Advertisement

International Journal of Earth Sciences

, Volume 102, Issue 4, pp 1111–1129 | Cite as

Paleoenvironmental conditions and strontium isotope stratigraphy in the Paleogene Gafsa Basin (Tunisia) deduced from geochemical analyses of phosphatic fossils

  • László Kocsis
  • Anouar Ounis
  • Fredj Chaabani
  • Neili Mohamed Salah
Original Paper

Abstract

Fossil shark teeth and coprolites from three major phosphorite occurrences in the Gafsa Basin (southwestern Tunisia) were investigated for their geochemical compositions to improve local stratigraphy and to better assess paleoenvironmental conditions. 87Sr/86Sr isotope ratios of shark teeth from the Early Maastrichtian El Haria Formation and from the Early Eocene Métlaoui s.s. Formation yielded Sr isotope ages of 68 ± 1 and 47.9 ± 1.3 Ma, respectively, which accord with the expected stratigraphic positions of these sediments. Conversely, shark teeth from the Paleocene–Eocene Chouabine Formation have large variation in Sr isotope ratios even within individual layers. After statistical treatment and then elimination of certain outlier samples, three age-models are proposed and discussed. The most reasonable solution includes three subsequent Sr ages of 61.8 ± 2.2 Ma, 57.2 ± 1.8 and 54.6 ± 1.6 for layer IX, layers VIII–V and layers IV–0, respectively. Three scenarios are discussed for explanation of the presence of the outliers: (1) diagenesis, (2) re-working and (3) locally controlled seawater Sr isotope ratio. The most plausible account for the higher 87Sr/86Sr ratios relative to the global ocean in some fossils is enhanced intrabasinal re-working due to low sea level. Conversely, the sample with lower 87Sr/86Sr than the global seawater may link to diagenesis or to seawater influenced by weathering of Late Cretaceous marine carbonates, which latter is supported by model calculation as well. The εNd values of these fossils are very similar to those reported for Paleogene and Late Cretaceous Tethyan seawater and are compatible with the above interpretations. The relatively low oxygen isotope values in shark teeth from the topmost phosphate bed of the Chouabine Formation, together with the Sr isotope results, point toward recovering better connections with the open sea. These δ18O data reflect elevated ambient temperature, which may link to the Early Eocene Climatic Optimum.

Keywords

Paleocene–Eocene Strontium isotope stratigraphy Oxygen isotope Phosphate Shark teeth Tunisia 

Notes

Acknowledgments

The authors are grateful for all the support and help they received from the Compagnie des Phosphates de Gafsa, Tunisia for conducting this research with productive fieldwork. We thank M. Cooper for his assistance with TIMS analyses. L. K. was generously funded by the Swiss National Science Foundation (SNF PBLA2-119669 and SNF PZ00P2_126407) and NERC (NE/C00390X/1) projects. Constructive comments by Dr. J. A. Chamberlain and two anonymous reviewers are very much appreciated.

References

  1. Abdallah H, Memmi L, Damotte R, Rat P, Magniez-Jannin F (1995) Le Crétacé de la chaîne nord des Chotts (Tunisie du centre sud): biostratigraphie et comparaison avec les régions voisines. Cretac Res 16:487–538CrossRefGoogle Scholar
  2. Abdallah H, Sassi S, Meister C, Souissi R (2000) Stratigraphie séquentielle et paléogéographie à la limite Cénomanien-Turonien dans la région de Gafsa-Chotts (Tunisie centrale). Cretac Res 21:35–106CrossRefGoogle Scholar
  3. Adatte T, Keller G, Stinnesbeck W (2002) Late Cretaceous to early Paleocene climate and sea-level fluctuations: the Tunisian record. Palaeogeogr Palaeoclimatol Palaeoecol 178:165–196CrossRefGoogle Scholar
  4. Al-Aasm IS, Abdallah H (2006) The origin of dolomite associated with salt diapirs in central Tunisia: preliminary investigations of field relationships and geochemistry. J Geochem Explor 89:5–9CrossRefGoogle Scholar
  5. Arsouze T, Dutay J-C, Lacan F, Jeandel C (2009) Reconstructing the Nd oceanic cycle using a coupled dynamical—biogeochemical model. Biogeosciences 6:2829–2846CrossRefGoogle Scholar
  6. Aubry MP, Berggren WA, Stott L, Sinha A (1996) The upper-Paleocene-lower Eocene stratigraphic record and the Paleocene-Eocene boundary carbon isotope excursion: implications for geochronology. In: Knox RWO’B, Corfield RM, Dunay RE (eds) Correlation of the early Paleogene in Northwest Europe, vol 101. Geol Soc London Spec Publ, pp 353–380Google Scholar
  7. Bains S, Corfield RM, Norris G (1999) Mechanisms of climate warming at the end of the Paleocene. Science 285:724–727CrossRefGoogle Scholar
  8. Barrat JA, Taylor RN, André JP, Nesbitt RW, Lécuyer C (2000) Strontium isotopes in biogenic phosphates from a neogen marine formation: implications for palaeoseawater studies. Chem Geol 168:325–332CrossRefGoogle Scholar
  9. Becker MA, Seidemann DE, Chamberlain JA Jr, Buhl D, Slattery W (2008) Strontium isotopic signatures in the enameloid and dentine of upper Cretaceous shark teeth from western Alabama. Paleoecologic and geochronologic implications. Palaeogeogr Palaeoclimatol Palaeoecol 264:188–194CrossRefGoogle Scholar
  10. Béji-Sassi A (1999) Les phosphates dans les bassins paléogènes de la partie méridionale de l’Axe Nord-Sud (Tunisie). Thèse Doct. Etat, Univ. Tunis II, TunisieGoogle Scholar
  11. Belayouni H (1983) Etude des la matière organique dans la série phosphatée du bassin de Gafsa-Métlaoui (Tunisie): application à la compréhension des mécanismes de la phosphatogenèse. Thèse Doct. ès-Sci. Univ. Orléans, FranceGoogle Scholar
  12. Ben Abdessalam N (1978) Etude palynologique et micro-paléontologique de la série phosphatée du bassin de Gafsa-Métlaoui (Tunisie). Application à la compréhension des mécanismes de la phosphatogenèse. Thèse 3ème cycle, Univ. Paris VI, FranceGoogle Scholar
  13. Ben Hassen A, Trichet J, Disnar J-R, Belayouni H (2009) Données nouvelles sur le contenu organique des dépôts phosphatés du gisement de Ras-Draâ (Tunisie). C R Geosci 341:319–326CrossRefGoogle Scholar
  14. Ben Hassen A, Trichet J, Disnar J-R, Belayouni H (2010) Pétrographie et géochimie comparées des pellets phosphatés et de leur gangue dans le gisement phosphaté de Ras-Draâ (Tunisie). Implications sur la genèse des pellets phosphatés. Swiss J Geosci 103:457–473CrossRefGoogle Scholar
  15. Bolle PM, Adatte T, Keller G, Von Salis K, Burns S (1999) The Paleocene-Eocene transition in the southern Tethys (Tunisia): climatic and environmental fluctuations. Bull Soc Géol Fr 170:661–680Google Scholar
  16. Bouaziz S, Barrier E, Soussi M, Turki MM, Zouari H (2002) Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record. Tectonophysics 357:227–253CrossRefGoogle Scholar
  17. Bruland KW, Lohan MC (2003) Controls of trace metals in Seawater. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 6. Elsevier Ltd, CA, USA, pp 23–47Google Scholar
  18. Burke WH, Denison RE, Hetherington EA, Koepnick RB, Nelson HF, Otto JB (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10:516–519CrossRefGoogle Scholar
  19. Burollet PF (1956) Contribution à l’étude stratigraphique de la Tunisie Centrale, vol 18. Annales des Mines et de la Géologie, Tunis, p 352Google Scholar
  20. Burollet PF, Oudin JL (1980) Paléocène et Eocène en Tunisie, pétroles et phosphates. Géologie comparée des gisements de phosphates et de pétroles. BRGM 24:205–216Google Scholar
  21. Cayeux L (1941) Les phosphates de chaux sédimentaires de France (France métropolitaine et d’outre-mer). Imprimerie nationale, ParisGoogle Scholar
  22. Chaabani F (1995) Dynamique de la partie orientale du bassin de Gafsa au Crétacé et au Paléogène: Etude minéralogique et géochimique de la série phosphatée Eocène, Tunisie méridionale. Thèse Doc. Etat. Univ. Tunis II. TunisieGoogle Scholar
  23. Chaabani F, Ben Abdelkader O (1992) Nouvelles données stratigraphiques sur le Paléocène du Bassin de Gafsa: Conséquence paléogéographique. Note Serv Géol De Tunisie 59:77–87Google Scholar
  24. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468CrossRefGoogle Scholar
  25. Dettman DL, Kohn MJ, Quade J, Ryerson FJ, Ojha TP, Hamidullah S (2001) Seasonal stable isotope evidence for a strong Asian monsoon throughout the past 10.7 m.y. Geology 29:31–34CrossRefGoogle Scholar
  26. Elderfield H, Gieskes JM (1982) Sr isotopes in interstitial waters of marine sediments from Deep Sea Drilling Project cores. Nature 300:493–497CrossRefGoogle Scholar
  27. Elderfield H, Pagett R (1986) Rare earth elements in ichthyoliths: variations with redox conditions and depositional environment. Sci Total Environ 49:175–197CrossRefGoogle Scholar
  28. Flecker R, Ellam R (2006) Identifying Late Miocene episodes of connection and isolation in the Mediterranean-Paratethyan realm using Sr isotopes. Sediment Geol 188–189,189–203CrossRefGoogle Scholar
  29. Fournier D (1980) Phosphates et pétroles en Tunisie. Géologie comparée des gisements de phosphates et de pétroles. BRGM 24:157–166Google Scholar
  30. Frank M (2002) Radiogenic isotopes. Tracers of past ocean circulation and erosional input. Rev Geophys 40:1–38CrossRefGoogle Scholar
  31. Galfati I, Sassi AB, Zaier A, Bouchardon JL, Bilal E, Joron JL, Sassi S (2010) Geochemistry and mineralogy of Paleocene-Eocene Oum El Khecheb phosphorites (Gafsa-Metlaoui Basin) Tunisia. Geochem J 44:189–210CrossRefGoogle Scholar
  32. Goldstein SJ, Jacobsen SB (1987) The Nd and Sr isotopic systematics of river-water dissolved material: implication for the sources of Nd and Sr in seawater. Chem Geol 66:245–272Google Scholar
  33. Grandjean P, Cappetta H, Michard A, Albarède F (1987) The assessment of REE patterns and 143Nd/144Nd ratios in fish remains. Earth Planet Sci Lett 84:181–196CrossRefGoogle Scholar
  34. Henchiri M (2007) Sedimentation, depositional environment and diagenesis of Eocene biosiliceous deposits in Gafsa basin (southern Tunisia). J Afr Earth Sci 49:187–200CrossRefGoogle Scholar
  35. Hodell DL, Mueller PA, Garrido JR (1991) Variations in the strontium isotopic composition of seawater during the Neogene. Geology 19:24–27CrossRefGoogle Scholar
  36. Hodell DA, Kamenov GD, Hathorne EC, Zachos JC, Röhl U, Westerhold T (2007) Variations in the strontium isotope composition of seawater during the Paleocene and early Eocene from ODP Leg 208 (Walvis Ridge). Geochem Geophys Geosyst 8:Q09001. doi: 10.1029/2007GC001607 CrossRefGoogle Scholar
  37. Huh Y, Tsoi MY, Zaitsev A, Edmond JM (1998) The fluvial geochemistry of the rivers of Eastern Siberia: I. Tributaries of the Lena River draining the sedimentary platform of the Siberian Craton. Geochim Cosmochim Acta 62:1657–1676CrossRefGoogle Scholar
  38. Ingram BL (1995) High-resolution dating of deep-sea clays using Sr isotopes in fossil fish teeth. Earth Planet Sci Lett 134:545–555CrossRefGoogle Scholar
  39. Jacobsen SB, Wasserburg GJ (1980) Sm–Nd isotopic evolution of chondrites. Earth Planet Sci Lett 50:139–155CrossRefGoogle Scholar
  40. Jallouli C, Chikhaoui M, Braham A, Turki MM, Mickus K, Benassi R (2005) Evidence for Triassic salt domes in the Tunisian Atlas from gravity and geological data. Tectonophysics 396:209–225Google Scholar
  41. Keller G, Adatte T, Stinnesbeck W, Stoben D, Kramar U, Berner Z, Li L, von Salis Perch-Nielsen K (1998) The Cretaceous-Tertiary transition on the shallow Saharan platform of Southern Tunisia. Geobios 30:951–975CrossRefGoogle Scholar
  42. Kennett JP, Stott LD (1991) Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature 353:225–229CrossRefGoogle Scholar
  43. Koch PL, Tuross N, Fogel ML (1997) The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. J Archaeol Sci 24:417–429CrossRefGoogle Scholar
  44. Kocsis L, Vennemann TW, Fontignie D (2007) Migration of sharks into freshwater systems during the Miocene and implications for Alpine paleoelevation. Geology 35:451–454CrossRefGoogle Scholar
  45. Kocsis L, Vennemann TW, Hegner E, Fontignie D, Tütken T (2009) Constraints on Miocene oceanography and climate in the Western and Central Paratethys: O-, Sr-, and Nd-isotope compositions of marine fish and mammal remains. Palaeogeogr Palaeoclimatol Palaeoecol 271:117–129CrossRefGoogle Scholar
  46. Koepnick RB, Burke WH, Denison RE, Hetherington EA, Nelson HF, Otto JB, Waite LE (1985) Construction of the seawater curve for the Cenozoic and Cretaceous: supporting data. Chem Geol 58:55–81CrossRefGoogle Scholar
  47. Kohn JM, Cerling ET (2002) Stable isotope compositions of biological apatite. In: Kohn JM, Rakovan J, Hughes JM (eds) Review in mineralogy and geochemistry, vol 48. Mineralogical Society of America, Washington, pp 455–488Google Scholar
  48. Kolodny Y, Luz B, Navon O (1983) Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite-rechecking the rules of the game. Earth Planet Sci Lett 64:398–404CrossRefGoogle Scholar
  49. Lazzez M, Zouaghi T, Ben Youssef M (2008) Austrian phase on the northern African margin inferred from sequence stratigraphy and sedimentary records in southern Tunisia (Chotts and Djeffara areas). CR Geosci 340:543–552CrossRefGoogle Scholar
  50. Lear HC, Elderfield P, Wilson PA (2000) Cenozoic Deep-Sea Temperatures and Global Ice Volumes from Mg/Ca in Benthic Foraminiferal Calcite. Science 287:269–272CrossRefGoogle Scholar
  51. Lécuyer C, Reynard B, Grandjean P (2004) Rare earth element evolution of Phanerozoic seawater recorded in biogenic apatites. Chem Geol 204:63–102CrossRefGoogle Scholar
  52. Longinelli A, Nuti S (1973) Oxygen isotope measurements from fish teeth and bones. Earth Planet Sci Lett 20:373–376CrossRefGoogle Scholar
  53. Mabrouk A, Belayouni H, Jarvis I, Moody RTJ (2006) Strontium, δ18O and δ13C as palaeo-indicators of unconformities: case of the Aleg and Abiod formations (Upper Cretaceous) in the Miskar Field, southeastern Tunisia. Geochem J 40:405–424CrossRefGoogle Scholar
  54. Martin EE, Haley BA (2000) Fossil fish teeth as proxies for seawater Sr and Nd isotopes. Geochim Cosmochim Acta 64:835–847CrossRefGoogle Scholar
  55. Martin EE, Scher HD (2004) Preservation of seawater Sr and Nd isotopes in fossil fish teeth: bad news and good new. Earth Planet Sci Lett 220:25–39CrossRefGoogle Scholar
  56. McArthur JM, Howarth RJ (2004) Strontium isotope stratigraphy. In: Gradstein et al (eds) A geologic time scale. Cambridge University Press, Cambridge, pp 96–105Google Scholar
  57. McArthur JM, Howarth RJ, Bailey TR (2001) Strontium isotope stratigraphy: LOWESS version 3: best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. J Geol 109:155–170CrossRefGoogle Scholar
  58. Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME, Sugarman PJ, Cramer BS, Christie-Blick N, Pekar SF (2005) The Phanerozoic record of global sea-level change. Science 312:1293–1298CrossRefGoogle Scholar
  59. O’Neil JR, Roe LJ, Reinhard E, Blake RE (1994) A rapid and precise method of oxygen isotope analysis of biogenic phosphate. Isr J Earth-Sci 43:203–212Google Scholar
  60. Ounis A (2011) Apport de la géochimie des Terres Rares et des isotopes pour la compréhension des mécanismes de la phosphatogenèse: exemple de la partie occidentale du bassin de Gafsa-Métlaoui. PhD Thesis, University El Manar, Tunis, p 198Google Scholar
  61. Ounis A, Kocsis L, Chaabani F, Pfeifer H-R (2008) Rare earth element and stable isotope geochemistry (δ13C and δ18O) of phosphorite deposits in the Gafsa Basin, Tunisia. Palaeogeogr Palaeoclimatol Palaeoecol 268:1–18CrossRefGoogle Scholar
  62. Palmer MR, Edmond JM (1989) The strontium budget of the modern ocean. Earth Planet Sci Lett 92:11–26CrossRefGoogle Scholar
  63. Palmer MR, Edmond JM (1992) Controls over the strontium isotope composition of river water. Geochim Cosmochim Acta 56:2099–2111CrossRefGoogle Scholar
  64. Palmer MR, Elderfield H (1985) Variations in the Nd isotopic composition of foraminifera from Atlantic Ocean sediments. Earth Planet Sci Lett 73:299–305CrossRefGoogle Scholar
  65. Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–699CrossRefGoogle Scholar
  66. Pervinquière L (1903) Étude géologique de la Tunisie centrale. FR de Rudeval, Paris, pp 359Google Scholar
  67. Piepgras DJ, Wasserburg GJ (1980) Neodymium isotopic variations in seawater. Earth Planet Sci Lett 50:128–138CrossRefGoogle Scholar
  68. Prokoph A, Shields GA, Veizer J (2008) Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth Sci Rev 87:113–133CrossRefGoogle Scholar
  69. Pucéat E, Lécuyer C, Reisberg L (2005) Neodymium isotope evolution of NW Tethyan upper ocean waters throughout the Cretaceous. Earth Planet Sci Lett 236:705–720CrossRefGoogle Scholar
  70. Pucéat E, Joachimski MM, Bouilloux A, Monna F, Bonin A, Motreuil S, Morinière P, Hénard S, Mourin J, Dera G, Quesne D (2010) Revised phosphate–water fractionation equation reassessing paleotemperatures derived from biogenic apatite. Earth Planet Sci Lett 298:135–142CrossRefGoogle Scholar
  71. Ragaya K, Laatar S, Chouachi A (1991) Carte géologique de Métlaoui au 1/100000. Office de Cartographie et Topographie, TunisGoogle Scholar
  72. Sassi S (1974) La sédimentation phosphatée au Paléocène dans le Sud et le Centre Ouest de la Tunisie. Thèse Doct. ès-Sci. Univ. Paris-Sud Orsay, FranceGoogle Scholar
  73. Scher HD, Martin EE (2006) Timing and climatic consequences of the opening of Drake Passage. Science 312:428–430CrossRefGoogle Scholar
  74. Schmitz B, Ingram LS, Dockery TD, Aberg G (1997) Testing 87Sr/86Sr as a paleosalinity indicator on mixed marine, brackish-water and terrestrial vertebrate skeletal apatite in late Paleocene-early Eocene near-coastal sediments, Mississippi. Chem Geol 140:275–287CrossRefGoogle Scholar
  75. Sluijs A, Schouten S, Pagani M, Woltering M, Brinkhuis H, Sinninghe Damsté JS, Dickens GR, Huber M, Reichart G-J, Stein R, Matthiessen J, Lourens LJ, Pedentchouk N, Backman J, Moran K, The Expedition 302 Scientist (2006) Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature 441:610–613CrossRefGoogle Scholar
  76. Soudry D, Glenn CR, Nathan Y, Segal I, VonderHaar D (2006) Evolution of Tethyan phosphogenesis along the northern edges of the Arabian African shield during the Cretaceous Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation. Earth Sci Rev 78:27–57CrossRefGoogle Scholar
  77. Staudigel H, Doyle P, Zindler A (1985) Sr and Nd isotope systematics in fish teeth. Earth Planet Sci Lett 76:45–56CrossRefGoogle Scholar
  78. Stille P, Steinmann M, Riggs RS (1996) Nd isotope evidence for the evolution of the paleocurrents in the Atlantic and Tethys Oceans during the past 180 Ma. Earth Planet Sci Lett 144:9–19CrossRefGoogle Scholar
  79. Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T, Takahashi K, Yanagi T, Nakano T, Fujimaki H, Shinjo R, Asahara Y, Tanimizu M, Dragusanu C (2000) JNdi-1: a neodymium isotopic reference in consistency with La Jolla neodymium. Chem Geol 168:279–281CrossRefGoogle Scholar
  80. Thomas P (1885) Sur la découverte de gisements de phosphate du chaux dans le sud de la Tunisie. Comptes rendus de l’Académie des Sciences, Paris 101:1184Google Scholar
  81. Thomas DJ, Bralower TJ, Zachos JC (1999) New evidence for subtropical warming during the late Paleocene thermal maximum: stable isotopes from Deep Sea Drilling Project Site 527, Walvis Ridge. Paleoceanography 14:561–570CrossRefGoogle Scholar
  82. Thomas DJ, Bralower TJ, Jones CE (2003) Neodymium isotopic reconstruction of Late Paleocene Early Eocene thermohaline circulation. Earth Planet Sci Lett 209:309–322CrossRefGoogle Scholar
  83. Topper RPM, Flecker R, Meijer PTh, Wortel MJR (2011) A box model of the Late Miocene Mediterranean Sea: Implications from combined 87Sr/86Sr and salinity data. Paleoceanography 26:PA3223. doi: 10.1029/2010PA002063 CrossRefGoogle Scholar
  84. Trueman NC, Tuross N (2002) Trace elements in recent and fossil bone apatite. In: Kohn JM, Rakovan J, Hughes JM (eds) Review in mineralogy and geochemistry, vol 48. Mineralogical Society of America, Washington, pp 489–521Google Scholar
  85. Vance D, Burton K (1999) Neodymium isotopes in planktonic foraminifera: a record of the response of continental weathering and ocean circulation rates to climate change. Earth Planet Sci Lett 173:365–379CrossRefGoogle Scholar
  86. Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Goddéris Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88CrossRefGoogle Scholar
  87. Vennemann TW, Hegner E (1998) Oxygen, strontium and neodymium isotope composition of shark teeth as a proxy for the palaeoceanography and palaeoclimatology of the northern alpine Paratethys. Palaeogeogr Palaeoclimatol Palaeoecol 142:107–121CrossRefGoogle Scholar
  88. Vennemann TW, Fricke HC, Blake RE, O’Neil JR, Colman A (2002) Oxygen isotope analyses of phosphates: a comparison of techniques for analysis of Ag3PO4. Chem Geol 185:321–336CrossRefGoogle Scholar
  89. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar
  90. Zaïer A, Beji-Sassi A, Sassi S, Moody RTJ (1998) Basin evolution and deposition during the Early Paleocene in Tunisia. In: Macgregor DS, Moody RTJ, Clark-Lowes DD (eds) Petroleum geology of North Africa, vol 132. Geol. Soc. London Spec. Publ., pp 375–393Google Scholar
  91. Zili L (2010) Micropaléontologie et biostratigraphie des foraminifères du passage Paléocène-Eocène—Impact du réchauffement climatique global. Thèse Doct ès-Sci, Univ. Tunis El Manar, p 398Google Scholar
  92. Zouaghi T, Bédir M, Inoubli MH (2005) 2D Seismic interpretation of strike-slip faulting, salt tectonics, and Cretaceous unconformities, Atlas Mountains, central Tunisia. J Afr Earth Sc 43:464–486CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • László Kocsis
    • 1
  • Anouar Ounis
    • 2
  • Fredj Chaabani
    • 2
  • Neili Mohamed Salah
    • 3
  1. 1.UNIL-GEOPOLIS, Institute of Earth SciencesUniversité de LausanneLausanneSwitzerland
  2. 2.Laboratoire des Ressources Minérales et Environnement Faculté des Sciences de TunisUniversité de Tunis El ManarTunisTunisia
  3. 3.Direction de GéologieCompagnie des Phosphates de GafsaMétlaouiTunisia

Personalised recommendations