International Journal of Earth Sciences

, Volume 102, Issue 6, pp 1673–1699 | Cite as

Early Holocene M~6 explosive eruption from Plosky volcanic massif (Kamchatka) and its tephra as a link between terrestrial and marine paleoenvironmental records

  • Vera PonomarevaEmail author
  • Maxim Portnyagin
  • Alexander Derkachev
  • I. Florin Pendea
  • Joanne Bourgeois
  • Paula J. Reimer
  • Dieter Garbe-Schönberg
  • Stepan Krasheninnikov
  • Dirk Nürnberg
Original Paper


We report tephrochronological and geochemical data on early Holocene activity from Plosky volcanic massif in the Kliuchevskoi volcanic group, Kamchatka Peninsula. Explosive activity of this volcano lasted for ~1.5 kyr, produced a series of widely dispersed tephra layers, and was followed by profuse low-viscosity lava flows. This eruptive episode started a major reorganization of the volcanic structures in the western part of the Kliuchevskoi volcanic group. An explosive eruption from Plosky (M~6), previously unstudied, produced tephra (coded PL2) of a volume of 10–12 km3 (11–13 Gt), being one of the largest Holocene explosive eruptions in Kamchatka. Characteristic diagnostic features of the PL2 tephra are predominantly vitric sponge-shaped fragments with rare phenocrysts and microlites of plagioclase, olivine and pyroxenes, medium- to high-K basaltic andesitic bulk composition, high-K, high-Al and high-P trachyandesitic glass composition with SiO2 = 57.5–59.5 wt%, K2O = 2.3–2.7 wt%, Al2O3 = 15.8–16.5 wt%, and P2O5 = 0.5–0.7 wt%. Other diagnostic features include a typical subduction-related pattern of incompatible elements, high concentrations of all REE (>10× mantle values), moderate enrichment in LREE (La/Yb ~ 5.3), and non-fractionated mantle-like pattern of LILE. Geochemical fingerprinting of the PL2 tephra with the help of EMP and LA-ICP-MS analyses allowed us to map its occurrence in terrestrial sections across Kamchatka and to identify this layer in Bering Sea sediment cores at a distance of >600 km from the source. New high-precision 14C dates suggest that the PL2 eruption occurred ~10,200 cal BP, which makes it a valuable isochrone for early Holocene climate fluctuations and permits direct links between terrestrial and marine paleoenvironmental records. The terrestrial and marine 14C dates related to the PL2 tephra have allowed us to estimate an early Holocene reservoir age for the western Bering Sea at 1,410 ± 64 14C years. Another important tephra from the early Holocene eruptive episode of Plosky volcano, coded PL1, was dated at 11,650 cal BP. This marker is the oldest geochemically characterized and dated tephra marker layer in Kamchatka to date and is an important local marker for the Younger Dryas—early Holocene transition. One more tephra from Plosky, coded PL3, can be used as a marker northeast of the source at a distance of ~110 km.


Tephra Kamchatka Marine cores Bering Sea Isochrones 



The major part of this research was supported by the KALMAR project funded by the Bundesministerium für Bildung und Forschung (BMBF) (Germany). Plosky tephra in site JB112 (Ust’-Kamchatsk area) was studied and dated thanks to US National Science Foundation project #0915131 to Ezra Zubrow. Many years of earlier field research, which, along with their other goals, have allowed us to measure and sample Plosky tephra in various distant places, have been funded by the grants from the National Geographic Society and the Russian Foundation for Basic Research. Studies of submarine tephra were partly funded by grants #11-05-00506 and 13-05-00346 from the Russian Foundation for Basic Research. The authors thank Maria Pevzner for the samples from the Shiveluch southeastern slopes, Mario Thöner (GEOMAR) and Nikita Mironov (GEOKHI) for their help with the microprobe analysis and sample preparation, and Dmitry Melnikov and Egor Zelenin for their help with graphics and tephra volume calculations. Thorough reviews of Sabine Wulf and an anonymous reviewer are very much appreciated.

Supplementary material

531_2013_898_MOESM1_ESM.pdf (39 kb)
Supplementary material 1 (PDF 39 kb)
531_2013_898_MOESM2_ESM.xls (91 kb)
Supplementary material 2 (XLS 91 kb)
531_2013_898_MOESM3_ESM.xls (262 kb)
Supplementary material 3 (XLS 262 kb)


  1. Arculus RJ (2003) Use and abuse of the terms calcalkaline and calcalkalic. J Petrol 44:929–935CrossRefGoogle Scholar
  2. Ascough PL, Cook GT, Dugmore AJ, Barber J, Higney E, Scott EM (2004) Holocene variations in the Scottish marine radiocarbon reservoir effect. Radiocarbon 46(2):611–620Google Scholar
  3. Auer S, Bindeman I, Wallace P, Ponomareva V, Portnyagin M (2009) The origin of hydrous, high-δ18O voluminous volcanism: diverse oxygen isotope values and high magmatic water contents within the volcanic record of Klyuchevskoy volcano, Kamchatka, Russia. Contrib Miner Petrol 157(2):209–230CrossRefGoogle Scholar
  4. Bazanova LI, Pevzner MM (2001) Khangar: one more active volcano in Kamchatka. Trans Russ Acad Sci Earth Sci 377A:307–310Google Scholar
  5. Beierle B, Bond J (2002) Density-induced settling of tephra through organic lake sediments. J Paleolimnol 28:433–440CrossRefGoogle Scholar
  6. Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40:415–418CrossRefGoogle Scholar
  7. Bourgeois J, Pinegina TK, Ponomareva VV, Zaretskaia NE (2006) Holocene tsunamis in the southwestern Bering Sea, Russian Far East and their tectonic implications. Geol Soc Am Bull 11(3/4):449–463. doi: 10.1130/B25726.1 CrossRefGoogle Scholar
  8. Braitseva OA, Melekestsev IV, Ponomareva VV (1983) Age divisions of the Holocene volcanic formations of the Tolbachik Valley. In: Fedotov SA, Markhinin YK (eds) The great Tolbachik fissure eruption: geological and geophysical data 1975–1976. Cambridge Earth Sci. Series, vol 341, pp 83–95Google Scholar
  9. Braitseva OA, Sulerzhitsky LD, Litasova SN, Grebzdy EI (1988) Radiocarbon dating of soils and pyroclastic deposits in Kliuchevskoi group of volcanoes. Volcanol Seismol 6:317–325Google Scholar
  10. Braitseva OA, Melekestsev IV, Ponomareva VV, Sulerzhitsky LD (1995) The ages of calderas, large explosive craters and active volcanoes in the Kuril-Kamchatka region, Russia. Bull Volcanol 57(6):383–402Google Scholar
  11. Braitseva OA, Sulerzhitsky LD, Ponomareva VV, Melekestsev IV (1997a) Geochronology of the greatest Holocene explosive eruptions in Kamchatka and their imprint on the Greenland glacier shield. Trans Russ Acad Sci Earth Sci 352(1):138–140Google Scholar
  12. Braitseva OA, Ponomareva VV, Sulerzhitsky LD, Melekestsev IV, Bailey J (1997b) Holocene key-marker tephra layers in Kamchatka, Russia. Quat Res 47:125–139CrossRefGoogle Scholar
  13. Braitseva OA, Bazanova LI, Melekestsev IV, Sulerzhitsky LD (1998) Largest Holocene eruptions of Avachinsky volcano, Kamchatka. Volcanol Seismol 20:1–27Google Scholar
  14. Brendryen J, Haflidason H, Sejrup HP (2010) Norwegian Sea tephrostratigraphy of marine isotope stages 4 and 5: prospects and problems for tephrochronology in the North Atlantic region. Quat Sci Rev 29(7–8):847–864CrossRefGoogle Scholar
  15. Calkins J (2004) 40Ar/39Ar geochronology of Khapitsa Plateau and Studyonaya River basalts and basaltic andesites in Central Kamchatka Depression, Kamchatka, Russia. Abstracts of the IV Int Workshop on Subduction Processes emphasizing the Japan-Kurile-Kamchatka-Aleutian Arcs (JKASP)
  16. Churikova T, Dorendorf F, Wörner G (2001) Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation. J Petrol 42(8):1567–1593CrossRefGoogle Scholar
  17. Cronin SJ, Neall VE, Stewart RB, Palmer AS (1996) A multiple-parameter approach to andesitic tephra correlation, Ruapehu volcano, New Zealand. J Volcanol Geotherm Res 72:199–215CrossRefGoogle Scholar
  18. Davies SM, Wastegård S, Rasmussen TL, Johnsen SJ, Steffensen JP, Andersen KK, Svensson A (2008) Identification of the Fugloyarbanki tephra in the NGRIP ice-core: a key tie-point for marine and ice-core sequences during the last glacial period. J Quat Sci 23:409–414CrossRefGoogle Scholar
  19. Dikov NN (2003) Archaeological Sites of Kamchatka, Chukotka, and the Upper Kolyma. Anchorage, Alaska: U.S. Department of the Interior, National Park Service, Shared Beringian Heritage ProgramGoogle Scholar
  20. Dirksen V, Dirksen O, Diekmann B (2013) Holocene vegetation dynamics in Kamchatka, Russian Far East. Rev Palaeobot Palynol 190:48–65Google Scholar
  21. Donoghue SL, Vallance J, Smith IEM, Stewart RB (2006) Using geochemistry as a tool for correlating proximal andesitic tephra: case studies from Mt Rainier (USA) and Mt Ruapehu (New Zealand). J Quat Sci 22(4):395–410CrossRefGoogle Scholar
  22. Duggen S, Portnyagin M, Baker J, Ulfbeck D, Hoernle K, Garbe-Schönberg D, Grassineau N (2007) Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the Southern Kamchatkan subduction zone: evidence for the transition from slab surface dehydration to sediment melting. Geochim Cosmochim Acta 71:452–480CrossRefGoogle Scholar
  23. Dullo C, Baranov B, Bogaard Cvd (2009) RV Sonne Fahrtbericht/Cruise Report SO201-2: KALMAR (Kurile-Kamchatka and Aleutian Marginal Sea-Island Systems): Geodynamic and Climate Interaction in Space and Time. IFM-GEOMAR Report 35:
  24. Eiriksson J, Larsen G, Knudsen KL, Heinemeier J, Simonarson LA (2004) Marine reservoir age variability and water mass distribution in the Iceland Sea. Quat Sci Rev 23(20–22):2247–2268CrossRefGoogle Scholar
  25. Ermakov VA, Vazheevskaya AA (1973) Ostry and Plosky Tolbachik volcanoes. Bull Volcanol Stn 49:36–43 (In Russian)Google Scholar
  26. Flerov GB, Ovsyannikov AA (1991) Ushkovsky volcano. In: Fedotov SA, Masurenkov YuP (eds) Active volcanoes of Kamchatka, vol 1. Nauka, Moscow, pp 84–92Google Scholar
  27. GeoReM (2011) Geological and environmental reference materials. Accessed 2011
  28. Gill JB (1981) Orogenic andesites and plate tectonics. Springer, Berlin, p 390CrossRefGoogle Scholar
  29. Goebel T, Waters MR, Dikova M (2003) The archaeology of Ushki Lake, Kamchatka, and the Pleistocene peopling of the Americas. Science 301:501–505CrossRefGoogle Scholar
  30. Gorbarenko SA (1996) Stable isotope and lithological evidence of late-glacial and Holocene oceanography of the Northeastern Pacific and its marginal seas. Quat Res 46:230–250CrossRefGoogle Scholar
  31. Gorbarenko SA, Nuernberg D, Derkachev AN, Astachov AS, Southon JR, Kaiser A (2002) Magnetostratigraphy and tephrochronology of the Upper Quaternary sediments in the Okhotsk Sea: implication of terrigenous, volcanogenic and biogenic matter supply. Marine Geol 183:107–129CrossRefGoogle Scholar
  32. Gorbatov A, Kostoglodov V, Suarez G, Gordeev EI (1997) Seismicity and structure of the Kamchatka subduction zone. J Geophys Res B 102(8):17,883–17898Google Scholar
  33. Herz O (1897) Reise von Jakutsk nach Kamtschatka im Jahre 1890. Memoires sur les Lepidopteres 9:239–299Google Scholar
  34. Hulse EL, Keeler DM, Zubrow EBW, Korosec GJ, Ponkratova IY, Curtis C (2011) A preliminary report on archaeological fieldwork in the Kamchatka Region of Russia. Sibirica 1:48–74CrossRefGoogle Scholar
  35. Jull M, McKenzie D (1996) The effect of deglaciation on mantle melting beneath Iceland. J Geophys Res 101(B10):21815–21828. doi: 10.21029/21896JB01308 CrossRefGoogle Scholar
  36. Kirianov VYu, Egorova IA, Litasova SN (1990) Volcanic ash on Bering Island (Commander Islands) and Kamchatkan Holocene eruptions. Volcanol Seismol 8:850–868Google Scholar
  37. Kozhurin A (2009) A dangling slab and arc-normal extension: the case of Kamchatka, Russia. Eos Trans AGU, 90(52), Fall Meet Suppl, Abstract T41C-2034Google Scholar
  38. Kozhurin A, Acocella V, Kyle PR, Lagmay FM, Melekestsev IV, Ponomareva V, Rust D, Tibaldi A, Tunesi A, Corazzato C, Rovida A, Sakharov A, Tengonciang A, Uy H (2006) Trenching active faults in Kamchatka, Russia: paleoseismological and tectonic implications. Tectonophysics 417:285–304CrossRefGoogle Scholar
  39. Krasheninnikov SP (2008) Petrological characteristics of the early Holocene pyroclastic rocks from the northeastern slope of Kliuchevskoi volcano. Bachelor’s Diploma Thesis. Moscow State University. Geology Department, p 65. (In Russian)Google Scholar
  40. Kuehn SC, Froese DG, Shane PAR (2011) The INTAV intercomparison of electron-beam microanalysis of glass by tephrochronology laboratories, results and recommendations. Quat Int. doi: 10.1016/j.quaint.2011.08.022 Google Scholar
  41. Kuzmin YV, Burr GS, Gorbunov SV, Rakov VA, Razjigaeva NG (2007) A tale of two seas: reservoir age correction values (R, DR) for the Sakhalin Island (Sea of Japan and Okhotsk Sea). Nucl Instrum Methods Phys Res B 259:460–462CrossRefGoogle Scholar
  42. Kyle PhR, Ponomareva VV, Rourke Schluep R (2011) Geochemical characterization of marker tephra layers from major Holocene eruptions in Kamchatka, Russia. Int Geol Rev 53(9):1059–1097CrossRefGoogle Scholar
  43. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750CrossRefGoogle Scholar
  44. Legros F (2000) Minimum volume of a tephra fallout deposit estimated from a single isopach. J Volcanol Geotherm Res 96:25–32CrossRefGoogle Scholar
  45. Lowe DJ (2011) Tephrochronology and its application: a review. Quat Geochronol 6:107–153CrossRefGoogle Scholar
  46. Max L, Riethdorf J-R, Tiedemann R, Smirnova M, Lembke-Jene L, Fahl K, Nürnberg D, Matul A, Mollenhauer G (2012) Sea surface temperature variability and sea-ice extent in the subarctic northwest Pacific during the past 15,000 years. Paleoceanography 27:PA3213. doi: 10.1029/2012PA002292 CrossRefGoogle Scholar
  47. McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  48. McNeely R, Dyke AS, Southon JR (2006) Canadian marine reservoir ages, preliminary data assessment. Open File Rep Geol Surv Can 5049:3Google Scholar
  49. Melekestsev IV (2005) Mt. Sredny (Kliuchevskoi volcanic group, Kamchatka) is a gigantic allochthon rather than a separate volcano. Volcanol Seismol 3:9–14 (In Russian)Google Scholar
  50. Melekestsev IV, Braitseva OA, Erlich EN, Kozhemyaka NN (1974) Volcanic mountains and plains. In: Luchitsky IV (ed) Kamchatka, Kurile and Commander Islands. Nauka, Moscow, pp 162–234 (in Russian)Google Scholar
  51. Melekestsev IV, Khrenov AP, Kozhemyaka NN (1991) Tectonic position and general description of volcanoes of Northern group and Sredinny Range. In: Fedotov SA, Masurenkov YuP (eds) Active volcanoes of Kamchatka, vol 1. Nauka, Moscow, pp 79–81Google Scholar
  52. Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274(4):321–355CrossRefGoogle Scholar
  53. Ovsyannikov AA, Khrenov AP, Muraviev YaD (1985) Present fumarolic activity on Dalny Plosky volcano. Volcanol Seismol 5:80–97 (In Russian)Google Scholar
  54. Park J, Levin V, Brandon M, Lees J, Peyton V, Gordeev E, Ozerov A (2002) A dangling slab, amplified arc volcanism, mantle flow and seismic anisotropy in the Kamchatka plate corner. In: Stein S and Freymueller JT (Eds) Plate boundary zones: AGU Geodynamics Series, vol 30, pp 295–324Google Scholar
  55. Pevzner MM, Tolstykh ML, Babansky AD, Kononkova NN (2012) Reorganization of the magmatic system of the Shiveluch volcanic massif as a consequence of the large-scale collapses of its edifice in late Pleistocene-early Holocene times. Doklady Earth Sciences (in press)Google Scholar
  56. Piip BI (1956) Kliuchevskaya Sopka and its eruptions in 1944–1945 and the Past. Trans Volc Lab AN SSSR, Issue 11 (in Russian)Google Scholar
  57. Pinegina TK, Bourgeois J (2001) Historical and paleo-tsunami deposits on Kamchatka, Russia: long-term chronologies and long-distance correlations. Nat Hazards Earth Syst Sci 1:177–185CrossRefGoogle Scholar
  58. Pinegina TK, Kozhurin AI, Ponomareva VV (2012) Seismic and tsunami hazard for Ust’-Kamchatsk village (Kamchatka) based on paleoseismological data. Vestnik KRAUNZ 1:138–159 (In Russian)Google Scholar
  59. Platz T, Cronin SJ, Smith IEM, Turner MB, Stewart RB (2007) Improving the reliability of microprobe-based analyses of andesitic glasses for tephra correlation. The Holocene 17(5):573–583CrossRefGoogle Scholar
  60. Ponomareva VV (1990) The history of Krasheninnikov volcano and the dynamics of its activity. Volcanol Seismol 9:714–741Google Scholar
  61. Ponomareva VV, Churikova TG, Melekestsev IV, Braitseva OA, Pevzner MM, Sulerzhitsky LD (2007a) Late Pleistocene-Holocene Volcanism on the Kamchatka Peninsula, Northwest Pacific region. In: Eichelberger J, Izbekov P, Ruppert N, Lees J, Gordeev E (eds) Volcanism and subduction: the Kamchatka Region. AGU Geophysical Monograph Series, vol 172, pp 165–198Google Scholar
  62. Ponomareva VV, Kyle PR, Pevzner MM, Sulerzhitsky LD, Hartman M (2007b) Holocene eruptive history of Shiveluch volcano. Kamchatka Peninsula. In: Eichelberger J, Izbekov P, Ruppert N, Lees J, Gordeev E (Eds) Volcanism and subduction: the Kamchatka Region. AGU Geophysical Monograph Series, vol 172, pp 263–282Google Scholar
  63. Portnyagin M, Ponomareva V (2012) Kliuchevskoi volcano diary. Int J Earth Sci (Geol Rundsch) 101:195CrossRefGoogle Scholar
  64. Portnyagin M, Bindeman I, Hoernle K, Hauff F (2007) Geochemistry of primitive lavas of the Central Kamchathan Depression: Magma generation at the edge of the Pacific Plate. In: Eichelberger J, Gordeev E, Kasahara M, Izbekov P, Lees J (Eds) Volcanism and subduction: the Kamchatka Region. AGU Geophysical Monograph Series, vol 172, pp 199–239Google Scholar
  65. Portnyagin M, Ponomareva V, Bindeman I, Hauff F, Krasheninnikov S, Kuvikas O, Mironov N, Pletchova A, van den Bogaard C, Hoernle K (2009) Millennial variations of major and trace element and isotope compositions of Klyuchevskoy magmas, Kamchatka. Terra Nostra 1:64–65Google Scholar
  66. Pyle DM (1995) Mass and energy budgets of explosive volcanic eruptions. Geophys Res Lett 5:563–566CrossRefGoogle Scholar
  67. Pyle DM (2000) Sizes of volcanic eruptions. In: Sigurdsson H et al (eds) Encyclopedia of volcanoes. Academic Press, London, pp 263–269Google Scholar
  68. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51:1111–1150Google Scholar
  69. Rose WI, Durant AJ (2009) Fine ash content of explosive eruptions. J Volcanol Getherm Res 186:32–39CrossRefGoogle Scholar
  70. Selyangin OB, Ponomareva VV (1999) Gorelovsky volcanic center, South Kamchatka: structure and evolution. Volcanol Seismol 21(2):163–194Google Scholar
  71. Shane Ph, Nairn IA, Smith VC (2005) Magma mingling in the ~50 ka Rotoiti eruption from Okataina Volcanic Centre: implications for geochemical diversity and chronology of large volume rhyolites. J Volcanol Geotherm Res 139:295–313CrossRefGoogle Scholar
  72. Shiraiwa T, Muraviev YaD, Kameda T, Nishio F, Toyama Y, Takahashi A, Ovsyannikov AA, Salamatin AN, Yamagata K (2001) Characteristics of a crater glacier at Ushkovsky volcano, Kamchatka, Russia, as revealed by the physical properties of ice cores and borehole thermometry. J Glaciol 47(158):423–432CrossRefGoogle Scholar
  73. Siebert L, Simkin T (2002) Volcanoes of the World: an Illustrated Catalog of Holocene Volcanoes and their Eruptions. Smithsonian Institution, Global Volcanism Program, Digital Information Series, GVP-3.
  74. Sikes EL, Samson CR, Guilderson TP, Howard WR (2000) Old radiocarbon ages in the southwest Pacific Ocean during the last glacial period and deglaciation. Nature 405(6786):555–559CrossRefGoogle Scholar
  75. Stuiver M, Braziunas TF (1993) Modelling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137–189Google Scholar
  76. Stuiver M, Reimer PJ (1986) Radiocarbon calibration program CALIB REV6.0.0
  77. Stuiver M, Reimer PJ (1993) Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35:215–230Google Scholar
  78. Thornalley DJR, McCave IN, Elderfield H (2011) Tephra in deglacial ocean sediments south of Iceland: stratigraphy, geochemistry and oceanic reservoir ages. J Quat Sci 26(2):190–198CrossRefGoogle Scholar
  79. Volynets ON (1994) Geochemical types, petrology and genesis of Late Cenozoic volcanic rocks from the Kurile-Kamchatka island-arc system. Int Geol Rev 36(4):373–405CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vera Ponomareva
    • 1
    Email author
  • Maxim Portnyagin
    • 2
    • 3
  • Alexander Derkachev
    • 4
  • I. Florin Pendea
    • 5
  • Joanne Bourgeois
    • 6
  • Paula J. Reimer
    • 7
  • Dieter Garbe-Schönberg
    • 8
  • Stepan Krasheninnikov
    • 3
  • Dirk Nürnberg
    • 2
  1. 1.Institute of Volcanology and SeismologyPetropavlovsk-KamchatskyRussia
  2. 2.Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR)KielGermany
  3. 3.V.I. Vernadsky Institute of Geochemistry and Analytical ChemistryMoscowRussia
  4. 4.V.I.Il’ichev Pacific Oceanological InstituteVladivostokRussia
  5. 5.Department of Interdisciplinary StudiesLakehead UniversityOrilliaCanada
  6. 6.Department of Earth and Space SciencesUniversity of WashingtonSeattleUSA
  7. 7.School of Geography, Archaeology and PalaeoecologyQueen’s University BelfastBelfastNorthern Ireland, UK
  8. 8.Institute of GeoscienceChristian-Albrechts-University of KielKielGermany

Personalised recommendations