Advertisement

International Journal of Earth Sciences

, Volume 102, Issue 5, pp 1271–1287 | Cite as

The relationship between carbonate facies, volcanic rocks and plant remains in a late Palaeozoic lacustrine system (San Ignacio Fm, Frontal Cordillera, San Juan province, Argentina)

  • P. BusquetsEmail author
  • I. Méndez-Bedia
  • G. Gallastegui
  • F. Colombo
  • R. Cardó
  • O. Limarino
  • N. Heredia
  • S. N. Césari
Original Paper

Abstract

The San Ignacio Fm, a late Palaeozoic foreland basin succession that crops out in the Frontal Cordillera (Argentinean Andes), contains lacustrine microbial carbonates and volcanic rocks. Modification by extensive pedogenic processes contributed to the massive aspect of the calcareous beds. Most of the volcanic deposits in the San Ignacio Fm consist of pyroclastic rocks and resedimented volcaniclastic deposits. Less frequent lava flows produced during effusive eruptions led to the generation of tabular layers of fine-grained, greenish or grey andesites, trachytes and dacites. Pyroclastic flow deposits correspond mainly to welded ignimbrites made up of former glassy pyroclasts devitrified to microcrystalline groundmass, scarce crystals of euhedral plagioclase, quartz and K-feldspar, opaque minerals, aggregates of fine-grained phyllosilicates and fiammes defining a bedding-parallel foliation generated by welding or diagenetic compaction. Widespread silicified and silica-permineralized plant remains and carbonate mud clasts are found, usually embedded within the ignimbrites. The carbonate sequences are underlain and overlain by volcanic rocks. The carbonate sequence bottoms are mostly gradational, while their tops are usually sharp. The lower part of the carbonate sequences is made up of mud which appear progressively, filling interstices in the top of the underlying volcanic rocks. They gradually become more abundant until they form the whole of the rock fabric. Carbonate on volcanic sandstones and pyroclastic deposits occur, with the nucleation of micritic carbonate and associated production of pyrite. Cyanobacteria, which formed the locus of mineral precipitation, were related with this nucleation. The growth of some of the algal mounds was halted by the progressive accumulation of volcanic ash particles, but in most cases the upper boundary is sharp and suddenly truncated by pyroclastic flows or volcanic avalanches. These pyroclastic flows partially destroyed the carbonate beds and palaeosols. Microbial carbonate clasts, silicified and silica-permineralized tree trunks, log stumps and other plant remains such as small branches and small roots inside pieces of wood (interpreted as fragments of nurse logs) are commonly found embedded within the ignimbrites. The study of the carbonate and volcanic rocks of the San Ignacio Fm allows the authors to propose a facies model that increases our understanding of lacustrine environments that developed in volcanic settings.

Keywords

Microbial lacustrine carbonates Volcanic rocks Palaeosols Permineralized plants Argentina Frontal Cordillera Late Palaeozoic 

Notes

Acknowledgments

We would like to thank Andrés Cuesta, Luis Pedro Fernández, Luis González-Menéndez, Andrés Pérez-Estaún and Álvaro Rubio for their suggestions and comments. Technical support was provided by the Scientific and Technological Centers of the Barcelona University (CCiT-UB). Financial support was provided by I + D+I Spanish Programmes, projects CGL2006-12415-C03 “PaleoAndes”, CGL2009-13706-C03 “PaleoAndes II”, “Consolider-Ingenio” 2010 Programme, under project CSD2006-0041, “Topo-Iberia” and “Grup de Qualitat 2009-SGR-1198, Generalitat de Catalunya”, Spain.

References

  1. Aitken JD (1967) Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of South Western Alberta. J Sediment Petrol 37(4):1163–1178Google Scholar
  2. Alonso Zarza AM, Calvo JP, García del Cura MA (1992) Palustrine sedimentation and associated features—grainification and pseudo-microkarst—in the Middle Miocene (Intermediate Unit) of the Madrid Basin, Spain. Sed Geol 76:43–61CrossRefGoogle Scholar
  3. Aparicio EP (1969) Contribución al conocimiento de la edad de los sedimentos del arroyo de Agua Negra, Departamento de Iglesia, San Juan, República Argentina. Revista Asociación Geológica Argentina 31(3):190–193Google Scholar
  4. Arenas C, Gutiérrez F, Osácar C, Sancho C (2000) Sedimentology and geochemistry of fluvio-lacustrine tufa deposits controlled by evaporite solution subsidence in the central Ebro depression, NE Spain. Sedimentology 47:883–909CrossRefGoogle Scholar
  5. Burne RV, Moore LS (1987) Microbiolithes: organosedimentary deposits of the benthic microbial communities. Palaios 2:241–254CrossRefGoogle Scholar
  6. Busquets P, Colombo F, Heredia N, Solé de Porta N, Rodríguez Fernández LR, Álvarez Marrón J (2005) Age and tectonostratigraphic significance of the Upper Carboniferous series in the basement of the Andean Frontal Cordillera: geodynamic implications. Tectonophysics 399:181–194CrossRefGoogle Scholar
  7. Busquets P, Méndez-Bedia I, Colombo F, Césari S, Cardó R, Limarino O, Gallastegui G, Heredia N (2007a) Fossil tree in the Upper Palaeozoic of the Sierra de Castaño (Cordillera Frontal, Argentina): palaeoenvironmental importance. Cuadernos del Museo Geominero 8:63–67Google Scholar
  8. Busquets P, Méndez-Bédia I, Gallastegui G, Colombo F, Heredia N, Cardó R, Limarino O (2007b) Late Palaeozoic microbial lacustrine carbonate and related volcanic facies from the Andean Frontal Cordillera (San Juan, Argentina). Cuadernos del Museo Geominero 8:69–74Google Scholar
  9. Busquets P, Colombo F, Heredia N, Cardó R (2008) Gravitational sliding in a foreland basin. Late Palaeozoic, Cordillera Frontal, Andes, San Juan—Argentina. Geo-Temas 10:466Google Scholar
  10. Cabaleri NG, Armella C (2005) Influence of a biothermal belt on the lacustrine sedimentation of the Cañadon Asfalto Formation (Upper Jurassic, Chubut province, Southern Argentina). Geologica Acta 3(2):205–214Google Scholar
  11. Calvo JP, Alonso AM, García del Cura MA (1986) Depositional sedimentary controls on sepiolite occurrences in Paracuellos del Jarama, Madrid Basin. Geogaceta 1:25–28Google Scholar
  12. Calvo JP, Alonso AM, García del Cura MA (1989) Models of miocene marginal lacustrine sedimentation in response to varied depositional regimes and source areas in the Madrid Basin (Central Spain). Palaeogeogr Palaeoclimatol Palaeoecol 70:199–214CrossRefGoogle Scholar
  13. Calvo JP, Jones BF, Bustillo M, Fort R, Alonso-Zarza A, Kendall C (1995) Sedimentology and geochemistry of carbonates from lacustrine sequence in the Madrid Basin. Chem Geol 123:173–191CrossRefGoogle Scholar
  14. Césari SN, Busquets P, Colombo Piñol F, Méndez Bedia I, Limarino CO (2010) Nurse logs: an ecological strategy in a late Palaeozoic forest from the southern Andean region. Geology 38(4):295–298CrossRefGoogle Scholar
  15. Césari SN, Busquets P, Méndez-Bedia I, Colombo F, Limarino CO, Cardó R, Gallastegui G (2012) A late Palaeozoic fossil forest from the southern Andes, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology. doi: 10.1016/j.palaeo.2012.03.015 Google Scholar
  16. Channing A, Edwards D (2009) Silicification of higher plants in geothermally influenced wetlands: yellowstone as a Lower Devonian Rhynie analog. Palaios 24(8):505–521CrossRefGoogle Scholar
  17. Channing A, Wujek DE (2010) Preservation of protists within decaying plants from geothermally influenced wetlands of Yellowstone national park, Wyoming, United States. Palaios 25:347–355CrossRefGoogle Scholar
  18. Channing A, Edwards D, Sturtevant S (2004) A geothermally influenced wetland containing unconsolidated geochemical sediments. Can J Earth Sci 41:809–827CrossRefGoogle Scholar
  19. Dunagan SP, Driese SG (1999) Control of terrestrial stabilization on Late Devonian palustrine carbonate deposition: catskill magnafacies, New York, USA. J Sediment Res 69(3):772–783CrossRefGoogle Scholar
  20. Fisher RV (1961) Proposed classification of volcaniclastic sediments and rocks. Geol Soc Am Bull 80:1–8Google Scholar
  21. Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer, New York, pp 1–472CrossRefGoogle Scholar
  22. Flügel E (2004) Microfacies of carbonate rocks. Springer, Berlin, pp 1–976Google Scholar
  23. Freytet P (1973) Petrography and paleo-environment of continental carbonate deposits with particular reference to the Upper Cretaceous and Lower Eocene of Languedoc (Southern France). Sed Geol 10:25–60CrossRefGoogle Scholar
  24. Freytet P, Plaziat JC (1982) Continental carbonate sedimentation and pedogenesis-late cretaceous and early tertiary of Southern France. Contrib Sedimentol 12:1–213Google Scholar
  25. Gerdes G, Claes M, Dunajtschik-Piewak K, Riege H, Krumbein EW, Reineck HE (1993) Contribution of Microbial Mats to Sedimentary Surface Structures. Facies 29:61–74CrossRefGoogle Scholar
  26. Gifkins C, Herrmann W, Large R (2005) Altered volcanic rocks. A guide to description and interpretation. Centre for ore deposit research. University of Tasmania, Australia, pp 1–272Google Scholar
  27. Groeber P (1938) Mineralogía y Geología. Espasa-Calpe Argentina, pp 1–492Google Scholar
  28. Gutiérrez PR (1992) Microflora de la Formación Cerro Agua Negra (Carbonífero Superior-Pérmico Inferior) de la quebrada Las Leñas, provincia de San Juan, Argentina. 8º Simposio Argentino de Paleobotánica y Palinologia. Corrientes. Asociación Paleontológica Argentina. Publicación Especial 2:63–66Google Scholar
  29. Heredia N, Rodríguez Fernández LR, Gallastegui G, Busquets P, Colombo F (2002) Geological setting of the Argentine Frontal Cordillera in the flat-slab segment (30º00′ to 31º 30′ S latitude). In: Ramos V, McNulty B (eds.) Flat Subduction in the Andes. Journal South American Earth Sciences 15(13): 79–99Google Scholar
  30. Heredia N, Farias P, García-Sansegundo J, Giambiagi L (2012) The basement of the Andean frontal cordillera in the Cordón del Plata (Mendoza, Argentina): geodynamic evolution. Andean Geol 39(2):242–257Google Scholar
  31. Jones B, Renault RW, Rosen MR, Klyen L (1998) Primary siliceous rhizoliths from loop road hot springs, North Island, New Zealand. J Sediment Res 68:115–123CrossRefGoogle Scholar
  32. Kalkowsky E (1908) Oolith und Stromatolith im norddeutschen Buntsandstein. Zeitschrift der Deutschen geologischen Gesellschaft 60:68–125Google Scholar
  33. Kennard JM (1994) Thrombolites and Stromatolites within shale-carbonate cycles, Middle-Late Cambrian Shannon Formation, Amadeus Basin, Central Australia. In: Bertrand-Sarfati J, Monty C (eds) Phanerozoic Stromatolites II, pp 443–471Google Scholar
  34. Kennard JM, James NP (1986) Thrombolites and Stromatolites: two distinct types of microbial structures. Palaios 1:492–503CrossRefGoogle Scholar
  35. Kostka JE, Wu J, Nealson KH, Stucki JW (1999) The impact of structural Fe(III) reduction by bacteria on the surface chemistry of smectite clay minerals. Geochimica Acta 63(22):3705–3713CrossRefGoogle Scholar
  36. Llambías EJ, Kleiman LE, Salvarredi JA (1993) El magmatismo gondwánico. 12º Congreso Geológico Argentino y 2º Congreso de Exploración de Hidrocarburos. In: Ramos V (ed) Geología y Recursos Naturales de Mendoza, Relatorio1, 53–64Google Scholar
  37. Machel HG (2001) Bacterial and thermochemical sulphate reduction in diagenetic setting-old and new insights. Sed Geol 140:143–175CrossRefGoogle Scholar
  38. Mazzullo SJ, Birdwell BA (1989) Syngenetic formation of grainstones and pisolites from fenestral carbonates in peritidal settings. J Sediment Petrol 39(4):605–611Google Scholar
  39. McPhie J, Doyle M, Allen R (1993) Volcanic textures. A guide to the interpretation of textures in volcanic rocks. Centre for ore deposit and exploration studies. University of Tasmania, Australia, pp 1–197Google Scholar
  40. Platt NH (1989) Lacustrine carbonates and pedogenesis: sedimentology and origin of palustrine deposits from the Early Cretaceous Rupelo Formation, W Cameros Basin, N. Spain. Sedimentology 36:665–684CrossRefGoogle Scholar
  41. Platt NH, Wright VP (1991) Lacustrine carbonates: facies models, facies distributions and hydrocarbon aspects. Spec Publs Int Ass Sediment 13:57–74Google Scholar
  42. Platt NH, Wright VP (1992) Palustrine carbonates and the Florida everglades: towards an exposure index for fresh-water environment? J Sediment Petrol 62(6):1058–1071Google Scholar
  43. Polanski J (1970) Carbónico y Pérmico en la Argentina. Eudeba, Buenos Aires, pp 1–216Google Scholar
  44. Ramos VA, Jordan TA, Allmendinger RW, Kay SM, Cortes JM, Palma MA (1984) Chilenia: un terreno alóctono en la evolución Paleozoica de los Andes Centrales. Actas IX Congreso Geológico Argentino 2:84–106Google Scholar
  45. Ramos VA, Jordan TA, Allmendinger RW, Mpodozis S, Kay SM, Cortés JM, Palma MA (1986) Palaeozoic Terranes of the Central Argentine—Chilean Andes. Tectonics 5:855–880CrossRefGoogle Scholar
  46. Ramos E, Ll Cabrera, Hagemann HW, Pickel W, Zamarreño I (2001) Paleogene lacustrine record in Mallorca (NW Mediterranean, Spain): depositional, palaeogeographic and palaeoclimatic implications for the ancient south-eastern Iberian margin. Palaeogeogr Palaeoclimatol Palaeoecol 172:1–37CrossRefGoogle Scholar
  47. Riding R (1999) The term stromatolites: towards an essentials definition. Lethaia 32(4):321–330CrossRefGoogle Scholar
  48. Riding R (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47(Suppl. 1):179–214CrossRefGoogle Scholar
  49. Riding R, Braga JC, Martin JM (1991) Oolite stromatolites and thrombolites, Miocene, Spain: analogues of recent giant Bahamian examples. Sed Geol 71:121–127CrossRefGoogle Scholar
  50. Roberts JA (2004) Inhibition and enhancement of microbial surface colonization: the role of silicate composition. Chem Geol 212(3–4):313–327CrossRefGoogle Scholar
  51. Rocha-Campos AC, Basei MA, Nutman AP, Kleiman LE, Varela R, Llambías E, Canile FM, da Rosa O de CR (2011) 30 million years of Permian volcanism recorded in the Choiyoi igneous province (W Argentina) and their source for younger ash fall deposits in the Paraná Basin: sHRIMP U-Pb zircon geochronology evidence. Gondwana Res 19(2):509–523CrossRefGoogle Scholar
  52. Rodríguez Fernández LR, Heredia N, Marín G, Quesada C, Robador A, Ragona D, Cardó R (1996) Tectonoestratigrafía y estructura de los Andes Argentinos entre los 30° y 31° de latitud Sur. 12 Congreso Geológico Argentino Actas 2:111–124Google Scholar
  53. Rodríguez Fernández LR, Heredia N, García Espina G, Cegarra MI (1997) Estratigrafía y estructura de los Andes centrales Argentinos entre los 30° 30′ y 31° 00′ de latitud Sur. Acta Geológica Hispánica 32(1–2):51–76Google Scholar
  54. Rogers JR, Bennett PC (2004) Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates. Chem Geol 203(1–2):91–108CrossRefGoogle Scholar
  55. Sanz-Montero ME, Rodríguez-Aranda JP, Pérez-Soba C (2009) Microbial weathering of Fe-rich phyllosilicates and formation of pyrite in the dolomite precipitating environment of a Miocene lacustrine system. Eur J Mineral 21:163–175CrossRefGoogle Scholar
  56. Sato MA, Llambías EJ (1993) El grupo Choiyoi, provincia de San Juan: equivalente efusivo del Batolito de Colangüil. 12º Congreso Geológico Argentino y 2º Congreso de Exploración de Hidrocarburos. Actas 4:156–165Google Scholar
  57. Silva Nieto DG, Cabaleri NG, Salani FM, Coluccia A (2002) Cañadón Asfalto, una cuenca tipo “pull apart” en el área de cerro Cóndor, provincia de Chubut. In: Cabalero N, Cingolani CA, Linares E, López de Luchi MG, Ostera HA, Panarello H (eds), XV Congreso Geológico Argentino, El Calafate, Acta I, pp 238–244Google Scholar
  58. Szulc J, Cwizewicz M (1989) The Lower Permian freshwater carbonates of the Slawkow Graben, Southern Poland: sedimentary facies context and stable isotope study. Palaeogeogr Palaeoclimatol Palaeoecol 70:107–120CrossRefGoogle Scholar
  59. Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Scientific, Oxford, pp 1–482CrossRefGoogle Scholar
  60. Valero Garcés BL, Gierlowski-Kordesch E, Bragonier WA (1994) Lacustrine facies model for non-marine limestone within cyclothems in the Pennsylvanian (Upper Freeport Formation, Appalachian basin) and its implications. In: Lomando AJ, Schreiber BC, Harris PM (eds) Lacustrine reservoirs and depositional systems. Society. Econo. Paleontol. Mineral. (SEPM). Core Workshop 19, pp 321–381Google Scholar
  61. Whitney D, Evans B (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187CrossRefGoogle Scholar
  62. Wright VP (1990a) Syngenetic formation of grainstones and pisolites from fenestral carbonates in peritidal settings. J Sediment Petrol 60(2):309–310CrossRefGoogle Scholar
  63. Wright VP (1990b) Lacustrine carbonates. In: Tucker M, Wright VP (eds) Carbonate sedimentology. Blackwell, Oxford, pp 164–189Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • P. Busquets
    • 1
    Email author
  • I. Méndez-Bedia
    • 2
  • G. Gallastegui
    • 3
  • F. Colombo
    • 1
  • R. Cardó
    • 4
  • O. Limarino
    • 5
  • N. Heredia
    • 3
  • S. N. Césari
    • 6
  1. 1.Departament d’Estratigrafia, Paleontologia i Geociències MarinesUniversitat de BarcelonaBarcelonaSpain
  2. 2.Departamento de GeologíaUniversidad de OviedoOviedoSpain
  3. 3.Instituto Geológico y Minero de EspañaOviedoSpain
  4. 4.Servicio Geológico y Minero ArgentinoOesteArgentina
  5. 5.Departamento de Ciencias GeológicasUniversidad de Buenos AiresBuenos AiresArgentina
  6. 6.Museo de Ciencias Naturales “B. Rivadavia”Buenos AiresArgentina

Personalised recommendations