Advertisement

International Journal of Earth Sciences

, Volume 102, Issue 5, pp 1513–1539 | Cite as

Cryogenic powderization of Triassic dolostones in the Buda Hills, Hungary

  • Zsófia PorosEmail author
  • Hans G. Machel
  • Andrea Mindszenty
  • Ferenc Molnár
Original Paper

Abstract

Disintegration of dolostones to dolomite powder (powderization) was a widespread phenomenon in Triassic dolostones of the Buda Hills, where the areal extent of powdered dolostones is large compared to similar occurrences elsewhere in the world. In the Buda Hills, dolostone disintegration proceeded in four stages that correspond to a gradual decrease in particle size, that is, from the parent dolostone to (1) crackle breccia; via (2) mosaic breccia (diameter <2 cm); via (3) mosaic breccia blocks ‘floating’ in dolomite powder; to (4) dolomite powder (diameter 100–300 μm). Stable isotope ratios and trace element compositions of dolomite remained constant throughout these stages, and there are no indications of dissolution in most locations, suggesting that disintegration was predominantly a mechanical process. Combining these findings with the geological history of the region, and supported by a simple freezing/thawing experiment and pertinent experimental studies on weathering of building stones, it appears that powderization in the Buda Hills was caused by repeated freeze–thaw cycles during and/or after the Pleistocene glaciations. Subaerial exposure under cold climate conditions involves multiple freeze–thaw cycles that create mechanical stresses in the rock framework related to the opposing thermal expansion of rock and water that freezes and of ice that liquefies. This process is herewith called ‘cryogenic powderization’. Our data further suggest that the synergy of four factors promoted dolostone powderization in the Buda Hills: (1) tectonics, which created a pervasive fracture network; (2) intercrystalline porosity of the dolostone; (3) relatively high water saturation; and (4) subaerial exposure under cold climate conditions.

Keywords

Cryogenic powderization Triassic dolostone Dedolomitization Physical weathering Buda Hills 

Notes

Acknowledgments

The project was initiated as part of a cooperation between Eötvös Loránd University (Budapest, Hungary) and ENI S.p.A. (Milano, Italy). Principal financial support for the research was provided by ENI S.p.A. The authors are grateful to Paola Ronchi (ENI S.p.A) for initiating and coordinating this cooperation. We also appreciate that she called our attention to the powderization of dolostones outside of Hungary and for sharing her experience related to dedolomitization. Additional financial contribution was provided by the Hungarian Scientific Research Fund (OTKA, project numbers K 72590 and K 81296) and also by the Natural Sciences and Engineering Research Council of Canada (NSERC) to H. Machel. We are thankful to Gergely Surányi for the U-Th measurements. The assistance of Orsolya Győri, Benedek Gál, and Róbert Part especially in the field work and the help of Péter Pekker and Zsolt Bendő during XRD and SEM analyses are appreciated. The authors are grateful to János Haas and Kinga Hips for thought-provoking discussions. Siegfried Siegesmund opened our eyes to the prolific literature on natural and experimental weathering of carbonate rocks. The authors are grateful to Qilong Fu and Bob Loucks for their thorough reviews.

References

  1. Alföldi L, Bélteky L, Böcker T, Horváth J, Korim K, Liebe P, Rémi R (1968) Budapest hévizei. VITUKI, BudapestGoogle Scholar
  2. Báldi T (1983) Magyarországi oligocén és alsó-miocén formációk. Akadémia Kiadó, BudapestGoogle Scholar
  3. Báldi T, Báldi-Beke M (1986) A Magyar Paleogén Medencék fejlődése. Őslénytani Viták 33:95–145Google Scholar
  4. Báldi T, Nagymarosy A (1976) A Hárshegyi Homokkő kovásodása és annak hidrotermális eredete. Földt Közl 106:257–275Google Scholar
  5. Balog A, Read JF, Haas J (1999) Climate-controlled early dolomite, late triassic cyclic platform carbonates Hungary. J Sediment Res 69(1):267–282CrossRefGoogle Scholar
  6. Bárdossy Gy (1977) Karsztbauxitok. Akadémiai Kiadó, BudapestGoogle Scholar
  7. Benavente D, Martínez-Martínez J, García-del-Cura MA, Canaveras JC (2007) Salt weathering in dual-porosity building dolostones. Eng Geol 94:215–226CrossRefGoogle Scholar
  8. Brugger F (1940) A Buda környéki dolomitok kőzetkémiai vizsgálata. Matematikai és Természetudományi Értesítő 59:619–641Google Scholar
  9. Cueto N, Benavente D, Martínez-Martínez J, García-del-Cura MA (2009) Rock fabric, pore geometry and mineralogy effects on water transport in fractured dolostones. Eng Geol 107:1–15CrossRefGoogle Scholar
  10. de Groot K (1967) Experimental dedolomitization. J Sediment Petrol 37(4):1216–1220Google Scholar
  11. Dewever B (2008) Diagenesis and fluid flow in the Sicilian fold-and-thrust belt. PhD dissertation, K.U.Leuven, BelgiumGoogle Scholar
  12. Dickson JAD (1966) Carbonate identification and genesis as revealed by staining. J Sediment Petrol 36:491–505Google Scholar
  13. Esteban M, Budai T, Juhász E, Lapointe P (2009) Alteration of Triassic carbonates in the Budai Mountains—a hydrothermal model. Central Eur Geol 52(1):1–29CrossRefGoogle Scholar
  14. Evamy BD (1967) Dedolomitization and the development of rhombohedral pores in limestone. J Sediment Petrol 37(4):1204–1215Google Scholar
  15. Everett DM (1961) The thermodynamics of frost damage to porous solids. Trans Faraday Soc 57:2205–2211Google Scholar
  16. Fodor L, Magyari Á, Fogarasi A, Palotás K (1994) Tertiary tectonics and Late Palaeogene sedimentation in the Buda Hills, Hungary. A new interpretation of the Buda Line. Földt Közl 124:129–305Google Scholar
  17. Földvári A (1933) A Dunántúli-középhegység eocén előtti karsztja. Földt Közlöny 63:49–55Google Scholar
  18. Folkman Y (1969) Diagenetic dedolomitization in the Albian-Cenoman Yagur dolomite on Mount Carmel (Northern Israel). J Sediment Petrol 39(1):380–385CrossRefGoogle Scholar
  19. Frenzel B, Pécsi M, Velichko AA (1992) Atlas of paleoclimates and paleoenvironments of the Northern hemisphere. Late Pleistocene–Holocene, Geographical Research Institute, Hungarian Academy of Sciences, Gustav Fischer Verlag, Budapest, StuttgartGoogle Scholar
  20. Fu Q, Qing H, Bergman KM (2004) Dolomitized calcrete of the middle Devonian Winnipegosis mounds, subsurface of south-central Saskatchewan, Canada. Sed Geol 168:49–69CrossRefGoogle Scholar
  21. Fu Q, Qing H, Bergman KM, Yang C (2008) Dedolomitization and calcite cementation in the middle Devonian Winnipegosis formation in central Saskatchewan, Canada. Sedimentology 55:1623–1642CrossRefGoogle Scholar
  22. Gál B, Poros Zs, Molnár F (2008) A Hárshegyi Homokkő Formáció hidrotermális kifeljődései és azok kapcsolatai regionális földtani eseményekhez. Földt Közl 138:49–60Google Scholar
  23. Grossi CM, Brimblecombe P, Harris I (2007) Predicting long term freeze-thaw risks on Europe built heritage and archaeological sites in a changing climate. Sci Total Environ 377:273–281CrossRefGoogle Scholar
  24. Haas J, Kovács S, Krystyn L, Lein R (1995) Significance of late Permian-Triassic facies zones in terrain reconstruction in the Alpine-North Pannonian domain. Tectonophys 242:19–40CrossRefGoogle Scholar
  25. Haas J, Korpás L, Török Á et al (2000) Felső-triász medence- és lejtőfáciesek a Budai-hegységben—a Vérhalom téri fúrás vizsgálatának tükrében (in Hungarian). Földt Közlöny 130(3):371–421Google Scholar
  26. Haas J, Hámor G, Jámbor Á, Kovács S, Nagymarosy A, Szeredkényi T (2001) Geology of Hungary. Eötvös University Press, BudapestGoogle Scholar
  27. Hofmann K (1871) A Buda-Kovácsi hegység földtani viszonyai. Annual Rep Geol Inst Hung 1:199–276Google Scholar
  28. Jakucs L (1950) A dolomitporlódás kérdése a Budai-hegységben. Földt Közlöny 80(10-12):361–380Google Scholar
  29. Jaskó S (1979) Az infraoligocén denudáció nyomai a Budai-hegységben. Földt Közlöny 109(2):199–210Google Scholar
  30. Ji H, Wang S, Ouyang Z, Zhang S, Sun C, Liu X, Zhou D (2004a) Geochemistry of red residua underlying dolomites in karst terrains of Yunnan-Guizhou Plateau I. The formation of the Pingba profile. Chem Geol 203:1–27CrossRefGoogle Scholar
  31. Ji H, Wang S, Ouyang Z, Zhang S, Sun C, Liu X, Zhou D (2004b) Geochemistry of red residua underlying dolomites in karst terrains of Yunnan-Guizhou Plateau II The mobility of rare earth elements during weathering. Chem Geol 203:29–50CrossRefGoogle Scholar
  32. Jost-Kovacs G, Koch R (2007) Sóskút-Kalkstein (Tertiär, Ungarn, Budapest)—Primärfazielle Steuerung von Frost/Tau-Schadensbildern. Z dt Ges Geowiss 158(3):649–663Google Scholar
  33. Kleber W (1983) Einfiihrung in die Kristallographie. BerlinGoogle Scholar
  34. Koch A (1871) Szentendre-Visegrádi és a Pilis-hegység földtani leírása. Földt Évkönyv I:141–199Google Scholar
  35. Köhler W, Krannich K (1981) Untersuchungen zu Schadensursachen an Marmorskulpturen. Neue Museumskunde Jahrg 24(4):272–274Google Scholar
  36. Kósa G, Mindszenty A, Mohai R (2003) Roncskarszt térszínre progradáló eocén törmelékkúp Budakeszin. Földt Közlöny 133(2):271–285Google Scholar
  37. Lucia FJ (1961) Dedolomitization in the Tansill (Permian) formation. Geol Soc Am Bull 72:1107–1110CrossRefGoogle Scholar
  38. Machel HG, Borrero ML, Dembicki E, Huebscher H, Luo P, Zhao Y (2012) The Grosmont: the world’s largest unconventional oil reservoir hosted in carbonate rocks. In: Garland J, Neilson JE, Laubach SE, Whidden KJ (eds) Advances in Carbonate Exploration and Reservoir Analysis, Geol Soc London Spec Publ 370. doi: 10.1144/SP370.11
  39. Mackay JR (1999) Cold-climate shattering (1974 to 1993) of 200 glacial erratics on the exposed bottom of a recently drained Arctic Lake, Western Arctic Coast, Canada. Permafr Periglac Process 10:125–136CrossRefGoogle Scholar
  40. McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857CrossRefGoogle Scholar
  41. Mindszenty A, Csoma A, Török Á, Hips K, Hertelendi E (2001) Flexura jellegű előtéri deformációhoz köthető karsztbauxitszintek a Dunántúli-középhegységben. Földt Közlöny 131(1-2):107–152Google Scholar
  42. Mort K, Woodcock NH (2008) Quantifying fault breccia geometry: dent fault, NW England. J Struct Geol 30:701–709CrossRefGoogle Scholar
  43. Nader FH, Swennen R, Ottenburgs R (2003) Karst-meteoric dedolomitization in Jurassic carbonates Lebanon. Geol Belg 6(1-2):3–23Google Scholar
  44. Nagy B (1979) A budai-hegységi porlott dolomitok ásvány-kőzettani, geokémiai és genetikai vizsgálata. Földt Közlöny 109:46–74Google Scholar
  45. Nendtvich K (1859) Buda vidékének dolomitjai. Magyar Akadémiai Értesítő 112–127Google Scholar
  46. Neuendorf KKE, Mehl JP, Jackson JA (2005) Glossary of Geology. Am Geol InstGoogle Scholar
  47. Ondrasina J, Kirchner D, Siegesmund S (2002) Freeze-thaw cycles and their influence on marble deterioration: a long-term experiment. Geol Soc Lond Spec Publ 205:9–18CrossRefGoogle Scholar
  48. Ozawa H (1997) Thermodynamics of frost heaving: a thermodynamic proposition for dynamic phenomena. Phys Rev E56:2811–2816Google Scholar
  49. Pappone G, Ferranti L (1995) Thrust tectonics in the Picentini Mountains, Southern Apennines, Italy. Tectonophys 252:331–348CrossRefGoogle Scholar
  50. Poros Zs, Mindszenty A, Molnár F, Pironon J, Győri O, Ronchi P, Szekeres Z (2012) Imprints of hydrocarbon-bearing basinal fluids on a karst system: mineralogical and fluid inclusion studies from the Buda Hills, Hungary. Int J Earth Sci (Geol Rundsch) 101(2):429–452CrossRefGoogle Scholar
  51. Powers TW, Helmuth RA (1953) Theory of volume changes in hardened Portland cement paste during freezing. Highw Res Board Proc 32:285–297Google Scholar
  52. Ronchi P, Jadoul F, Savino R (2004) Quaternary dedolomitization along fracture systems in a late triassic dolomitized platform (Western Southern Alps, Italy). Carbonates Evaporites 19(1):51–66CrossRefGoogle Scholar
  53. Rose PR (1972) Edwards Formation, surface and subsurface, central Texas. Ph.D. dissertation, University of Texas, AustinGoogle Scholar
  54. Ruedrich J, Kirchner D, Siegesmund S (2010) Physical weathering of building stones induced by freeze–thaw action: a laboratory long-term study. Environ Earth Sci. doi: 10.1007/s12665-010-0826-6 Google Scholar
  55. Schafarzik F (1884) Jelentés az 1883 év nyarán a Pilis hegységben eszközölt részletes felvételről. Földt Közlöny 14:249–272Google Scholar
  56. Schafarzik F (1902) Budapest és Szentendre vidéke. 15. zóna, XX. Rov. Jelű lap 1:75000. Magyarázatok a magyar kor. országainak részletes földtani térképéhezGoogle Scholar
  57. Schafarzik F, Vendl A (1929) Geológiai kirándulások Budapest környékén. Stadium Sajtóvállalat Rt, BudapestGoogle Scholar
  58. Scherf E (1922) Hévforrások okozta kőzetváltozások (hidrotermális kőzetmetamorfózis) a Budai és Pilisi-hegységben. Hidrol Közlöny 2:19–75Google Scholar
  59. Spötl C, Vennemann TW (2003) Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals. Rapid Commun in Mass Spectrom 17:1004–1006CrossRefGoogle Scholar
  60. Surányi G (2005) Módszerfejlesztés az urán-soros kormeghatározás terén. PhD dissertation, Eötvös Loránd University, BudapestGoogle Scholar
  61. Szabó J (1858) Pest-Buda környékének földtani leírása. Spec Publ Hung Acad Sci, Természettudományi pályamunkák 4Google Scholar
  62. Szantner F, Knauer J, Mindszenty A (1986) Bauxitprognózis. MTA Veszprémi Akad Biz KiadásaGoogle Scholar
  63. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, OxfordGoogle Scholar
  64. Telegdi-Roth K (1927) Infraoligocén denudáció nyomai a Dunántúli-középhegység északnyugati peremén. Földt Közlöny 32–41Google Scholar
  65. Timkó J (1909) Budapest dunajobbparti környékének, továbbá Gödöllő-Isaszeg vidékének agrogeológiai vizsonyai. Geol report 1907:172–184Google Scholar
  66. Tóth Á, T Gecse É (1981) Dedolomitosodott telérszerű kőzettestek a Nagyegyházi-medence felső-triász dolomitaljzatában. Annual rep of 1979, Geol Inst Hung 181–199Google Scholar
  67. Wein Gy (1977) A Budai-hegység tektonikája. Spec Publ Geol Inst Hung, BudapestGoogle Scholar
  68. Weiss T, Siegesmund S, Kirchner D, Sippel J (2004) Insolation weathering and hygric dilatation: two competitive factors in stone degradation. Environ Geol 46:402–413CrossRefGoogle Scholar
  69. Žák K, Richter DK, Filippi M, Živor R, Deininger M, Mangini A, Scholz D (2012) Cryogenic cave carbonate—a new tool for estimation of the last glacial permafrost depth of the central Europe. Clim Past Discuss 8:2145–2185CrossRefGoogle Scholar
  70. Zeisig A, Siegesmund S, Weiss T (2002) Thermal expansion and its control on the durability of marbles. Geol Soc London Spec Publ 205:65–80CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zsófia Poros
    • 1
    • 3
    Email author
  • Hans G. Machel
    • 2
  • Andrea Mindszenty
    • 1
  • Ferenc Molnár
    • 1
    • 4
  1. 1.Eötvös Loránd UniversityBudapestHungary
  2. 2.University of AlbertaEdmontonCanada
  3. 3.ConocoPhillips CompanyHoustonUSA
  4. 4.Geological Survey of FinlandEspooFinland

Personalised recommendations