International Journal of Earth Sciences

, Volume 102, Issue 8, pp 2255–2274 | Cite as

Soft-sediment deformation structures in NW Germany caused by Late Pleistocene seismicity

  • Christian Brandes
  • Jutta Winsemann
Original Paper


New data on seismically triggered soft-sediment deformation structures in Pleniglacial to Late Glacial alluvial fan and aeolian sand-sheet deposits of the upper Senne area link this soft-sediment deformation directly to earthquakes generated along the Osning Thrust, which is one of the major fault systems in Central Europe. Soft-sediment deformation structures include a complex fault and fold pattern, clastic dikes, sand volcanoes, sills, irregular intrusive sedimentary bodies, flame structures, and ball-and-pillow structures. The style of soft-sediment deformation will be discussed with respect to brittle failure, liquefaction and fluidization processes, and was controlled by (1) the magnitude of the earthquake and (2) the permeability, tensile strength and flexural resistance of the alluvial and aeolian sediments. It is the first time in northern Germany that fluidization and liquefaction features can be directly related to a fault. The occurrence of seismicity in the Late Pleistocene and in the seventeenth century indicates ongoing crustal movements along the Osning Thrust and sheds new light on the seismic activity of northern Germany. The Late Pleistocene earthquake probably occurred between 15.9 ± 1.6 and 13.1 ± 1.5 ka; the association of soft-sediment deformation structures implies that it had a magnitude of at least 5.5.


Neotectonics Soft-sediment deformation Liquefaction Fluidization Brittle failure Late Pleniglacial Late Glacial Osning Thrust Northern Germany 



We would like to thank the owners of the Oerlinghausen and Augustdorf open sand pits for the permission to enter their property. We would like to thank G. Hoffmann and K. Reicherter for constructive reviews and A. Nelson for helpful comments on an earlier version of this manuscript. Ariana Osman is gratefully acknowledged for improving the English. Many thanks are due to Janine Meinsen, Jörg Lang and Julia Roskosch for help in the field. Jamie Buscher, Christoph Glotzbach, Andrea Hampel, Holger Steffen and David Tanner are gratefully acknowledged for discussion.


  1. Allen JRL (1986) Earthquake magnitude-frequency, epicentral distance, and soft-sediment deformation in sedimentary basins. Sed Geol 46:67–75Google Scholar
  2. Ambraseys N, Sarma S (1969) Liquefaction of soils induced by earthquakes. Bull Seis Soc Am 59:651–664Google Scholar
  3. Anand A, Jain AK (1987) Earthquakes and deformational structures (seismites) in Holocene sediments from the Himalayan-Andaman Arc, India. Tectonophysics 133:105–120Google Scholar
  4. Baldschuhn R, Kockel F (1999) Das Osning-Lineament am Südrand des Niedersachsen-Beckens. Z dt Ges Geowiss 150:673–695Google Scholar
  5. Baldschuhn R, Best G, Kockel F (1991) Inversion tectonics in the north-west German basin. In: Spencer AM (ed) Generation, accumulation and production of Europe’s hydrocarbons. Spec Publ European Ass Petrol Geoscien 1, pp 149–159Google Scholar
  6. Baldschuhn R, Binot F, Fleig S, Kockel F (1999) Geotektonischer Atlas von Nordwestdeutschland und dem deutschen Nordseesektor—Strukturen, Strukturentwicklung, Paläogeographie. Geol Jb A 153:1–80Google Scholar
  7. Berra F, Felletti F (2011) Syndepositional tectonics recorded by soft-sediment deformation and liquefaction structures (continental Lower Permian sediments, Southern Alps, Northern Italy): stratigraphic significance. Sed Geol 235:249–263Google Scholar
  8. Betz D, Führer F, Greiner G, Plein E (1987) Evolution of the Lower Saxony Basin. Tectonophysics 137:127–170Google Scholar
  9. Black RF (1976) Periglacial features indicative of permafrost: ice and soil wedges. Quat Res 6:3–26Google Scholar
  10. Bockheim JG, Tarnocai C (1998) Recognition of cryoturbation for classifying permafrost-affected soils. Geoderma 81:281–293Google Scholar
  11. Brandes C, Winsemann J, Roskosch J, Meinsen J, Tanner DC, Frechen M, Steffen H, Wu P (2012) Activity of the Osning thrust during the late Weichselian: ice-sheet and lithosphere interactions. Quat Sci Rev 38:49–62Google Scholar
  12. Burne RV (1970) The origin and significance of sand volcanoes in the bude formation (Cornwall). Sedimentology 15:211–228Google Scholar
  13. Cartwright J, James D, Huuse M, Vetel W, Hurst A (2008) The geometry and emplacement of conical sandstone intrusions. J Struc Geol 30:854–867Google Scholar
  14. Castilla RA, Audemard FA (2007) Sand blows as a potential tool for magnitude estimation of pre-instrumental earthquakes. J Seis 11:473–487Google Scholar
  15. Chen J, van Loon AJ, Han Z, Chough SK (2009) Funnel-shaped, breccia-filled clastic dikes in the Late Cambrian Chaomidian Formation (Shandong Province, China). Sed Geol 221:1–6Google Scholar
  16. Chu DB, Stewart JP, Lee S, Tsai JS, Lin PS, Chu BL, Seed RB, Hsu SC, Yu MS, Wang MCH (2004) Documentation of soil conditions at liquefaction and non-liquefaction sites from 1999 Chi–Chi (Taiwan) earthquake. Soil Dyn Earthq Eng 24:647–657Google Scholar
  17. Clague JJ, Naesgaard E, Sy A (1992) Liquefaction features on the Fraser delta: evidence for prehistoric earthquakes? Can J Earth Sci 29:1734–1745Google Scholar
  18. Cobbold PR, Rodrigues N (2007) Seepage forces, important factors in the formation of horizontal hydraulic fractures and bedding-parallel fibrous veins (“beef” and “cone-in-cone”). Geofluids 7:313–332Google Scholar
  19. Cosgrove JW (2001) Hydraulic fracturing during the formation and deformation of a basin: a factor in the dewatering of low-permeability sediments. AAPG Bull 85:737–748Google Scholar
  20. Cosgrove JW, Hillier RD (2000) Forced fold development within Tertiary sediments of the Alba Field, UKCS: evidence of differential compaction and post-depositional sandstone remobilization. In: Cosgrove JW, Ameen MS (eds) Forced folds and fractures, Geol Soc London Spec Publ 169, pp 61–71Google Scholar
  21. Cox RT, Hill AA, Larsen D, Holzer T, Forman SL, Noce T, Gardner C, Morat J (2007) Seismotectonic implications of sand blows in the southern Mississippi Embayment. Eng Geol 89:278–299Google Scholar
  22. Cox RT, Gordon J, Forman S, Brezina T, Negrau M, Hill A, Gardner C, Machin S (2010) Paleoseismic Sand blows in North Louisiana and South Arkansas. Seis Res Let 81:1032–1047Google Scholar
  23. Dahm T, Krüger F, Stammler K, Klinge K, Kind R, Wylegalla K, Grasso J-R (2007) The 2004 Mw 4.4 Rotenburg, northern Germany, earthquake and its possible relationship with gas recovery. Bull Seis Soc Am 97:691–704Google Scholar
  24. Davison C (1921) A manual of seismology. The University Press, 256 pGoogle Scholar
  25. Drozdzewski G (1988) Die Wurzel der Osning-Überschiebung und der Mechanismus herzynischer Inversionsstörungen in Mitteleuropa. Geol Rundsch 77:127–141Google Scholar
  26. Eissmann L (1994) Grundzüge der Quartärgeologie Mitteldeutschlands (Sachsen, Sachsen-Anhalt, Südbrandenburg, Thüringen). Altenburger Naturwissenschaftliche Forschung 7:55–135Google Scholar
  27. Fehrentz M, Radtke U (2001) Luminescence dating of Pleistocene outwash sediments of the Senne area (Eastern Münsterland, Germany). Quat Sci Rev 20:725–729Google Scholar
  28. French HM (2007) The periglacial environment. 3rd edn. Wiley, p 458Google Scholar
  29. Frey SE, Gingras MK, Dashtgard SE (2009) Experimental studies of gas-escape and water-escape structures: mechanisms and morphologies. J Sed Res 79:808–816Google Scholar
  30. Galli P (2000) New empirical relationships between magnitude and distance for liquefaction. Tectonophysics 324:169–187Google Scholar
  31. Gardner JV, Prior DB, Field ME (1999) Humboldt Slide—a large shear-dominated retrogressive slope failure. Mar Geol 154:323–338Google Scholar
  32. Gast R, Gundlach T (2006) Permian strike slip and extensional tectonics in Lower Saxony, Germany. Z dt Ges Geowiss 157:41–56Google Scholar
  33. Gibert L, Alfaro P, Gácia-Totosa FJ, Scott G (2011) Superposed deformed beds produced by single earthquakes (Tecopa basin, California): insights into paleoseismicity. Sed Geol 235:148–159Google Scholar
  34. Glennie KW, Buller AT (1983) The Permian Weissliegend of NW Europe: the partial deformation of aeolian dune sands caused by the Zechstein transgression. Sed Geol 35:43–81Google Scholar
  35. Grünthal G (2006a) Das Erdbeben von 1736 in der Uckermark. Brandenburgische Geowissenschaftliche Beiträge 13:173–175Google Scholar
  36. Grünthal G (2006b) Die Erdbeben im Land Brandenburg und im östlichen Teil Deutschlands. Brandenburgische Geowissenschaftliche Beiträge 13:165–168Google Scholar
  37. Grünthal G, Bosse C (1997) Seismic hazard assessment for low-seismicity areas—case study: northern Germany. Nat Hazard 14:127–139Google Scholar
  38. Grünthal G, Meier R (1995) Das ′Prignitz`-Erdbeben von 1409. Brandenburgische Geowissenschaftliche Beiträge 2:5–27Google Scholar
  39. Grünthal G, Wahlström R (2012) The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium. J Seis 16:535–570Google Scholar
  40. Hallet B, Waddington ED (1992) Buoyancy forces induced by freeze-thaw in the active layer: implications for diapirism and soil circulation. In: Dixion, JC, Abrahams AD (eds) Periglacial Geomorphology, Proceedings 22nd annual symposium in geomorphology, Binghamton 1991, Wiley, pp 251–279Google Scholar
  41. Harbort E, Keilhack K (1918) Erläuterungen zur Geologischen Karte von Preußen und benachbarten Bundesstaaten 1:25000, Blatt Senne. Lieferung 197, Nr. 4118, Berlin, 28 pGoogle Scholar
  42. Harms FJ (1983) Zur Geologie saale-zeitlicher Sedimente am Rande des Leinetals zwischen Imsen und Freden. Beitr Naturk Niedersach 36:53–69Google Scholar
  43. Harry DG, Godzik JS (1988) Ice wedges: growth, thaw transformation, and paleoenvironmental significance. J Quat Sci 3:39–55Google Scholar
  44. Hempton MR, Dewey JF (1983) Earthquake-induced deformation structures in young lacustrine sediments, East Anatolian Fault, southeast Turkey. Tectonophysics 98:7–14Google Scholar
  45. Hoffmann G, Reicherter K (2012) Soft-sediment deformation of Late Pleistocene sediments along the southwestern coast of the Baltic Sea (NE Germany). Int J Earth Sci 101:351–363Google Scholar
  46. Holzer TL, Clark MM (1993) Sand boils without earthquakes. Geology 21:873–876Google Scholar
  47. Holzer TL, Noce TE, Bennett MJ, Tinsley JC, Rosenberg LI (2005) Liquefaction at Oceano, California, during the 2003 San Simeon Earthquake. Bull Seis Soc Am 95:2396–2411Google Scholar
  48. Horváth Z, Michéli E, Mindszenty A, Berényi-Üveges J (2005) Soft-sediment deformation structures in Late Miocene-Pleistocene sediments on the pediment of the Mátra Hills (Visonta, Atkár, Verseg): cryoturbation, load structures or seismites. Tectonophysics 410:81–95Google Scholar
  49. Housner GW (1958) The mechanism of sand blows. Bull Seis Soc Am 48:155–161Google Scholar
  50. Hurst A. Cartwright J (2007) Relevance of sand injectites to hydrocarbon exploration and production. In: Hurst A, Cartwright J (eds) Sand injectites: implications for hydrocarbon exploration and production, AAPG Memoir 87, Tulsa, pp 1–19Google Scholar
  51. Hurst A, Scott A, Vigorito M (2011) Physical characteristics of sand injectites. Earth Sci Rev 106:215–246Google Scholar
  52. Huuse MJ, Cartwright JA, Hurst A, Steinsland N (2007) Seismic characterization of large-scale sandstone intrusions. In: Hurst A, Cartwright JA (eds) Sand injectites: implications for hydrocarbon exploration and production. AAPG Memoir 87, Tulsa, pp 21–35Google Scholar
  53. Jones AP, Omoto K (2000) Towards establishing criteria for identifying trigger mechanisms for soft-sediment deformation: a case study of late Pleistocene lacustrine sand and clays, Onikobe and Nakayamadaira Basins, northeastern Japan. Sedimentology 47:1211–1226Google Scholar
  54. Juschus O (2003) Das Jungmoränenland südlich von Berlin—Untersuchungen zur jungquartären Landschaftsentwicklung zwischen Unterspreewald und Nuthe. Berliner Geographische Arbeiten 95:152Google Scholar
  55. Kaiser A (2005) Neotectonic modelling of the North German Basin and adjacent areas—a tool to understand postglacial landscape evolution? Z dt Ges Geowiss 156:357–366Google Scholar
  56. Kasse C (1997) Cold-climate sand-sheet formation in North-Western Europe (c. 14–12.4 ka); a response to permafrost degradation and increased aridity. Permafrost Periglac Process 8:295–311Google Scholar
  57. Kasse C (2002) Sandy aeolian deposits and environments and their relation to climate during the Last Glacial Maximum and Lateglacial in northwest and central Europe. Prog Phys Geogr 24:507–532Google Scholar
  58. Keller G (1974) Die Fortsetzung der Osningzone auf dem Nordwestabschnitt des Teutoburger Waldes. N Jb Geol Paläont Mh 2:72–95Google Scholar
  59. Keller EA, Pinter N (2002) Active Tectonics - Earthquakes, Uplift, and Landscape. Prentice-Hall, Second Edition 362 ppGoogle Scholar
  60. Kjaer KH, Krüger J (2001) The final phase of dead-ice moraine development: processes and sediment architecture, Kötlujökull, Iceland. Sedimentology 48:935–952Google Scholar
  61. Kley J, Voigt T (2008) Late Cretaceous intraplate thrusting in central Europe: effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology 36:839–842Google Scholar
  62. Koç Taşgin C, Ohan H, Türkmen I, Aksoy E (2011) Soft-sediment deformation in the late Miocene Şelmo Formation around Adiyaman area, Southeastern Turkey. Sed Geol 235:277–291Google Scholar
  63. Kockel F (2003) Inversion structures in Central Europe—expressions and reasons, an open discussion. Neth J Geosci 82:367–382Google Scholar
  64. Leydecker G (2009) Erdbebenkatalog für die Bundesrepublik Deutschland mit Randgebieten für die Jahre 800—2007. Datenfile, Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover
  65. Leydecker G, Kopera JR (1999) Seismological hazard assessment for a site in Northern Germany, an area of low seismicity. Eng Geol 52:293–304Google Scholar
  66. Li Y, Craven J, Schweig ES, Obermeier SF (1996) Sand boils induced by the 1993 Mississippi River flood: could they one day be misinterpreted as earthquake-induced liquefaction? Geology 24:171–174Google Scholar
  67. Littke R, Scheck-Wenderoth M, Brix MR, Nelskamp S (2008) Subsidence, inversion and evolution of the thermal field. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds), Dynamics of complex intracontinental Basins—The Central European Basin System. Springer, Heidelberg, pp 125–141Google Scholar
  68. Lohr T, Krawczk CM, Tanner DC, Samiee R, Endres H, Oncken O, Trappe H, Kukla PA (2007) Strain partitioning due to salt: insights from interpretation of a 3D seismic data set in the NW German Basin. Basin Res 19:579–597Google Scholar
  69. LØseth HL, Wensaas B, Arntsen N, Hovland M (2003) Gas and fluid inhjection triggering shallow mud mobilization in the Hordaland Group, North Sea. In: Van Rensbergen P, Hillis R, Maltman A, Morley C (eds) Subsurface sediment mobilization, Geol Soc London Spec Publ 216, pp 139–157Google Scholar
  70. Lotze F (1929) Überschiebungs-, Abscherungs- und Zerrungstektonik bei der Osningfaltung. Nachrichten der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1929:231–239Google Scholar
  71. Lotze F (1951) Neue Ergebnisse der Quartärgeologie Westfalens V. Zur Stratigraphie des Senne-Diluviums. N Jb Geol Paläont Mh 97–102Google Scholar
  72. Lowe DR (1975) Water escape structures in coarse-grained sediments. Sedimentology 22:157–204Google Scholar
  73. Lowe DR, LoPiccolo RD (1974) The characteristics and origins of dish and pillar structures. J Sed Petrol 44:484–501Google Scholar
  74. Mazur S, Scheck-Wenderoth M, Krzywiec P (2005) Different modes of the Late Cretaceous-Early Tertiary inversion in the North German and Polish basins. Int J Earth Sci 94:782–798Google Scholar
  75. McKee ED, Douglass JR, Rittenhouse S (1971) Deformation of Lee-side Laminae in Eolian Dunes. GSA Bull 82:359–378Google Scholar
  76. Meier R, Grünthal G (1992) Eine Neubewertung des Erdbebens vom 3. September 1770 bei Alfhausen (Niedersachsen). Osnabrücker naturwissenschaftliche Mitteilungen 18:67–80Google Scholar
  77. Meier D, Kronberg P (1989) Klüftung in Sedimentgestein. Enke Verlag Stuttgart, p 116Google Scholar
  78. Meinsen J, Winsemann J, Weitkamp A, Landmeyer N, Lenz A, Dölling A (2011) Middle Pleistocene (Saalian) lake outburst floods in the Münsterland Embayment (NW Germany): impacts and magnitudes. Quat Sci Rev 30:2597–2625Google Scholar
  79. Meinsen J, Winsemann J, Roskosch J, Brandes C, Frechen M, Dultz S, Böttcher J (2013) Climate control on the evolution of Late Pleistocene alluvial fan and aeolian sand-sheet systems in NW Germany. Boreas (in press)Google Scholar
  80. Mills PC (1983) Genesis and diagnostic value of soft-sediment deformation structures—a review. Sed Geol 35:83–104Google Scholar
  81. Mörz T, Karlik EA, Kreiter S, Kopf A (2007) An experiment setup for fluid venting in unconsolidated sediments: new insights to fluid mechanics and structures. Sed Geol 196:251–267Google Scholar
  82. Mol J, Vandenberghe J, Kasse K, Stel H (1993) Periglacial microjointing and faulting in Weichselian fluvio-aeolian deposits. J Quat Sci 8:15–30Google Scholar
  83. Montenat C, Barrier P, d′Estevou PO, Hibsch C (2007) Seismites: an attempt at critical analysis and classification. Sed Geol 196:5–30Google Scholar
  84. Moretti M, Sabato L (2007) Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant’Arcangelo Basin (Southern Italy): seismic shock vs. overloading. Sed Geol 196:31–45Google Scholar
  85. Moretti M, Miguel J, Alfaro P, Walsh N (2001) Asymmetrical Soft-sediment Deformation Structures Triggered by Rapid Sedimentation in Turbiditic Deposits (Late Miocene, Guadix Basin, Southern Spain). Facies 44:283–294Google Scholar
  86. Mulder T, Cochonat P (1996) Classification of offshore mass movements. J Sed Res 66:43–57Google Scholar
  87. Murton JB (1996) Morphology and Paleoenvironmental significance of Quaternary sand veins, sand wedges, and composit wedges, Tuktoyaktuk coastlands, western arctic Canada. J Sed Res 66:17–25Google Scholar
  88. Murton JM, French HM (1993) Thermokarst involutions, Summer Island, Pleistocene Mackenzie Delta, western Canadian Arctic. Permafrost Periglac Process 4:217–229Google Scholar
  89. Neumann-Mahlkau P (1976) Recent sand volcanoes in the sand of a dike under construction. Sedimentology 23:421–425Google Scholar
  90. Neurautter TW, Roberts HH (1994) Three generations of mud volcanoes on the Louisiana continental slope. Geo-Mar Lett 14:120–125Google Scholar
  91. Nichols RJ, Sparks RSJ, Wilson CJN (1994) Experimental studies of fluidization of layered sediments and the formation of fluid escape structures. Sedimentology 41:233–253Google Scholar
  92. Obermeier SF (1996) Use of liquefaction-induced features for paleoseismic analysis—an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Eng Geol 44:1–76Google Scholar
  93. Obermeier SF (2009) Using liquefaction-induced and other soft-sediment features for paleoseismic analysis. In: McCalpin JP (ed) Paleoseismology. International Geophysics Series, 95, Elsevier, Amsterdam, pp 497–564Google Scholar
  94. Obermeier SF, Gohn GS, Weems RE, Gelinas RL, Rubin M (1985) Geologic evidence for recurrent moderate to large earthquakes near Charleston, South Carolina. Science 277:408–410Google Scholar
  95. Obermeier SF, Olson SM, Green RA (2005) Field occurrences of liquefaction-induced features: a primer for engineering geologic analysis of paleoseismic shaking. Eng Geol 76:209–234Google Scholar
  96. Oliveira CMM, Hodgson DM, Flint SS (2009) Aseismic controls on in situ soft-sediment deformation processes and products in submarine slope deposits of the Karoo Basin, South Africa. Sedimentology 56:1201–1225Google Scholar
  97. Orense RP, Kiyota T, Yamada S, Cubrinovski M, Hosono Y, Okamura M, Yasuda S (2011) Comparison of liquefaction features observed during the 2010 and 2011 Canterbury Earthquakes. Seis Res Lett 82:905–918Google Scholar
  98. Otto V (2003) Inversion-related features along the southeastern margin of the North German Basin (Elbe Fault System). Tectonophysics 373:107–123Google Scholar
  99. Owen G (1996) Experimental soft-sediment deformation: structures formed by the liquefaction of unconsolidated sands and some ancient examples. Sedimentology 43:279–293Google Scholar
  100. Owen G, Moretti M (2011) Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sed Geol 235:141–147Google Scholar
  101. Papadopoulos GA, Lefkopoulos G (1993) Magnitude-Distance relation for liquefaction in soil from earthquakes. Bull Seis Soc Am 83:925–938Google Scholar
  102. Peterson RA, Walker DA, Romanovsky VE, Knudson JA, Raynolds MK (2003) A different frost heave model: cryoturbation-vegetation interactions. In: Phillips M, Springmann SM, Arenson LU (eds) Permafrost: proceedings of the 8th international conference on Permafrost: proceedings of the 8th international conference on Permafrost, Zurich, Switzerland, 21–25 July 2003, pp 885–890Google Scholar
  103. Petmecky S, Meier L, Reiser H, Littke R (1999) High thermal maturity in the Lower Saxony Basin: intrusion or deep burial? Tectonophysics 304:317–344Google Scholar
  104. Prange W (1995) Kleintektonische Untersuchungen in Lockersedimenten. Schriften des Naturwissenschaftlichen Vereins für Schleswig-Holstein 65:47–65Google Scholar
  105. Pringle JK, Westerman AR, Stanbrook DA, Tatum DI, Gardine AR (2007) Sand volcanoes of the Carboniferous Ross Formation, County Clare, Western Ireland: 3-D internal sedimentary structure and formation. In: Hurst A, Cartwright J (eds) Sand injectites: implications for hydrocarbon exploration and production. AAPG Memoir, 87, Tulsa, pp 227–231Google Scholar
  106. Ringrose PS (1989) Palaeoseismic (?) liquefaction event in late Quaternary lake sediment at Glen Roy, Scotland. Terra Nova 1:57–62Google Scholar
  107. Rodrigues N, Cobbold PR, Løseth H (2009) Physical modeling of sand injectites. Tectonophysics 474:610–632Google Scholar
  108. Rodríguez-López JP, Meléndez N, De Boer PL, Soria AR (2010) The action of wind in a mid-Cretaceous subtropical erg-margin system close to the Variscan Iberian Massif, Spain. Sedimentology 57:1315–1356Google Scholar
  109. Rosenfeld U (1983) Beobachtungen und Gedanken zur Osningtektonik. N Jb Geol Paläont 166:72–95Google Scholar
  110. Roskosch J, Tsukamoto S, Meinsen J, Frechen M, Winsemann J (2012) OSL dating of an upper Pleistocene fluvial-aeolian complex: the upper Senne of the Münsterland Embayment. Quat Geochron 10:94–101Google Scholar
  111. Ross JA, Peakall J, Keevil GM (2011) An integrated model of extrusive sand injectites in cohesionless sediments. Sedimentology 58:1693–1715Google Scholar
  112. Saucier RT (1989) Evidence for episodic sand-blow activity during the 1811–1812 New Madrid (Missouri) earthquake series. Geology 17:103–106Google Scholar
  113. Scheck M, Bayer U, Otto V, Lamarche J, Banka D, Pharaoh T (2002) The Elbe Fault System in North Central Europe—a basement controlled zone of crustal weakness. Tectonophysics 360:281–299Google Scholar
  114. Scheck-Wenderoth M, Lamarche J (2005) Crustal memory and basin evolution in the Central European Basin System-new insights from a 3D structural model. Tectonophysics 397:143–165Google Scholar
  115. Seilacher A (1969) Fault-graded beds interpreted as seismites. Sedimentology 13:155–159Google Scholar
  116. Selsing L (1981) Stress analysis on conjugate normal faults in unconsolidated Weichselian glacial sediments from Brorfelde, Denmark. Boreas 10:275–279Google Scholar
  117. Senglaub Y, Brix MR, Adriasola AC, Littke R (2005) New information on the thermal history of the southwestern Lower Saxony Basin, northern Germany, based on fission track analysis. Int J Earth Sci 94:876–896Google Scholar
  118. Seraphim ET (1978) Erdgeschichte, Landschaftsformen und geomorphologische Gliederung der Senne. In: Seraphim ET (ed) Beiträge zur Ökologie der Senne 1. Teil:7–24Google Scholar
  119. Seraphim ET (1979) Der sog. Senne-Sander, eine Kame-Terrasse—Drenthestadiale Grundmoräne und post-moränale Schmelzwasser-Sedimente der Oberen Senne. Berichte des Naturwissenschaftlichen Vereins Bielefeld 24:319–344Google Scholar
  120. Sibson RH (1981) Controls on low-stress hydro-fracture dilatancy in thrust, wrench and normal fault terrains. Nature 289:665–667Google Scholar
  121. Sieh KE (1978) Prehistoric large earthquakes produced by slip on the San Andreas Fault at Pallett Creek, California. JGR 83:3907–3939Google Scholar
  122. Sims JD (1973) Determining earthquakes recurrence intervals from deformational structures in young lacustrine sediments. Tectonophysics 29:141–152Google Scholar
  123. Sims JD, Garvin CD (1995) Recurrent liquefaction induced by the 1989 Loma Prieta earthquake and 1990 and 1991 aftershocks: implications for paleoseismicity studies. Bull o Seis Soc Am 85:51–65Google Scholar
  124. Sippel J, Scheck-Wenderoth M, Reicherter K, Mazur S (2009) Paleostress states at the south-western margin of the Central European Basin System—Application of fault-slip analysis to unravel a polyphase deformation pattern. Tectonophysics 470:129–146Google Scholar
  125. Skupin K (1985) Senne. In: Geologisches Landesamt Nordrhein-Westfalen (ed) Geologische Karte von Nordrhein-Westfalen 1:100000—Erläuterungen zu Blatt C4318 Paderborn, Krefeld, pp 42–45Google Scholar
  126. Skupin K (1994) Aufbau, Zusammensetzung und Alter der Flugsand- und Dünenbildungen im Bereich der Senne (östl. Münsterland). Geologie Paläontologie Westfalen 28:41–72Google Scholar
  127. Skupin K (2002) Geologische Karte von Nordrhein-Westfalen 1:100000–Erläuterungen zu Blatt C4314 Gütersloh, Krefeld, 120 ppGoogle Scholar
  128. Stille H (1924) Die Osning-Überschiebung. Abhandlungen der preußischen geologischen Landesanstalt 95:32–56Google Scholar
  129. Stille H (1953) Zur Geschichte der Osning-Forschung. Geotektonische Forschung 9:1–6Google Scholar
  130. Sullwood HH (1959) Nomenclature of load deformation in turbidites. GSA Bull 70:1247–1248Google Scholar
  131. Suter F, Martínez JI, Vélez MI (2011) Holocene soft-sediment deformation of the Santa Fe-Sopetrán Basin, northern Colombian Andes: evidence from pre-Hispanic seismic activity? Sed Geol 235:188–199Google Scholar
  132. Talwani P, Rajendran K (1991) Some seismological and geometric features of intraplate earthquakes. Tectonophysics 186:19–41Google Scholar
  133. Tsuji T, Miyata Y (1987) Fluidization and liquefaction of sand beds—experimental study and examples from Nichinan group. J Geol Soc Japan 93:791–808Google Scholar
  134. Tuttle MP, Schweig ES (1996) Recognizing and dating prehistoric liquefaction features: Lessons learned in the New Madrid seismic zone, central United States. JGR 101(B3):6171–6178Google Scholar
  135. Tuttle MP, Schweig ES, Sims JD, Lafferty RH, Wolf LW, Haynes ML (2002) The earthquake potential of the New Madrid Seismic Zone. Bull Seis Soc Am 92:2080–2089Google Scholar
  136. van Loon AJ (2009) Soft-sediment deformation structures in siliciclastic sediments: an overview. Geologos 15:3–55Google Scholar
  137. van Loon AJ (2010) Sedimentary volcanoes: overview and implications for the definition of a volcano on earth. In: Canòn-Tapia E, Szakács A (eds) What is a volcano? GSA Special Paper 470, pp 31–41Google Scholar
  138. van Loon AJ, Maulik P (2011) Abraded sand volcanoes as a tool for recognizing paleo-earthquakes, with examples from the Cisuralian Talchir Formation near Angul (Orissa, eastern India). Sed Geol 238:145–155Google Scholar
  139. van Wees JD, Stephenson RA, Ziegler PA, Bayer U, McCann T, Dadlez R, Gaupp R, Narkiewicz M, Bitzer F, Scheck M (2000) On the origin of the Southern Permian Basin, Central Europe. Mar Petrol Geol 17:43–59Google Scholar
  140. Vandenberghe J (1992) Cryoturbations: a sediment structural analysis. Permafrost Periglac Process 3:343–352Google Scholar
  141. Vandenberghe J, Pissart A (1993) Permafrost changes in Europe during the last glacial. Permafrost Periglac Process 4:121–135Google Scholar
  142. van Vliet-Lanoe B (1988) The significance of cryoturbation phenomena in environmental reconstruction. J Quat Sci 3:85–96Google Scholar
  143. Vogt J, Grünthal G (1994) Die Erdbebenfolge vom Herbst 1612 im Raum Bielefeld. Geowissenschaften 12:236–240Google Scholar
  144. Wang C-Y, Wong A, Dreger DS, Manga M (2006) Liquefaction limit during earthquakes and underground explosions: implications on ground-motion attenuation. Bull Seis Soc Am 96:355–363Google Scholar
  145. Washburn AL (1980) Permafrost features as evidence of climatic change. Earth-Sci Rev 15:327–402Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für GeologieLeibniz Universität HannoverHannoverGermany

Personalised recommendations