International Journal of Earth Sciences

, Volume 102, Issue 4, pp 989–1006 | Cite as

The Main Ostrava Whetstone: composition, sedimentary processes, palaeogeography and geochronology of a major Mississippian volcaniclastic unit of the Upper Silesian Basin (Poland and Czech Republic)

  • Jakub Jirásek
  • Lada Hýlová
  • Martin Sivek
  • Janusz Jureczka
  • Karel Martínek
  • Ivana Sýkorová
  • Mark Schmitz
Original Paper

Abstract

The Main Ostrava Whetstone (MOW) is an important lithostratigraphic horizon of the Late Carboniferous sedimentary fill of the late Palaeozoic foreland Upper Silesian Basin. It is the largest and best-identified volcanogenic horizon in the basin, reaching thicknesses of 15.3 m and occupying an area of ca 2,973 km2 and a volume after lithification of 9.24 km3. It consists of volcanic materials transported to the basin probably by an aeolian process. Just after sedimentation, these materials were redeposited a short distance away in a shallow water environment. Granularity corresponds to a range from argillaceous siltstones to fine-grained sandstones. The components are dominated by glass shards replaced by clay minerals (mixed illite–smectite structures) in addition to quartz of volcanogenic and terrigenous origins. Sanidine and a plagioclase close to albite are also present. The sedimentary structures, micro-structures and composition of the MOW indicate variable and dynamic hydrodynamic conditions. The MOW represents a series of flooding events, which could be connected with unusual rainfall. Such major flooding events were most likely induced by volcanic eruptions. The available drill-core log data were used to construct a digital model of the whetstone, which showed an east–west zonality in the thicknesses, with the majority being synsedimentary. CA-TIMS U–Pb dating the volcanogenic zircons yields an age of 327.35 ± 0.15 Ma. The source location of the volcanogenic material is not clear; however, it is presumed to have been located in the west of the Upper Silesian Basin.

Keywords

Volcaniclastic sediment Upper Silesian Basin Serpukhovian Carboniferous Chronostratigraphy Sedimentology 

Supplementary material

531_2012_853_MOESM1_ESM.pdf (304 kb)
Supplementary material 1 (PDF 303 kb)

References

  1. Awdankiewicz M (1999) Volcanism in a late Variscan intramontane trough: Carboniferous and Permian volcanic centres of the Intra-Sudetic Basin, SW Poland. Geol Sudet 32(1):13–47Google Scholar
  2. Bachliński R, Bagiński B (2007) Kłodzko-Złoty Stok granitoid massif. In: Kozlowski A, Wiszniewska J (eds) Granitoids in Poland. Archiw Mineral Monograph no. 1, Polish Geological Institute, Warsaw, pp 261–273Google Scholar
  3. Buła Z, Żaba J (2005) Pozycja tektoniczna Górnośląskiego Zagłębia Węglowego na tle prekambryjskiego i dolnopaleozoicznego podłoża. In: Jureczka J, Buła Z, Żaba J (eds) LXXVI Zjazd Naukowy Polskiego Towarzystwa Geologicznego, Państwowy instytut geologiczny and Polskie towarzystwo geologiczne, Warsaw, pp 15–42 (in Polish)Google Scholar
  4. Cháb J, Breiter K (2010) Variscan and early post-Variscan intrusions. In: Cháb J (ed) Outline of the geology of the Bohemian Massif: the basement rocks and their Carboniferous and permian cover. Czech Geological Survey, Prague, pp 187–213Google Scholar
  5. Davydov V, Crowley J, Schmitz M, Poletaev V (2010) High-precision U–Pb zircon age calibration of the global Carboniferous time scale and Milankovitch-band cyclicity in the Donets Basin, eastern Ukraine. Geochem Geophys Geosyst. doi:10.1029/2009GC002736 Google Scholar
  6. Dembowski Z (1972) The Cracow sandstone series of the Upper Silesian Coal Basin. Pr Inst Geol 61:509–538 (in Polish with English abstract)Google Scholar
  7. Depciuch T (1972) Absolute age of (K–Ar) granitoids from the Kłodzko—Złoty Stok area and the Niemcza zone. Kwart Geol 16:103–112Google Scholar
  8. Diessel CFK (2010) The stratigraphic distribution of inertinite. Int J Coal Geol 81(4):251–268CrossRefGoogle Scholar
  9. Domańska JD (2007) The granitoid Variscan Srtzegom-Sobótka massif. In: Kozlowski A, Wiszniewska J (eds) Granitoids in Poland. Archiw Mineral Monograph no. 1, Polish Geological Institute, Warsaw, pp 179–191Google Scholar
  10. Dopita M, Králík J (1977) Coal tonsteins in Ostrava-Karviná coal basin. OKD, Ostrava (in Czech with English and Russian summary)Google Scholar
  11. Dopita M, Kumpera O (1993) Geology of the Ostrava-Karviná coalfield, Upper Silesian Basin, Czech Republic, and its influence on mining. Int J Coal Geol 23(1–4):291–321CrossRefGoogle Scholar
  12. Dopita M, Aust J, Brieda J, Černý I, Dvořák P, Fialová V, Foldyna J, Grmela A, Grygar R, Hoch I, Honěk J, Kaštovský V, Konečný P, Kožušníková A, Krejčí B, Kumpera O, Martinec P, Merenda M, Müller K, Novotná E, Ptáček J, Purkyňová E, Řehoř F, Strakoš Z, Tomis L, Tomšík J, Valterová P, Vašíček Z, Vencl J, Žídková S (1997) Geology of the Czech part of the Upper Silesian Basin. Ministerstvo životního prostředí České republiky, Praha (in Czech with English abstract)Google Scholar
  13. Dvořák J (1994) Variscan flysch development in the Nízký Jeseník Mts. In: Moravia and Silesia. Český geologický ústav, Praha (in Czech with English summary)Google Scholar
  14. Fojtík Z (1958) Study of the foremost horizon of the Lower Ostrava Formation—Ostrava Whetstone—in the northern area of the Ostrava part of OKR in aspect of its genesis. Dissertation, University of Ostrava (in Czech)Google Scholar
  15. Fojtík Z (1964) Secondary mineralization in the important horizon of the Lower Ostrava Formation—Ostrava Whetstone—in the northern part of the Ostrava-Karviná district. Sbor věd pr VŠB v Ostravě 10(1–2):223–227 (in Czech)Google Scholar
  16. Folprecht J, Patteisky K (1928) Geology of the Ostrava-Karviná Coal District. In: Coal mines of the Ostrava-Karviná District, Part 1. Moravská Ostrava, pp 27–340 (in Czech and German)Google Scholar
  17. Gabzdyl W, Hanak B (2005) Raw materials from the Upper Silesia Coal Basin and the adjacent areas. Prz Geol 53:726–733 (in Polish with English summary)Google Scholar
  18. Gastaldo RA, Purkyňová E, Šimůnek Z, Schmitz MD (2009) Ecological persistence in the Late Mississippian (Serpukhovian, Namurian A) megafloral record of the Upper Silesian Basin, Czech Republic. Palaios 24(6):336–350CrossRefGoogle Scholar
  19. Grygar R, Vavro M (1995) Evolution of Lugosilesian orocline (north-eastern periphery of the Bohemian Massif): kinematics of Variscian deformation. J Czech Geol Soc 40(1–2):65–90Google Scholar
  20. Guerra-Sommer M, Cazzulo-Klepzig M, Santos JOS, Hartmann LA, Ketzer JM, Formoso MLL (2008) Radiometric age determination of tonsteins and stratigraphic constraints for the lower Permian coal succession in southern Parana Basin, Brazil. Int J Coal Geol 74(1):13–27CrossRefGoogle Scholar
  21. Heckel PH, Clayton G (2006) The Carboniferous systém. Use of the new official names for the subsystems, series, and stages. Geol Acta 4(3):403–407Google Scholar
  22. Hess HJ, Lippolt JC (1986) 40Ar/39Ar ages of tonstein and tuff sanidines: new calibration points for the improvement of the Upper Carboniferous time scale. Chem Geol 59:143–154CrossRefGoogle Scholar
  23. Hoffmann U, Breitkreuz C, Breiter K, Sergeev S, Stanek K, Tichomirowa M (2012) Carboniferous–Permian volcanic evolution in Central Europe–U/Pb ages of volcanic rocks in Saxony (Germany) and northern Bohemia (Czech Republic). Int J Earth Sci. doi:10.1007/s00531-012-0791-2 Google Scholar
  24. Horák J, Sýkora L, Hoch I, Hemza P, Filák P, Martinec P, Weiss Z, Chmielová M (1992) Tuffogenic horizons in OKR. Důlní průzkum a bezpečnost Paskov, Paskov (in Czech)Google Scholar
  25. Hutton AC (1987) Petrographic classification of oil shales. Int J Coal Geol 8:203–231CrossRefGoogle Scholar
  26. Hýlová L (2011) Geology of the Petřkovice member of the Upper Silesian Basin (Ostrava Formation, Namurian). Ph.D. thesis, VŠB-Technical University of Ostrava (in Czech with English abstract)Google Scholar
  27. Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurement of half-lives and specific activities of 235U and 238U. Phys Rev C 4:1889–1906CrossRefGoogle Scholar
  28. Jansa L (1965) Volcanic activity in the Carboniferous of the Upper Silesian Coal Basin. Sbor geol věd Geol 7:59–106 (in Czech with English summary)Google Scholar
  29. Jansa L, Durčáková L (1965) Clay minerals with mixed illite—montmorillonite structures in the Carboniferous of the Ostrava district. Čas Mineral Geol 10(4):391–402 (in Czech with English summary)Google Scholar
  30. Jureczka J, Kotas A (1995) Coal deposits—Upper Silesian Coal Basin. In: Zdanowski A, Żakowa H (eds) The Carboniferous system in Poland. Prace Państwowego Insytutu Geologicznego, vol 148, pp 164–173Google Scholar
  31. Jureczka J, Dopita M, Gałka M, Krieger W, Kwarciński J, Martinec P (2005) Geological atlas of coal deposits of the Polish and Czech parts of the Upper Silesian Coal Basin. Państwowy Instytut Geologiczny and Ministerstwo Środowiska, WarszawaGoogle Scholar
  32. Kadlec J, Tomšík J, Ormandy I (1959) Whetstone horizons of the Ostrava formation in the Carboniferous Ostrava-Karviná district. Sbor ústř úst geol 26(2):637–680 (in Czech with German summary)Google Scholar
  33. Kalkreuth W, Macauley G (1989) Organic petrology and Rock-Eval studies on oil shales from the Lower Carboniferous Rocky Brook Formation, Western Newfounland. B Can Petrol Geol 37(1):31–42Google Scholar
  34. Kalvoda J, Babek O, Fatka O, Leichmann J, Melichar R, Nehyba S, Spacek P (2008) Brunovistulian terrane (Bohemian Massif, Central Europe) from late Proterozoic to late Paleozoic: a review. Int J Earth Sci 97:497–518CrossRefGoogle Scholar
  35. Kandarachevová J, Sedláčková L, Hýlová L, Jirásek J, Sivek M (2009) Lateral development of coalification in the Czech part of the Upper Silesian Coal Basin and its connection with gas deposits. Int J Coal Geol 78(3):225–232CrossRefGoogle Scholar
  36. Kędzior A, Gradziński R, Doktor M, Gmur D (2007) Sedimentary history of a Mississippian to Pennsylvanian coal-bearing succession: an example from the Upper Silesia Coal Basin, Poland. Geol Mag 144(3):487–496CrossRefGoogle Scholar
  37. Kotas A (1995) Lithostratigraphy and sedimentologic-paleogeographic development—Upper Silesian Coal Basin. In: Zdanowski A, Żakowa H (eds) The carboniferous system in Poland. Prace Państwowego Insytutu Geologicznego, vol 148, pp 124–134Google Scholar
  38. Kotas A, Malczyk W (1972a) The paralic series of the lower Namurian stage of the Upper Silesian Coal Basin. Pr Inst Geol 61:329–426 (in Polish, with English abstract)Google Scholar
  39. Kotas A, Malczyk W (1972b) The Upper Silesian sandstone series of the Upper Namurian stage of the Upper Silesian Coal Basin. Pr Inst Geol 61:427–466 (in Polish, with English abstract)Google Scholar
  40. Králík J (1970) A contribution to the clay mineralogy of coal-bands in the Czechoslovak part of the Upper Silesian Coal-Basin. In: 5th Conference on clay mineralogy and petrology in Praha, Praha, pp 45–55 (in Czech with English and Russian abstract)Google Scholar
  41. Králík J, Weiss Z (1972) Study of random mixed-layered IM-structures in lithostratigraphical horizons of the Ostrava-Karviná Basin, Part I. Sbor věd pr VŠB v Ostravě 18(1):17–43 (in Czech with English abstract)Google Scholar
  42. Králík J, Weiss Z (1973) The IM-random interstratifications from the tuffogenic rocks of the Upper Silesia Coal Basin. In: Konta J (ed) Sixth conference on clay mineralogy and petrology in Praha and Kutná Hora, Praha, pp 279–294 (in Czech with English and Russian abstract)Google Scholar
  43. Kröner A, Hegner E, Hammer J, Haase G, Bielicki K-H, Krauss M, Eidam J (1994) Geochronology and Nd–Sr systematics of Lusatian granitoids: significance for the evolution of the Variscan orogen in east-central Europe. Geol Rundsch 83:357–376Google Scholar
  44. Krs M, Pruner P (1995) Palaeomagnetism and palaeogeography of the Variscan formations of the Bohemian Massif, comparsion with other European regions. J Czech Geol Soc 40(1–2):3–46Google Scholar
  45. Kryza R, Awdankiewicz M (2012) Ambiguous geological position of Carboniferous rhyodacites in the Intra-Sudetic Basin (SW Poland) clarified by SHRIMP zircon ages. Geol Q 56(1):55–66Google Scholar
  46. Kryza R, Crowley QG, Larionov A, Pin C, Oberc-Dziedzic T, Mochnacka K (2012) Chemical abrasion applied to SHRIMP zircon geochronology: an example from the Variscan Karkonosze Granite (Sudetes, SW Poland). Gondwana Res 21:757–767CrossRefGoogle Scholar
  47. Kucera J, Muchez P, Slobodnik M, Prochaska W (2010) Geochemistry of highly saline fluids in siliciclastic sequences: genetic implications for post-Variscan fluid flow in the Moravosilesian Palaeozoic of the Czech Republic. Int J Earth Sci 99(2):269–284CrossRefGoogle Scholar
  48. Kuhl J (1955) Petrographical classification of accompanying rocks of Upper Silesian Coalfield. Pr Gł Inst Górn Seria A 171:1–32 (in Polish with English summary)Google Scholar
  49. Kumpera O (1990) Outline of the Paleozoic sediments below the Upper Silesian Carboniferous coal-bearing molasse in Upper Silesian Basin. Sbor věd prací Vys šk báň Ř Horn Geol 36(1):91–106Google Scholar
  50. Kumpera O (1997) Controls on the evolution of the Namurian paralic basin, Bohemian Massif, Czech Republic. In: Gayer R, Pešek J (eds) European coal geology and technology. Geological Society Special Publication No. 125, pp 13–27Google Scholar
  51. Łapot W (1992) Petrographical diversity of tonsteins from the Upper Silesian Coal Basin (GZW). Uniwersytet Śląski, Katowice (in Polish with English summary)Google Scholar
  52. Łapot W (1994) Textures and chemistry of tonsteins from the Upper Silesian Coal Basin (GZW), Poland. N Jb Geol Paläont Mh 1:41–53Google Scholar
  53. Łapot W (1995) Rhyolitic tuff from the boundary between Załęsie i Orzesze Member (petrographic characteristics). In: XVIII Sympozjum Geologia formacji węglonośnych Polski, Kraków, pp 34–39 (in Polish)Google Scholar
  54. Lyons PC, Spears DA, Outerbridge WF, Congdon RD, Evans HT (1994) Euramerican tonsteins: overview, magmatic origin, and depositional-tectonic implications. Palaeogeogr Palaeoecl 106:113–134CrossRefGoogle Scholar
  55. Malkovský M (1958) Petrographic characteristics of the whetstone from Carboniferous of the Ostrava-Karviná Coal Basin. Acta Univ Carol Geol 1:47–72 (in Czech with German and Russian summary)Google Scholar
  56. Maluski H, Rajlich P, Souček J (1995) Pre-variscan, variscan and early Alpine thermo-tectonic history of the north-eastern Bohemian Massif: an 40Ar/39Ar study. Geol Rundsch 84:345–358CrossRefGoogle Scholar
  57. Marheine D, Kachlík V, Maluski H, Patočka F, Żelaźniewicz A (2002) The 40Ar/39Ar ages from the West Sudetes (NE Bohemian Massif): constraints on the Variscan polyphase tectonothermal development. In: Winchester JA, Pharaoh T, Verniers J (eds) Palaeozoic amalgamation of the Central Europe. Geological Society London Special Publication 201, pp 133–155Google Scholar
  58. Martinec P, Jirásek J, Kožušníková A, Sivek M (eds) (2005) Atlas of coal—the Czech part of the Upper Silesian Basin. Anagram, Ostrava (in Czech with English summary)Google Scholar
  59. Martinec P, Uher A, Hoch I, Filák P, Welser P (2008) The Main Ostrava Whetstone in the Mine Field of the “Paskov-Staříč” Mine (Lower Namurian, Ostrava Fm.)—petrology, lithology and genesis. In: XXXI Sympozjum Geologia Formacji Węglonośnych Polski. Kraków, pp 63–69 (in Czech with English abstract)Google Scholar
  60. Mattinson JM (2005) Zircon U-Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem Geol 220:47–66CrossRefGoogle Scholar
  61. Mazur S, Aleksandrowski P, Kryza R, Oberc-Dziedzic T (2006) The Varicsan orogen in Poland. Geol Quart 50(1):89–118Google Scholar
  62. Mierzejewski MP (2001) Understanding the Karkonosze Mts granite. In: Tectonics & Magma 2001, Meeting in honour of Hans Cloos, Abstr Vol and Excurs Guidebook, Exkursionfuhrer und Veroffentlichungen der GGW 212, Berlin, pp 70–74Google Scholar
  63. Mierzejewski MP (2007) A general view on the Karkonosze granite. In: Kozlowski A, Wiszniewska J (eds) Granitoids in Poland. Archiw Mineral Monograph No. 1, Polish Geological Institute, Warsaw, pp 111–122Google Scholar
  64. Mísař Z (1958) Geological petrographical study of the granodiorite body of Šumperk (the Hrubý Jeseník Mts., Silesia). Sb Ústř úst geol Odd geol 25:335–376 (in Czech with English summary)Google Scholar
  65. Oberc-Dziedzic T (2007) Internal structure of the granite and tonalite intrusions in the Strzelin massif, Fore-Sudetic block, SW Poland. In: Kozlowski A, Wiszniewska J (eds) Granitoids in Poland. Archiw Mineral Monograph No. 1, Polish Geological Institute, Warsaw, pp 217–229Google Scholar
  66. Oberc-Dziedzic T, Kryza R (2012) Late stage variscan magmatism in the Strzelin Massif (SW Po land): SHRIMP zir con ages of tonalite and Bt-Ms granite of the Gêsiniec intrusion. Geol Q 56(2):225–236CrossRefGoogle Scholar
  67. Oberc-Dziedzic T, Kryza R, Białek J (2010) Variscan multistage granitoid magmatism in Brunovistulicum: petrological and SHRIMP U–Pb zircon geochronological evidence from the southern part of the Strzelin Massif, SW Poland. Geol Q 54(3):301–324Google Scholar
  68. Petrascheck W (1913) Flözfolge und Tektonik der unteren Ostrauer Schichten. Jahrb k-k Geol Reichsanst 63:1–14 (in German)Google Scholar
  69. Petrascheck W (1929) Kohlengeologie der Österreichischen Teilstaaten. II. Teil. Kattowitzer Buchdruckerein ~ und Verlags ~ Sp. Akc., Katowice (in German)Google Scholar
  70. Podzimková P (2010) Alluvial stratigraphy of the Líně formation, Central Bohemian Basins. Master`s thesis, Charles University in Prague (in Czech with English abstract)Google Scholar
  71. Porzycki J (1972) The Siltstone Series of the Lower Westphalian Stage of the Upper Silesian Coal Basin. Pr Inst Geol 61:467–508 (in Polish with English abstract)Google Scholar
  72. Purkyňová E (1978) Flora des Oberkarbons (Namur A) im Paläozoikum der SO Abhängen des Böhmischen Massivs bei Němčičky in Südmähren (Tschechoslowakei). Čas Slez Muz Ser A 27:77–86 (in Czech with German abstract)Google Scholar
  73. Rakowski Z (1972) The Main Ostrava Whetstone in the mining areas Paskov and Václavovice. Čas Mineral Geol 17(2):199–206 (in Czech with German summary)Google Scholar
  74. Řehoř F, Řehořová M (1978) Die karbonische Makrofauna der im mährischen Teil des Wiener Beckens niedergebrachten Tiefbohrung Němčičky 1. Čas Slez Muz Ser A 27:61–63 (in Czech with German abstract)Google Scholar
  75. Schmitz MD, Schoene B (2007) Derivation of isotope ratios, errors and error correlations for U–Pb geochronology using 205Pb–235U–(233U)-spiked isotope dilution thermal ionization mass spectrometric data. Geochem Geophys Geosyst 8(8):1–20CrossRefGoogle Scholar
  76. Scott AC, Glasspool IJ (2007) Observations and experiments on the origin and formation of inertinite group macerals. Int J Coal Geol 70(1–3):53–66CrossRefGoogle Scholar
  77. Sivek M, Dopita M, Krůl M, Čáslavský M, Jirásek J (2003) Atlas of chemical-technological properties of coals in the Czech part of the Upper Silesian Basin. VŠB—Technical University of Ostrava, OstravaGoogle Scholar
  78. Spears DA (2012) The origin of tonsteins, an overview, and links with seatearths, fireclays and fragmental clay rocks. Int J Coal Geol 94:22–31CrossRefGoogle Scholar
  79. Spears DA, Lyons PC (1995) An update on British tonsteins. Geol Soc Spec Publ 82:137–146CrossRefGoogle Scholar
  80. Spears DA, Duff PMD, Caine PM (1988) The West Waterberg tonstein, South Africa. Int J Coal Geol 9(3):221–233CrossRefGoogle Scholar
  81. Taylor GH, Teichmüller M, Davis A, Diesel CFK, Littke R, Robert P (1998) Organic petrology. Gebrüder Borntraeger, BerlinGoogle Scholar
  82. Timmerman MJ (2008) Palaeozoic magmatism. In: McCann T (ed) The geology of Central Europe, Volume 1: Precambrian and Palaeozoic. The Geological Society, London, pp 665–748Google Scholar
  83. Todesco M, Todini E (2004) Volcanic eruption induced floods. A rainfall-runoff model applied to the Vesuvian region (Italy). Nat Hazards 33:223–245CrossRefGoogle Scholar
  84. Tomšík J (1958) A contribution to the knowledge of the petrology of two whetstones in the Petřkovice beds of the Ostrava-Karviná district. Věst Ústř úst geol 33:283–284 (in Czech with English summary)Google Scholar
  85. Tomšík J (1967) Early Paleozoic volcanism in the Czechoslovak part of the Upper Silesian basin and its environment. Sbor věd prací VŠB v Ostravě 13:109–116 (in Czech with English summary)Google Scholar
  86. Tomšík J, Zeman J (1975) Late Paleozoic volcanism and its relationship to the technics of the Upper Silesian Coal Basin. Čas Mineral Geol 20(1):39–52 (in Czech with English summary)Google Scholar
  87. Turniak K, Bröcker M (2002) Age of the two-mica granite from the Strzegom-Sobótka Massif: new data from U/Pb monazite and xenotime study. Mineral Soc Pol Spec Pap 20:211–213Google Scholar
  88. Turniak K, Tichomirowa M, Bombach K (2005) Zircon Pb-evaporation ages of granitoids from the Strzegom-Sobótka Massif (SW Poland). Mineral Soc Pol Spec Pap 25:241–245Google Scholar
  89. Turniak K, Halas S, Wójtowicz A (2007) New K–Ar cooling ages of granitoids from the Strzegom-Sobótka Massif, SW Poland. Geochronometria 27:5–9CrossRefGoogle Scholar
  90. Ulrych J, Fediuk F, Lang M, Martinec P (2004) Late paleozoic volcanic rocks of the intra-Sudetic Basin, Bohemian Massif: petrological and geochemical characteristics. Chem Erde-Geochem 64(2):127–153CrossRefGoogle Scholar
  91. Zachovalová K, Leichmann J, Švancara J (2002) Žulová Batolith: a post-orogenic, fractionated ilmenite—allanite I-type granite. J Czech Geol Soc 47(1–2):35–44Google Scholar
  92. Zhou Y, Bohor BF, Ren Y (2000) Trace element geochemistry of altered volcanic ash layers (tonsteins) in Late Permian coal-bearing formations of eastern Yunnan and western Guizhou Provinces, China. Int J Coal Geol 44(3–4):305–324CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jakub Jirásek
    • 1
  • Lada Hýlová
    • 2
  • Martin Sivek
    • 1
  • Janusz Jureczka
    • 3
  • Karel Martínek
    • 4
  • Ivana Sýkorová
    • 5
  • Mark Schmitz
    • 6
  1. 1.Faculty of Mining and GeologyVŠB - Technical University of OstravaOstrava, PorubaCzech Republic
  2. 2.Faculty of SciencePalacký UniversityOlomoucCzech Republic
  3. 3.Upper Silesian BranchPolish Geological InstituteSosnowiecPoland
  4. 4.Faculty of ScienceCharles University in PraguePraha 2Czech Republic
  5. 5.Academy of Sciences of the Czech RepublicInstitute of Rock Structure and MechanicsPraha 8Czech Republic
  6. 6.Department of GeosciencesBoise State UniversityBoiseUSA

Personalised recommendations