaran history of the Arabian-Nubian Shield: a review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. J African Earth Sci 61:167–232Google Scholar
  67. Julivert M, Martínez García E (1967) Sobre el contacto entre el Cámbrico y el Precámbrico en la parte meridional de la Cordillera Cantábrica y el papel del Precámbrico en la orogénesis herciniana. Acta Geol Hisp 2:107–110Google Scholar
  68. Julivert M, Fontboté JM, Ribeiro A, Nabais-Conce LE (1972) Mapa tectónico de la Península Ibérica y Baleares 1:1.000.000. IGME Mem 113Google Scholar
  69. Kalsbeek F, Frei D, Affaton P (2008) Constraints on provenance, stratigraphic correlation and structural context of the Volta basin, Ghana, from detrital zircon geochronology: an Amazonian connection? Sediment Geol 212:86–95Google Scholar
  70. Kerr A, Jenner GA, Fryer BJ (1995) Sm–Nd isotopic geochemistry of Precambrian to Paleozoic granitoid suites and the deep-crustal structure of the southeast margin of the Newfoundland Appalachians. Can J Earth Sci 32:224–245Google Scholar
  71. Kim W, Doh SJ, Yu Y, Lee YI (2013) Magnetic evaluation of sediment provenance in the northern East China Sea using fuzzy c-means cluster analysis. Marine Geol. doi: 10.1016/j.margeo.2013.01.001 Google Scholar
  72. Kokonyangi J, Armstrong R, Kampunzu AB, Yoshida M, Okudaira T (2004) U-Pb zircon geochronology and petrology of granitoids from Mitwaba (Katanga, Congo): implications for the evolution of the Mesoproterozoic Kibaran belt. Prec Res 132:79–106Google Scholar
  73. Kolodner K, Avigad D, McWilliams M, Wooden JL, Weissbrod T, Feinstein S (2006) Provenance of north Gondwana Cambrian–Ordovician sandstone: U-Pb SHRIMP dating of detrital zircons from Israel and Jordan. Geol Mag 143:367–391Google Scholar
  74. Kröner A, Stern RJ, Dawoud AS, Compston W, Reichmann T (1987) The Pan-African continental margin in northeastern Africa: evidence from a geochronological study of granulites at Sabaloka, Sudan. Earth Planet Sci Lett 85:91–104Google Scholar
  75. Küster D, Liégeois JP, Matukov D, Sergeev S, Lucassen F (2008) Zircon geochronology and Sr, Nd, Pb isotope geochemistry of granitoids from Bayuda Desert and Sabaloka (Sudan): evidence for a Bayudian event (920–900 Ma) preceding the Pan-African orogenic cycle (860–590 Ma) at the eastern boundary of the Saharan Metacraton. Prec Res 164:16–39Google Scholar
  76. Linnemann U, Ouzegane K, Drareni A, Hofmann M, Becker S, Gärtner A, Sagawe A (2011) Sands of West Gondwana: an archive of secular magmatism and plate interactions—a case study from the Cambro-Ordovician section of the Tassili Ouan Ahaggar (Algerian Sahara) using U–Pb–LA-ICP-MS detrital zircon ages. Lithos 123:188–203Google Scholar
  77. Loizenbauer J, Wallbrecher E, Fritz H, Meumayr P, Khudeir AA, Kloetzli U (2001) Structural geology, single zircon ages and fluid inclusion studies of the Meatiq metamorphic core complex: implications for Neoproterozoic tectonics in the Eastern Desert of Egypt. Prec Res 110:357–383Google Scholar
  78. Longerich HP, Jenner GA, Fryer BJ, Jackson SE (1990) Inductively coupled plasma-mass spectrometric analysis of geological samples: a critical evaluation based on case studies. Chem Geol 83:105–118Google Scholar
  79. López-Guijarro R, Armendáriz M, Quesada C, Fernández-Suárez J, Murphy JB, Pin C, Bellido F (2008) Ediacaran-Palaeozoic tectonic evolution of the Ossa Morena and Central Iberian zones (SW Iberia) as revealed by Sm-Nd isotope systematics. Tectonophys 461:202–214Google Scholar
  80. Ludwig KR (1998) On the treatment of concordant Uranium-Lead ages. Geochim Cosmochim Acta 62:665–676Google Scholar
  81. Ludwig KR (2009) Isoplot v. 3.71: a geochronological toolkit for Microsoft Excel: Berkeley, California, Berkeley Geochronology Center Special Publication 4Google Scholar
  82. Mapeo RBM, Kampunzu AB, Armstrong RA (2000) Ages of detrital zircon grains from Neoproterozoic siliciclastic rocks in the Shakawe area: implications for the evolution of Proterozoic crust in northern Botswana. South Afr J of Geol 103:156–161Google Scholar
  83. Marcos A, Farias P (1999) La estructura de las láminas inferiores del Complejo de Cabo Ortegal y su autóctono en el área de Chantada (Galicia, NO de España). Trab Geol 21:201–218Google Scholar
  84. Martínez Catalán JR (1985) Estratigrafía y estructura del Domo de Lugo (Sector Oeste de la Zona Asturoccidental-leonesa). Corpus Geologicum Gallecieae 2:1–291Google Scholar
  85. Martínez Catalán JR (2011) Are the oroclines of the Variscan belt related to late Variscan strike-slip tectonics? Terra Nova 23:241–247Google Scholar
  86. Martínez Catalán JR (2012) The Central Iberian arc, an orocline centered in the Iberian Massif and some implications for the Variscan belt. Intern J Earth Sci 101:1299–1314Google Scholar
  87. Martínez Catalán JR, Arenas R, Díaz García F, Abati J (1999) Allochthonous units in the Variscan belt of NW Iberia. Terranes and accretionary history. In: Sinha AK (ed) Basement Tectonics 13:65–84Google Scholar
  88. Martínez Catalán JR, Arenas R, Díaz-Balda MA (2003) Large extensional structures developed during emplacement of a crystalline thrust sheet: the Mondoñedo nappe (NW Spain). J Struct Geol 25:1815–1839Google Scholar
  89. Martínez Catalán JR, Fernández-Suárez J, Jenner GA, Belousova E, Díez Montes A (2004) Provenance constraints from detrital zircon U–Pb ages in the NW Iberian Massif: implication for Palaeozoic plate configuration and Variscan evolution. J Geol Soc 161:463–476Google Scholar
  90. Martínez Catalán JR et al (2007) Space and time in the tectonic evolution of the northwestern Iberian Massif. Implications for the comprehension of the Variscan belt. In: Hatcher RD Jr, Carlson MP, McBride JH, Martínez Catalán JR (eds) 4-D framework of continental crust. Geol Soc Am Mem 200:403–423Google Scholar
  91. Martínez-Catalán JR, Arenas R, Díaz-García F, Abati J (1997) Variscan accretionary complex of NW Iberia: terrane correlation and succession of tectonothermal events. Geology 25:1103–1106Google Scholar
  92. Meert JG, Lieberman BS (2008) The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran–Cambrian radiation. Gond Res 14:5–21Google Scholar
  93. Meinhold G, Morton AC, Fanning CM, Frei D, Howard JP, Phillips RJ, Strogen D, Whitham AG (2011) Evidence from detrital zircons for recycling of Mesoproterozoic and Neoproterozoic crust recorded in Paleozoic and Mesozoic sandstones of southern Libya. Earth Planet Sci Lett 312:164–175Google Scholar
  94. Meinhold G, Morton AC, Avigad D (2013) New insights into peri-Gondwana paleogeography and the Gondwana super-fan system from detrital zircon U–Pb ages. Gond Res 23:661–665Google Scholar
  95. Murphy JB, Nance RD (2002) Nd–Sm isotopic systematics as tectonic tracers: an example from West Avalonia, Canadian Appalachians. Earth Sci Rev 59:77–100Google Scholar
  96. Nance RD, Murphy JB, Strachan RA, Keppie JD, Gutiérrez-Alonso G, Fernández-Suárez J, Quesada C, Linnemann U, D’Lemos R, Pisarevsky SA (2008) Neoproterozoic-early Paleozoic tectonostratigraphy and palaeogeography of the peri-Gondwanan terranes: Amazonian v. West African connections. In: Ennih N, Liégeois JP (eds) The boundaries of the West African Craton. Geol Soc Lond Spec Pub 297:345–383Google Scholar
  97. Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, Strachan RA, Woodcock NH (2010) Evolution of the Rheic Ocean. Gond Res 17:194–222Google Scholar
  98. Ngnotue T, Ganno S, Nzenti JP, Schulz B, Tchaptchet TD, Shu CE (2012) Geochemistry and Geochronology of Peraluminous High-K Granitic Leucosomes of Yaoundé Series (Cameroon): evidence for a Unique Pan-African Magmatism and Melting Event in North Equatorial Fold Belt. Intern J Geosci 3:525–548Google Scholar
  99. Palacios T, Vidal G (1992) Lower Cambrian acritarchs from northern Spain: the Precambrian-Cambrian Boundary and biostratigraphic implications. Geol Mag 129:421–436Google Scholar
  100. Pastor-Galán D, Gutiérrez-Alonso G, Meere P, Mulchrone K (2009) Factors affecting finite strain estimation in low-grade, low-strain clastic rocks. J Struct Geol 31:1586–1596Google Scholar
  101. Pastor-Galán D, Gutiérrez-Alonso G, Mulchrone KF, Huerta P (2012a) Conical folding in the core of an orocline. A geometric analysis from the Cantabrian Arc (Variscan Belt of NW Iberia). J Struct Geol 39:210–223Google Scholar
  102. Pastor-Galán D, Gutiérrez-Alonso G, Murphy JB, Fernández-Suárez J, Hofmann M, Linnemann U (2012b) Provenance analysis of the Paleozoic sequences of the northern Gondwana margin in NW Iberia: passive margin to Variscan collision and orocline development. Gond Res 23:1089–1103Google Scholar
  103. Pereira MF, Solá AR, Chichorro M, Lopes L, Gerdes A, Silva JB (2012a) North-Gondwana assembly, break-up and paleogeography: U-Pb isotope evidence from detrital and igneous zircons of Ediacaran and Cambrian rocks of SW Iberia. Gond Res 22:866–881Google Scholar
  104. Pereira MF, Linnemann U, Hofmann M, Chichorro M, Solá AR, Medina J, Silva JB (2012b) The provenance of Late Ediacaran and Early Ordovician siliciclastic rocks in the Southwest Central Iberian Zone: constraints from detrital zircon data on northern Gondwana margin evolution during the late Neoproterozoic. Prec Res 192–195:166–189Google Scholar
  105. Pérez-Estaún A, Martínez-Catalán JR, Bastida F (1991) Crustal thickening and deformation sequence in the footwall to the suture of the Variscan Belt of northwest Spain. Tectonophysics 191:243–253Google Scholar
  106. Quesada C (1990) Precambrian terranes in the Iberian Variscan foldbelt. In: Strachan RA, Taylor GK (eds) Avalonian and Cadomian geology of the North Atlantic. Blackie and Son, Glasgow, pp 109–133Google Scholar
  107. Quesada C, Bellido F, Dallmeyer RD, Gil Ibarguchi JI, Oliveira JT, Pérez Estaún A, Ribeiro A, Robardet M, Silva JB (1991) Terranes within the Iberian Massif: correlations with West African sequences. In: Dallmeyer RD, Lecorché JP (eds) The West African Orogens and Circum—Atlantic Correlations. Springer, Berlin, pp 267–294Google Scholar
  108. Ribeiro A, Pereira E, Dias R (1990) Structure in the NW of the Iberian Peninsula. In: Dallmeyer RD, Martínez-García E (eds) Pre-Mesozoic geology of Iberia. Springer, Berlin, pp 221–236Google Scholar
  109. Robardet M (2002) Alternative approach to the Variscan Belt in Southwestern Europe: preorogenic paleobiogeographical constraints. In: Martínez-Catalán JR, Hatcher Jr. RD, Arenas R, Díaz García F (eds) Variscan–Appalachian Dynamics: The Building of the Late Paleozoic Basement. Geol Soc Am Spec Papers 364:1–15Google Scholar
  110. Robardet M (2003) The Armorica “microplate”: fact or fiction? Critical review of the concept and contradictory paleobiogeographical data. Palaeogeogr Palaeoclimatol Palaeoecol 195:125–148Google Scholar
  111. Robardet M, Gutiérrez-Marco JC (1990) Sedimentary and faunal domains in the Iberian Peninsula during lower Paleozoic times. In: Dallmeyer RD, Martínez García E (eds) Pre-mesozoic geology of Iberia. Springer, Berlin, pp 383–395Google Scholar
  112. Rodríguez Alonso MD (1985) El complejo esquistoso-grauwáckico y el Paleozoico en el centro-oeste español. Acta Salmanticensia Ciencias 51:1–174Google Scholar
  113. Rodríguez Alonso MD, Alonso Gavilán G (eds) (1995) Neoproterozoic–Lower Cambrian in the central-western part of the Iberian Peninsula. In: Post-conference field guide, XIII geological meeting on the West of the Iberian PeninsulaGoogle Scholar
  114. Rodríguez-Alonso MD, Peinado M, López-Plaza M, Franco P, Carnicero A, Gonzalo JC (2004) Neoproterozoic–Cambrian synsedimentary magmatism in the Central Iberian Zone (Spain): geology, petrology and geodynamic significance. Intern J Earth Sci 93:897–920Google Scholar
  115. Rubio-Ordóñez A (2010) Magmatismo Neoproterozoico Calcoalcalino en el Antiforme del Narcea, PhD Thesis. Departamento de Geología. Universidad de OviedoGoogle Scholar
  116. Rubio-Ordóñez A, Barba P, Cuesta A, Gallastegui G, Suárez O, Ugidos JM, Valladares MI (2004) Los cantos volcánicos del conglomerado basal de la Fm. Herrería: evidencias de un Volcanismo Neoproterozoico en la base del Cámbrico. Geogaceta 35:11–14Google Scholar
  117. Rubio-Ordóñez A, Valverde-Vaquero P, González-Menéndez L, Gallastegui G, Cuesta A (in press) Neoproterozoic plutono-volcanic complex in NW Iberia; petrology and geochemical characterization of an arc-related magmatism. Prec ResGoogle Scholar
  118. Samson SD, D’Lemos RS, Miller BV, Hamilton MA (2005) Neoproterozoic palaeogeography of the Cadomia and Avalon terranes: constraints from detrital zircon U–Pb ages. J Geol Soc 162:65–71Google Scholar
  119. Sánchez Martínez S, Arenas R, Fernández-Suárez J, Jeffries TE (2009) From Rodinia to Pangaea: ophiolites from NW Iberia as witness for a long-lived continental margin. In: Murphy JB, Keppie JD Hynes AJ (eds) Ancient orogens and modern analogues. Geol Soc Spec Pub 327:317–341Google Scholar
  120. Shaw J, Johnston ST, Gutiérrez-Alonso G, Weil AB (2012a) Oroclines of the Iberian Variscan belt: Paleocurrent analysis, U-Pb detrital zircon age dating, and paleogeographic implications. Geotemas 13Google Scholar
  121. Shaw J, Johnston ST, Gutiérrez-Alonso G, Weil AB (2012b) Oroclines of the Variscan orogen of Iberia: paleocurrent analysis and paleogeographic implications. Earth Planet Sci Lett 329–330:60–70Google Scholar
  122. Singletary SJ, Hanson RE, Martin MW, Crowley JL, Bowring SA, Key RM, Ramokate LV, Direng BB, Krol MA (2003) Geochronology of basement rocks in the Kalahari Desert, Botswana, and implications for regional Proterozoic tectonics. Prec Res 121:47–71Google Scholar
  123. Sircombe KN (2004) Age display: an excel workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions. Comput Geosci 30:21–31Google Scholar
  124. Squire RJ, Campbell IH, Allen CM, Wilson CJL (2006) Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth? Earth Planet Sci Lett 250:116–133Google Scholar
  125. Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362Google Scholar
  126. Stern RJ (1994) Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the assembly of Gondwanaland. Ann Rev Earth Planet Sci 22:319–351Google Scholar
  127. Tohver E, Cawood PA, Rossello EA, Jourdan F (2012) Closure of the Clymene Ocean and formation of West Gondwana in the Cambrian: evidence from the Sierras Australes of the southernmost Río de la Plata craton, Argentina. Gond Res. doi: 10.1016/j.gr.2011.04.001 Google Scholar
  128. Ugidos JM, Armenteros I, Barba P, Valladares MI, Colmenero JR (1997a) Geochemistry and petrology of recycled orogen-derived sediments: a case study from Upper Precambrian siliciclastic rocks of the Central Iberian Zone, Iberian Massif, Spain. Prec Res 84:163–180Google Scholar
  129. Ugidos JM, Valladares MI, Recio C, Rogers G, Fallick AE, Stephens WE (1997b) Provenance of Upper Precambrian–Lower Cambrian shales in the Central Iberian Zone, Spain: evidence from a chemical and isotopic study. Chem Geol 136:55–70Google Scholar
  130. Ugidos JM, Bilstrom K, Valladares MI, Barba P (2003a) Geochemistry of the Upper Neoproterozoic and Lower Cambrian siliciclastic rocks and U-Pb dating on detrital zircons in the Central Iberian Zone, Spain. Intern J Earth Sci 92:661–676Google Scholar
  131. Ugidos JM, Valladares MI, Barba P, Ellam RM (2003b) The Upper Neoproterozoic-Lower Cambrian of the Central Iberian Zone, Spain: chemical and isotopic (Sm–Nd) evidence that the sedimentary succession records an inverted stratigraphy of its source. Geochim Cosmochim Acta 67:2615–2629Google Scholar
  132. Ugidos JM, Sánchez-Santos JM, Barba P, Valladares MI (2010) Upper Neoproterozoic series in the Central Iberian, Cantabrian and West Asturian Leonese Zones (Spain): geochemical data and statistical results as evidence for a shared homogenised source area. Prec Res 178:51–58Google Scholar
  133. Valladares MI (1995) Siliciclastic-carbonate slope apron in an immature tensional margin (Upper Precambrian–Lower Cambrian), Central Iberian Zone, Salamanca, Spain. Sedimentary Geol 94:165–186Google Scholar
  134. Valladares MI, Barba P, Colmenero JR, Armenteros I, Ugidos JM (1998) La sucesión sedimentaria del Precámbrico Superior-Cámbrico Inferior en el sector central de la Zona Centroibérica: litoestratigrafía, geoquímica y facies sedimentarias. Rev Soc Geol España 11:271–283Google Scholar
  135. Valladares MI, Barba P, Ugidos JM, Colmenero JR, Armenteros I (2000) Upper Neoproterozoic–Lower Cambrian sedimentary successions in the Central Iberian Zone (Spain): sequence stratigraphy, petrology and chemostratigraphy. Implications for other European zones. Intern J Earth Sci 89:2–20Google Scholar
  136. Valladares MI, Barba P, Ugidos JM, Colmenero JR (2002) Contrasting geochemical features of the central Iberia shales (Iberian massif, Spain): implications for the evolution of Neoproterozoic-Lower Cambrian sediments and their sources in other peri-Gondwanan areas. Tectonophysics 352:121–132Google Scholar
  137. Valladares MI, Ugidos JM, Barba P, Fallick AE, Ellam RM (2006) Oxygen, carbon and strontium isotope records of Ediacaran carbonates in Central Iberia (Spain). Prec Res 147:354–365Google Scholar
  138. Van Schmus WR, Oliveira EP, da Silva Filho AF, Toteu SF, Penaye J, Guimaraes IP (2008) Proterozoic links between the Borborema Province, NE Brazil, and the Central African Fold Belt. In: Pankhurst RJ, Trouw RAJ, Brito Neves BB, De Wit MJ (eds) West Gondwana: Pre-Cenozoic correlations across the South Atlantic Region. Geol Soc Spec Pub 294: 69–99Google Scholar
  139. Vermeesch P (2004) How many grains are needed for a provenance study? Earth Planet Sci Lett 224:441–451Google Scholar
  140. Vermeesch P (2012) On the visualisation of detrital age distributions. Chem Geol 312–313:190–194Google Scholar
  141. Vidal G, Palacios T, Gámez-Vintaned JA, Díez Balda MA, Grants SWF (1994) Neoproterozoic-early Cambrian geology and paleontology of Iberia. Geol Mag 131:729–756Google Scholar
  142. Vidal G, Palacios T, Moczydlowska M, Gubanov A (1999) Age constraints from small shelly fossils on the early Cambrian terminal Cadomian phase in Iberia. GGF 121:137–143Google Scholar
  143. Weil AB, Van der Voo R, van der Pluijm BA (2001) Oroclinal bending and evidence against the Pangea megashear: the Cantabria–Asturias arc (northern Spain. Geology 29:991–994Google Scholar
  144. Weil AB, Gutiérrez-Alonso G, Conan J (2010) New time constraints on lithospheric scale oroclinal buckling of the Ibero-Armorican arc: a palaeomagnetic study of earliest Permian rocks from Iberia. J Geol Soc 167:127–143Google Scholar
  145. Weil AB, Gutiérrez-Alonso G, Wicks D (2013a) Investigating the kinematics of local thrust sheet rotation in the limb of an orocline: a paleomagnetic and structural analysis of the Esla tectonic unit, Cantabrian–Asturian Arc, NW Iberia. Intern J Earth Sci 102:43–60Google Scholar
  146. Weil AB, Gutiérrez-Alonso G, Johnston ST, Pastor-Galán D (2013b) Kinematic constraints on buckling a lithospheric-scale orocline along the northern margin of Gondwana: a geologic synthesis. Tectonophys 582:25–49Google Scholar
  147. Wilde SA, Youssef K (2002) A re-evaluation of the origin and setting of the late Precambrian Hammamat Group based on SHRIMP U–Pb dating of detrital zircons from Gebel Umm Tawat, North Eastern Desert, Egypt. J Geol Soc 159:595–604Google Scholar
  148. Williams IS, Fiannacca P, Cirrincione R, Pezzino A (2012) Peri-Gondwanan origin and early geodynamic history of NE Sicily: a zircon tale from the basement of the Peloritani Mountains. Gond Res 22:855–865Google Scholar
  149. Wotte T (2009) Re-interpretation of a Lower–Middle Cambrian West Gondwanan ramp depositional system: a case study from the Cantabrian Zone (NW Spain). Facies 55:473–487Google Scholar
  150. Zamarreño I (1972) Las litofacies carbonatadas del Cámbrico de la Zona Cantábrica (NW de España) y su distribución paleogeográfica. Trab Geol Univ Oviedo 5:1–118Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. Fernández-Suárez
    • 1
    Email author
  • G. Gutiérrez-Alonso
    • 2
  • D. Pastor-Galán
    • 2
  • M. Hofmann
    • 3
  • J. B. Murphy
    • 4
  • U. Linnemann
    • 3
  1. 1.Departamento de Petrología y GeoquímicaUniversidad Complutense and IGEO-CSICMadridSpain
  2. 2.Departamento de GeologíaUniversidad de SalamancaSalamancaSpain
  3. 3.Senckenberg Naturhistorische Sammlungen DresdenDresdenGermany
  4. 4.Department of Earth SciencesSt. Francis Xavier UniversityAntigonishCanada

Personalised recommendations