Advertisement

International Journal of Earth Sciences

, Volume 102, Issue 4, pp 1071–1090 | Cite as

Kinematic analysis and analogue modelling of the Passeier- and Jaufen faults: implications for crustal indentation in the Eastern Alps

  • Stefan LuthEmail author
  • Ernst Willingshofer
  • Marten ter Borgh
  • Dimitrios Sokoutis
  • Jozua van Otterloo
  • Arno Versteeg
Original Paper

Abstract

Crustal deformation in front of an indenter is often affected by the indenter’s geometry, rheology, and motion path. In this context, the kinematics of the Jaufen- and Passeier faults have been studied by carrying out paleostress analysis in combination with crustal-scale analogue modelling to infer (1) their relationship during indentation of the Adriatic plate and (2) their sensitivity in terms of fault kinematics to the geometry and motion path of Adria. The field study reveals mylonites along the Jaufen fault, which formed under lower greenschist facies conditions and is associated with top-to-the-west/northwest shear with a northern block down component. In addition, a brittle reactivation of the Jaufen shear zone under NNW–SSE to NW–SE compressional and ENE–WSW tensional stress conditions was deduced from paleostress analysis. The inferred shortening direction is consistent with fission track ages portraying Neogene exhumation of the Meran-Mauls basement south of the fault. Along the Passeier fault, deformation was only brittle to semi-ductile and paleostress tensors record that the fault was subjected to E–W extension along its northern segment varying into NW–SE compression and sinistral transpression along its southern segment. In the performed analogue experiments, a rigid, triangular shaped indenter was pushed into a sand pile resulting in the formation of a Passeier-like fault sprouting from the indenter’s tip. These kinds of north-trending tip faults formed in all experiments with shortening directions towards the NW, N, or NE. Consequently, we argue that the formation of the Passeier fault strongly corresponds to the outline of the Adriatic indenter and was only little affected by the indenter’s motion path due to induced strain partitioning in front of the different indenter segments. The associated fault kinematics along the Passeier fault including both E–W extension and NNW to NW shortening, however, is most consistent with a northward advancing Adriatic indenter.

Keywords

Alps Orogeny Analogue modelling Geodynamics Structural geology Indentation tectonics Paleostress analysis 

Notes

Acknowledgments

We appreciate the effort carried out by the reviewers Hannah Pomella and anonymous reviewer whose suggestions helped to improve the quality of the manuscript. The analogue modelling experiments were carried out in the Tectonic laboratory (TecLab) of the Netherlands Research Centre for Integrated Solid Earth Science (ISES). Joyful discussions on analogue modelling and PIV analysis with Andrea Vondrak, Karen Leever, Inge van Gelder, Mélody Phillipon, and Javier Fernández Lozano contributed to the outcome of this study. We also want to thank the Augschelle family for their hospitality during our fieldtrips in South Tirol. This research was funded by the Netherlands Organization for Scientific Research (NWO).

Supplementary material

531_2012_846_MOESM1_ESM.tif (6.3 mb)
Online Resource 1 a) Figure of the studied area showing the localities of measurements. (TIFF 6429 kb)
531_2012_846_MOESM2_ESM.lyr (12 kb)
Online Resource 1 b) ArcGIS Layer file containing the waypoints collected in 2007. (LYR 11 kb)
531_2012_846_MOESM3_ESM.lyr (14 kb)
Online Resource 1 c) ArcGis Layer file containing the waypoints collected in 2008. (LYR 13 kb)
531_2012_846_MOESM4_ESM.xls (353 kb)
Online Resource 2 Table displaying all the collected measurements of ductile structures. (XLS 353 kb)
531_2012_846_MOESM5_ESM.xls (163 kb)
Online Resource 3 Table displaying all the collected measurements of brittle structures. (XLS 163 kb)

Online Resource 4 Animation of experiment 1-A displaying top view deformation with ongoing shortening. (MPG 5583 kb)

Online Resource 5 Animation of experiment 1-B displaying top view deformation with ongoing shortening. (MPG 2689 kb)

Online Resource 6 Animation of experiment 1-C displaying top view deformation with ongoing shortening. (MPG 2727 kb)

Online Resource 7 Animation of experiment 1-D displaying top view deformation with ongoing shortening. (MPG 5110 kb)

Online Resource 8 Animation of experiment 2-A displaying top view deformation with ongoing shortening. (MPG 5240 kb)

Online Resource 9 Animation of experiment 2-B displaying top view deformation with ongoing shortening. (MPG 12691 kb)

References

  1. Angelier J, Mechler P (1977) Sur une méthode graphique de recherche des contraintes principales également utilisable en tectonique et en séismologie: la méthode des dièdres droits. Bulletin de la Société géologique de FranceGoogle Scholar
  2. Behrmann JH (1988) Crustal-scale extension in a convergent orogen: the Sterzing-Steinach mylonite zone in the Eastern Alps. Geodin Acta 2(2):63–73Google Scholar
  3. Bertotti G, Picotti V, Bernoulli D, Castellarin A (1993) From rifting to drifting: tectonic evolution of the South-Alpine upper crust from the Triassic to the Early Cretaceous. Sed Geol 86(1–2):53–76CrossRefGoogle Scholar
  4. Bigi G, Castellarin A, Coli M, Del Piaz G, Sartori R, Scandone P, Vai G, Cosentino D, Parotto M (1990–1992) Structural Model of Italy, scale 1:500,000 sheet 1–3. Consiglio Nazionale delle Ricerche, Progetto Finalizzato Geodinamica, SELCA FirenzeGoogle Scholar
  5. Caporali A, Braitenberg C, Massironi M (2005) Geodetic and hydrological aspects of the Merano Earthquake of July 17, 2001. J Geodyn 39:317–336CrossRefGoogle Scholar
  6. Castellarin A, Cantelli L, Fesce J, Mercier V, Picotti G, Pini G, Prosser G, Selli L (1992) Alpine compressional tectonics in the Southern Alps. Relationships with the N-S Apennines. Annales Tectonicae 6:62–94Google Scholar
  7. Castellarin A, Nicolich R, Fantoni R, Cantelli L, Sella M, Selli L (2006) Structure of the lithosphere beneath the Eastern Alps (southern sector of the TRANSALP transect). Tectonophysics 414(1–4):259–282. doi: 10.1016/j.tecto.2005.10.013 CrossRefGoogle Scholar
  8. Del Moro A, Puxeddu M, Radicatie de Brozolo F, Villa I (1982) Rb–Sr and K–Ar ages on minerals at temperatures of 300–400 °C from deep wells in de Larderello geothermal field (Italy). Contrib Miner Petrol 81:340–349CrossRefGoogle Scholar
  9. Delvaux D, Sperner B (2003) New aspects of tectonic stress inversion with reference to the TENSOR program. Geol Soc Lond Spec Publ 212(1):75CrossRefGoogle Scholar
  10. Egger H, Krenmayer H, Mandl G, Matura A, Nowotny A, Pascher G, Pestal G, Pistotnik J, Rockenschaub M, Schnabel W (1999) Geologische Übersichtskarte der Republik Österreich 1:1 500 000. Geologische Bundesanstalt Google Scholar
  11. Frisch W (1979) Tectonic progradation and plate tectonic evolution of the Alps. Tectonophysics 60(3–4):121–139CrossRefGoogle Scholar
  12. Frisch W, Kuhlemann J, Dunkl I, Brügel A (1998) Palinspastic reconstruction and topographic evolution of the Eastern Alps during late Tertiary tectonic extrusion. Tectonophysics 297:1–15CrossRefGoogle Scholar
  13. Fügenschuh B (1995) Thermal and kinematic history of the Brenner area (Eastern Alps, Tyrol). ETH, ZürichGoogle Scholar
  14. Fügenschuh B, Seward D, Mancktelow N (1997) Exhumation in a convergent orogen: the western Tauern window. Terra Nova 9:213–217CrossRefGoogle Scholar
  15. Handy MR, Babist J, Wagner R, Rosenberg C, Konrad M (2005) Decoupling and its relation to strain partitioning in continental lithosphere: insight from the Periadriatic fault system (European Alps). Geol Soc Spec Publ 243(1):249–276. doi: 10.1144/gsl.sp.2005.243.01.17 CrossRefGoogle Scholar
  16. Lammerer B, Weger M (1998) Footwall uplift in an orogenic wedge: the Tauern Window in the Eastern Alps of Europe. Tectonophysics 285:213–230CrossRefGoogle Scholar
  17. Laubscher H (1973) Alpen und Plattentektonik. Das Problem der Bewegungsdiffusion an kompressiven Plattengrenzen. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften ZDGG 124:295–308Google Scholar
  18. Laubscher H (1988) Material balance in Alpine orogeny. Geol Soc Am Bull 100(9):1313–1328CrossRefGoogle Scholar
  19. Laubscher H (1996) Shallow and deep rotations in the Miocene Alps. Tectonics 15(5):1022–1035CrossRefGoogle Scholar
  20. Laubscher H (2010) Jura, Alps and the boundary of the Adria subplate. Tectonophysics 483(3–4):223–239CrossRefGoogle Scholar
  21. Leever KA, Gabrielsen RH, Sokoutis D, Willingshofer E (2011) The effect of convergence angle on the kinematic evolution of strain partitioning in transpressional brittle wedges: insight from analogue modeling and high-resolution digital image analysis. Tectonics. doi: 10.1029/2010TC002823
  22. Lippitsch R, Kissling E, Ansorge J (2003) Upper mantle structure beneath the Alpine orogen from high-resolution teleseismic tomography. J Geophys Res 108:1–15. doi: 10.1029/2002JB002016 CrossRefGoogle Scholar
  23. Luth SW, Willingshofer E (2008) Mapping of the post-collisional cooling history of the Eastern Alps. Swiss J Geosci 101:207–223CrossRefGoogle Scholar
  24. Massironi M, Zampieri D, Caporali A (2006) Miocene to present major fault linkages through the Adriatic indenter and the Austroalpine–Penninic collisional wedge (Alps of NE Italy). Geol Soc Lond Spec Publ 262(1):245CrossRefGoogle Scholar
  25. Molnar P, Tapponnier P (1975) Cenozoic tectonics of Asia: effects of a continental collision. Science 189(4201):419–426CrossRefGoogle Scholar
  26. Müller W, Prosser G, Mancktelow NS, Villa IM, Kelley SP, Viola G, Oberli F (2001) Geochronological constraints on the evolution of the Periadriatic fault system (Alps). Int J Earth Sci 90:623–653CrossRefGoogle Scholar
  27. Picotti V, Prosser G, Castellarin A (1995) Structures and kinematics of the Giudicarie ± Val Trompia fold and thrust belt (Central Southern Alps, northern Italy). Mem Sci Geol 47:95–109Google Scholar
  28. Pomella H (2010) The Cenozoic evolution of the Giudicarie fault system (Eastern/Southern Alps, northern Italy). A geochronological, structural and paleomagnetic study. University of Innsbruck, InnsbruckGoogle Scholar
  29. Pomella H, Klötzli U, Scholger R, Stipp M, Fügenschuh B (2010) The Northern Giudicarie and the Meran-Mauls fault (Alps, Northern Italy) in the light of new paleomagnetic and geochronological data from boudinaged Eo-/Oligocene tonalites. Int J Earth Sci 1–24Google Scholar
  30. Prosser G (2000) The development of the North Giudicarie fault zone (Insubric line, Northern Italy). J Geodyn 30(1–2):229–250CrossRefGoogle Scholar
  31. Ratschbacher L, Frisch W, Linzer H, Merle O (1991) Lateral extrusion in the eastern Alps, part2: structural analysis. Tectonics 10:257–271CrossRefGoogle Scholar
  32. Robl J, Stüwe K (2005) Continental collision with finite indenter strength: 2. European Eastern Alps. Tectonics 24(4)Google Scholar
  33. Roeder D (1989) South-Alpine thrusting and trans-Alpine convergence. Geol Soc Lond Spec Publ 45(1):211CrossRefGoogle Scholar
  34. Rosenberg C, Garcia S (2011) Estimating displacement along the Brenner Fault and orogen-parallel extension in the Eastern Alps. Int J Earth Sci 100(5):1129–1145CrossRefGoogle Scholar
  35. Rosenberg C, Brun J-P, Cagnard F, Gapais D (2007) Oblique indentation in the Eastern Alps: insights from laboratory experiments. Tectonics 26(2)Google Scholar
  36. Schmid SM, Fügenschuh B, Kissling E, Schuster R (2004) Tectonic map and overall architecture of the Alpine orogen. Swiss J Geosci 97(1):93–117Google Scholar
  37. Schönborn G (1999) Balancing cross sections with kinematic constraints: the Dolomites (northern Italy). Tectonics 18(3):527–545. doi: 10.1029/1998tc900018 CrossRefGoogle Scholar
  38. Selverstone J (1988) Evidence for east-west crustal extension in the eastern Alps: implications for the unroofing history of the Tauern Window. Tectonics 7:87–105CrossRefGoogle Scholar
  39. Sölva H, Grasemann B, Thöni M, Thiede R, Habler G (2005) The Schneeberg Normal Fault Zone: normal faulting associated with Cretaceous SE-directed extrusion in the Eastern Alps (Italy/Austria). Tectonophysics 401(3–4):143–166CrossRefGoogle Scholar
  40. Spiess R (1995) The Passeier-Jaufen Line: a tectonic boundary between Variscan and eo-Alpine Meran-Mauls basement. Schweiz Mineral Petrogr Mitt 75:413–425Google Scholar
  41. Spiess R, Marini M, Frank W, Marcolongo B, Cavazzini G (2001) Schweizerische mineralogische und petrographische Mitteilungen, vol 81, pp 197–212 Google Scholar
  42. Staufenberg H (1987) Apatite fission-track evidence for postmetamorphic uplift and cooling history of the Eastern Tauern window and the surrounding Austroalpine (Central Eastern Alps, Austria). Geologisch Jahrbuch 130:571–586Google Scholar
  43. Steenken A, Siegesmund S, Heinrichs T, Fugenschuh B (2002) Cooling and exhumation of the Rieserferner Pluton (Eastern Alps, Italy/Austria). Int J Earth Sci 91:799–817CrossRefGoogle Scholar
  44. Stipp M, Fügenschuh B, Gromet LP, Stünitz H, Schmid SM (2004) Contemporaneous plutonism and strike-slip faulting: a case study from the Tonale fault zone north of the Adamello pluton (Italian Alps). Tectonics 23(3):TC3004. doi: 10.1029/2003TC001515
  45. Sveen JK (2004) An introduction to MatPIV v. 1.6. 1. Mech Appl Math 2Google Scholar
  46. Tapponnier P, Molnar P (1976) Slip-line field theory and large-scale continental tectonics. Nature 264(5584):319–324CrossRefGoogle Scholar
  47. Trümpy R (1975) Penninic-Austroalpine boundary in the Swiss Alps: a presumed former continental margin and its problems. Am J Sci 275:209–238Google Scholar
  48. Ustaszewski K, Schmid SM, Fügenschuh B, Tischler M, Kissling E, Spakman W (2008) A map-view restoration of the Alpine-Carpathian-Dinaridic system for the Early Miocene. Swiss J Geosci 101:273–294CrossRefGoogle Scholar
  49. Viola G, Mancktelow N, Seward D (2001) Late Oligocene-Neogene evolution of Europe-Adria collision: new structural and geochronological evidence from the Giudicarie fault system (Italian Eastern Alps). Tectonics 20:999–1020CrossRefGoogle Scholar
  50. Viola G, Mancktelow NS, Seward D, Meier A, Martin S (2003) The Pejo fault system: an example of multiple tectonic activity in the Italian Eastern Alps. Bull Geol Soc Am 115(5):515–532CrossRefGoogle Scholar
  51. Viola G, Odonne F, Mancktelow NS (2004) Analogue modelling of reverse fault reactivation in strike–slip and transpressive regimes: application to the Giudicarie fault system, Italian Eastern Alps. J Struct Geol 26(3):401–418CrossRefGoogle Scholar
  52. Willingshofer E, Cloetingh S (2003) Present-day lithospheric strength of the Eastern Alps and its relationship to neotectonics. Tectonics 22(6):1075CrossRefGoogle Scholar
  53. Zampieri D (1995) Tertiary extension in the southern Trento Platform, Southern Alps, Italy. Tectonics 14. doi: 10.1029/94tc03093
  54. Zattin M, Cuman A, Fantoni R, Martin S, Scotti P, Stefani C (2006) From Middle-Jurassic heating to Neogen cooling: The thermochronological evolution of the Southern Alps. Tectonophysics 414:191–202CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stefan Luth
    • 1
    • 5
    Email author
  • Ernst Willingshofer
    • 2
  • Marten ter Borgh
    • 1
    • 2
  • Dimitrios Sokoutis
    • 2
    • 3
  • Jozua van Otterloo
    • 4
    • 1
  • Arno Versteeg
    • 1
  1. 1.Department of Earth Sciences, Faculty of Earth and Life SciencesVU University AmsterdamAmsterdamThe Netherlands
  2. 2.Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands
  3. 3.Department of GeosciencesUniversity of OsloOsloNorway
  4. 4.School of GeosciencesMonash UniversityMelbourneAustralia
  5. 5.Swedish Geological Survey (SGU)UppsalaSweden

Personalised recommendations