Advertisement

International Journal of Earth Sciences

, Volume 103, Issue 7, pp 1831–1844 | Cite as

Formation of carbonate concretions in surface sediments of two mud mounds, offshore Costa Rica: a stable isotope study

  • Vasileios MavromatisEmail author
  • Reiner Botz
  • Mark Schmidt
  • Volker Liebetrau
  • Christian Hensen
Original Paper

Abstract

The surface sediments of two mud mounds (“Mound 11” and “Mound 12”) offshore southwest Costa Rica contain abundant authigenic carbonate concretions dominated by high-Mg calcite (14–20 mol-% MgCO3). Pore fluid geochemical profiles (sulfate, sulfide, methane, alkalinity, Ca and Mg) indicate recent carbonate precipitation within the zone of anaerobic oxidation of methane (AOM) at variable depths. The current location of the authigenic carbonate concretions is, however, not related to the present location of the AOM zone, suggesting mineral precipitation under past geochemical conditions as well as changes in the flow rates of upward migrating fluids. Stable oxygen and carbon isotope analysis of authigenic carbonate concretions yielded δ18Ocarbonate values ranging between 34.0 and 37.7 ‰ Vienna standard mean ocean water (VSMOW) and δ13Ccarbonate values from −52.2 to −14.2 ‰ Vienna Pee Dee belemnite (VPDB). Assuming that no temperature changes occurred during mineral formation, the authigenic carbonate concretions have been formed at in situ temperature of 4–5 °C. The δ18Ocarbonate values suggest mineral formation from seawater-derived pore fluid (δ18Oporefluid = 0 ‰ VSMOW) for Mound 12 carbonate concretions but also the presence of an emanating diagenetic fluid (δ18Oporefluid ≈5 ‰) in Mound 11. A positive correlation between δ13Ccarbonate and δ18Ocarbonate is observed, indicating the admixing of two different sources of dissolved carbon and oxygen in the sediments of the two mounds. The carbon of these sources are (1) marine bicarbonate (δ13Cporefluid ≈0 ‰) and (2) bicarbonate which formed during the AOM (δ13Cporefluid ≈−70 ‰). Furthermore, the δ18Oporefluid composition, with values up to +4.7 ‰ Vienna standard mean ocean water (VSMOW), is interpreted to be affected by the presence of emanating, freshened and boron-enriched fluids. Earlier, it has been shown that the origin of 18O-enriched fluids are deep diagenetic processes as it was indicated by the presence of methane with thermogenic signature (δ13CCH4 = −38 ‰). A combination of present geochemical data with geophysical observations indicates that Mounds 11 and 12 represent a single fluid system interconnected by deep-seated fault(s).

Keywords

Authigenic carbonates Mud volcano fluids Early diagenesis 

Notes

Acknowledgments

Stable isotopic analyses were conducted by Nils Andersen (Leibniz Laboratory of Radiometric Dating and Stable Isotope Research). Laboratory help was provided by Bettina Domeyer, Kristin Nass, Anke Bleyer, Regina Surberg, Peggy Wefers, Inge Dold and Petra Fiedler. We thank Priska Schäfer for providing SEM facilities. We thank E. Suess for his editorial assistance, and we acknowledge T. Himmler and an anonymous reviewer for their fruitful comments that greatly improved our manuscript. Additional thanks go to Andy Bray for help with the English. This publication is contribution 203 of the Sonderforschungsbereich 574 “Volatiles and Fluids in Subduction Zones” at University of Kiel, Germany.

Supplementary material

531_2012_843_MOESM1_ESM.xls (57 kb)
Supplementary material 1 (XLS 57 kb)

References

  1. Aloisi G, Pierre C, Rouchy JM, Foucher JP, Woodside J (2000) Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilization. Earth Planet Sci Lett 184:321–338. doi: 10.1016/S0012-821X(00)00322-8 CrossRefGoogle Scholar
  2. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieske A, Amann R, Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626. doi: 10.1038/35036572 CrossRefGoogle Scholar
  3. Botz R, Pokojski HD, Schmitt M, Thomm M (1996) Carbon isotope fractionation during bacterial methanogenesis by CO2 reduction. Org Geochem 25:255–262. doi: 10.1016/S0146-6380(96)00129-5 CrossRefGoogle Scholar
  4. Brückmann W, Rhein M, Rehder G, Bialas J, Kopf A (2009) SUBFLUX, cruise no. 66, METEOR-Ber. 09-2. University of Hamburg, Hamburg, p 158Google Scholar
  5. Craig H (1961) Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133:1833–1834. doi: 10.1126/science.133.3467.1833 CrossRefGoogle Scholar
  6. Dählmann A, de Lange GJ (2003) Fluid-sediment interactions at eastern Mediterranean mud volcanoes; a stable isotope study from ODP Leg 160. Earth Planet Sci Lett 212:377–391. doi: 10.1016/S0012-821X(03)00227-9 CrossRefGoogle Scholar
  7. Emrich K, Erhalt DH, Vogel JC (1970) Carbon isotope fractionation during precipitation of calcium carbonate. Earth Planet Sci Lett 8:363–371. doi: 10.1016/0012-821X(70)90109-3 CrossRefGoogle Scholar
  8. Faber E, Botz R, Poggenburg J, Schmidt M, Stoffers P, Hartmann M (1998) Methane in Red Sea brines. Org Geochem 29:363–379. doi: 10.1016/S0146-6380(98)00155-7 CrossRefGoogle Scholar
  9. Flüh E, Soeding E, Suess E (2004) RV SONNE cruise report SO173/1, 173/3 and 173/4. GEOMAR report 115, p 492Google Scholar
  10. Formolo MJ, Lyons TW, Zhang C, Kelley C, Sassen R, Horita J, Cole DR (2004) Quantifying carbon sources in the formation of authigenic carbonates at gas hydrate sites in the Gulf of Mexico. Chem Geol 205:253–264CrossRefGoogle Scholar
  11. Füri E, Hilton DR, Tryon MD, Brown KM, McMurtry GM, Bruckmann W, Wheat DG (2010) Carbon release from submarine seeps at the Costa Rica fore arc: implications for the volatile cycle at the Central America convergent margin. Geochem Geophys Geosyst 11:18. doi: 10.1029/2009GC002810 CrossRefGoogle Scholar
  12. Goldsmith JR, Graf DL, Heard HC (1961) Lattice constants of the calcium–magnesium carbonates. Am Miner 46:453–457Google Scholar
  13. Grevemeyer I, Kopf AJ, Fekete N, Kaul N, Villinger HW, Heesemann M, Wallmann K, Spiess V, Gennerich HH, Mueller M, Weinrebe W (2004) Fluid flow through active mud dome Mound Culebra offshore Nicoya Peninsula, Costa Rica; evidence from heat flow surveying. Mar Geol 207:145–157CrossRefGoogle Scholar
  14. Han X, Suess E, Sahling H, Wallmann K (2004) Fluid venting activity on the Costa Rica margin; new results from authigenic carbonates. Int J Earth Sci 93:596–611. doi: 10.1007/s00531-004-0402-y Google Scholar
  15. Hensen C, Wallmann K (2005) Methane formation at Costa Rica continental margin; constraints for gas hydrate inventories and cross-decollement fluid flow. Earth Planet Sci Lett 236:41–60. doi: 10.1016/j.epsl.2005.06.007 CrossRefGoogle Scholar
  16. Hensen C, Wallmann K, Schmidt M, Ranero C, Suess E (2004) Fluid expulsion related to mud extrusion off Costa Rica—a window to the subducting slab. Geology 32:201–204. doi: 10.1130/G20119.1 CrossRefGoogle Scholar
  17. Hensen C, Nuzzo M, Hornibrook E, Pinheiro LM, Bock B, Magalhaes VH, Bruckmann W (2007) Sources of mud volcano fluids in the Gulf of Cadiz—indications for hydrothermal imprint. Geochim Cosmochim Acta 71:1232–1248. doi: 10.1016/j.gca.2006.11.022 CrossRefGoogle Scholar
  18. Irwin H, Curtis C, Coleman M (1977) Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269:209–213. doi: 10.1038/269209a0 CrossRefGoogle Scholar
  19. Karaca D, Hensen C, Wallmann K (2010) Controls on authigenic carbonate precipitation at cold seeps along the convergent margin off Costa Rica. Geochem Geophys Geosyst 11:Q08S27. doi: 10.1029/2010GC003062 CrossRefGoogle Scholar
  20. Kim ST, O’Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61:3461–3475. doi: 10.1016/S0016-7037(97)00169-5 CrossRefGoogle Scholar
  21. Kim ST, O’Neil JR, Hillaire-Marcel C, Mucci A (2007) Oxygen isotope fractionation between synthetic aragonite and water: influence of temperature and Mg2+ concentration. Geochim Cosmochim Acta 71:4704–4715. doi: 10.1016/j.gca.2007.04.019 CrossRefGoogle Scholar
  22. Kimura G, Silver EE, Blum P (1997) Shipboard scientific party leg 170, 1997. In: Proceedings of the ODP, init. rep., 170. Ocean Drilling Program, College Station, p 458Google Scholar
  23. Klaucke I, Masson DG, Petersen CJ, Weinrebe W, Ranero CR (2008) Multifrequency geoacoustic imaging of fluid escape structures offshore Costa Rica: implications for the quantification of seep processes. Geochem Geophys Geosyst 9:1–15. doi: 10.1029/2007GC001708 CrossRefGoogle Scholar
  24. Kutterolf S, Liebetrau V, Mörz T, Freundt A, Hammerich T, Garbe-Schönberg CD (2008) Lifetime and cyclicity of fluid venting at forearc mound structures determined by tephrostratigraphy and radiometric dating of authigenic carbonates. Geology 36:707–710. doi: 10.1130/G24806A.1 CrossRefGoogle Scholar
  25. Linke P, Wallmann K, Suess E, Hensen C, Rehder G (2005) In situ benthic fluxes from an intermittently active mud volcano at the Costa Rica convergent margin. Earth Planet Sci Lett 235:79–95. doi: 10.1016/j.epsl.2005.03.009 CrossRefGoogle Scholar
  26. Mau S, Rehder G, Arroyo IG, Gossler J, Suess E (2007) Indications of a link between seismotectonics and CH4 release from seeps off Costa Rica. Geochem Geophys Geosyst 8:1–13. doi: 10.1029/2006GC001326 CrossRefGoogle Scholar
  27. Mavromatis V, Schmidt M, Botz R, Comas-Bru L, Oelkers EH (2012) Experimental quantification of the effect of Mg on calcite—aqueous fluid oxygen isotope fractionation. Chem Geol 310–311:97–105CrossRefGoogle Scholar
  28. Mörz T, Fekete N, Kopf AJ, Brueckmann W, Kreiter S, Huehnerbach V, Masson DG, Hepp DA, Schmidt M, Kutterolf S, Sahling H, Abegg F, Spiess V, Suess E, Ranero CR (2005) Styles and productivity of mud diapirism along the Middle American Margin, part II, Mound Culebra and mounds 11 and 12. In: Martinelli G, Panahi B (eds) Mud volcanoes, geodynamics and seismicity. Springer, Dordrecht, pp 49–76CrossRefGoogle Scholar
  29. Naehr TH, Eichhubl P, Orphan VJ, Hovland M, Paull CK, Ussler W III, Lorenson TD, Greene HG (2007) Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: a comparative study. Deep Sea Res Pt II 54:1268–1291. doi: 10.1016/j.dsr2.2007.04.010 CrossRefGoogle Scholar
  30. Paull CK, Ussler W III, Peltzer ET, Brewer PG, Keaten R, Mitts PJ, Nealon JW, Greinert J, Herguera JC, Elena-Perez M (2007) Authigenic carbon entombed in methane-soaked sediments from the northeastern transform margin of the Guaymas Basin, Gulf of California. Deep Sea Res Pt II 54:1240–1267. doi: 10.1016/j.dsr2.2007.04.009 CrossRefGoogle Scholar
  31. Peckmann J, Thiel V (2004) Carbon cycling at ancient methane-seeps. Chem Geol 205:443–467CrossRefGoogle Scholar
  32. Pierre C, Fouquet Y (2007) Authigenic carbonates from methane seeps of the Congo deep-sea fan. Geo Mar Lett 27:249–257CrossRefGoogle Scholar
  33. Ranero CR, von Huene R (2000) Subduction erosion along the Middle America convergent margin. Nature 404:748–755. doi: 10.1038/35008046 CrossRefGoogle Scholar
  34. Ranero CR, Grevemeyer I, Sahling H, Barckhausen U, Hensen C, Wallmann K, Weinrebe W, Vannucchi P, von Huene R, McIntosh K (2008) Hydrogeological system of erosional convergent margins and its influence on tectonics and interplate seismogenesis. Geochem Geophys Geosyst 9:1–17. doi: 10.1029/2007GC001679 CrossRefGoogle Scholar
  35. Sahling H, Masson DG, Ranero CR, Huhnerbach V, Weinrebe W, Klaucke I, Burk D, Brückmann W, Suess E (2008) Fluid seepage at the continental margin offshore Costa Rica and southern Nicaragua. Geochem Geophys Geosyst 9:1–22. doi: 10.1029/2008GC001978 CrossRefGoogle Scholar
  36. Schmidt M, Hensen C, Moerz T, Mueller C, Grevemeyer I, Wallmann K, Mau S, Kaul N (2005) Methane hydrate accumulation in “Mound 11” mud volcano, Costa Rica forearc. Mar Geol 216:83–100. doi: 10.1016/j.margeo.2005.01.001 CrossRefGoogle Scholar
  37. Sheppard SMF, Gilg HA (1996) Stable isotope geochemistry of clay minerals. Clay Miner 31:1–24CrossRefGoogle Scholar
  38. Soeding E, Wallmann K, Suess E, Flüh E (2003) FS meteor, cruise report M54/2-3: Caldera-Curacao: GEOMAR report 111, p 366Google Scholar
  39. Spiker EC, Hatcher PG (1984) Carbon isotope fractionation of sapropelic organic matter during early diagenesis. Org Geochem 5:283–290. doi: 10.1016/0146-6380(84)90016-0 CrossRefGoogle Scholar
  40. Stakes DS, Orange DL, Paduan JB, Salamy KA, Maher N (1999) Cold-seeps and authigenic carbonate formation in Monterey Bay, California. Mar Geol 159:93–109. doi: 10.1016/S0025-3227(98)00200-X CrossRefGoogle Scholar
  41. Tarutani T, Clayton RN, Mayeda TK (1969) The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochim Cosmochim Acta 33:987–996. doi: 10.1016/0016-7037(69)90108-2 CrossRefGoogle Scholar
  42. Teichert BMA, Gussone N, Eisenhauer A, Bohrmann G (2005) Clathrites: archives of near-seafloor pore-fluid evolution (δ44Ca, δ13C, δ18O) in gas hydrate environments. Geology 33:213–216CrossRefGoogle Scholar
  43. Tryon MD, Wheat CG, Hilton DR (2010) Fluid sources and pathways of the Costa Rica erosional convergent margin. Geochem Geophys Geosyst 11:15. doi: 10.1029/2009gc002818 Google Scholar
  44. Ussler W III, Paull CK (1995) Effects of ion exclusion and isotopic fractionation on pore water geochemistry during gas hydrate formation and decomposition. Geo Mar Lett 15:37–44. doi: 10.1007/BF01204496 CrossRefGoogle Scholar
  45. Ussler W III, Paull CK (2008) Rates of anaerobic oxidation of methane and authigenic carbonate mineralization in methane-rich deep-sea sediments inferred from models and geochemical profiles. Earth Planet Sci Lett 266:271–287. doi: 10.1016/j.epsl.2007.10.056 CrossRefGoogle Scholar
  46. Wallmann K, Aloisi G, Haeckel M, Obzhirov A, Pavlova G, Tishchenko P (2006) Kinetics of organic matter degradation, microbial methane generation, and gas hydrate formation in anoxic marine sediments. Geochim Cosmochim Acta 70:3905–3927. doi: 10.1016/j.gca.2006.06.003 CrossRefGoogle Scholar
  47. Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314CrossRefGoogle Scholar
  48. Whiticar MJ, Faber E (1986) Methane oxidation in sediment and water column environments—isotope evidence. Org Geochem 10:759–768. doi: 10.1016/S0146-6380(86)80013-4 CrossRefGoogle Scholar
  49. You CF, Spivack AJ, Gieskes JM, Rosenbauer R, Bischoff JL (1995) Experimental study of boron geochemistry; implications for fluid processes in subduction zones. Geochim Cosmochim Acta 59:2435–2442. doi: 10.1016/0016-7037(95)00137-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Vasileios Mavromatis
    • 1
    • 2
    • 3
    Email author
  • Reiner Botz
    • 2
  • Mark Schmidt
    • 1
    • 4
  • Volker Liebetrau
    • 1
    • 4
  • Christian Hensen
    • 1
    • 4
  1. 1.Sonderforschungsbereich 574University of KielKielGermany
  2. 2.Institute for GeosciencesUniversity of KielKielGermany
  3. 3.Geosciences Environment Toulouse (GET)CNRS, UMR5563, Observatoire Midi-PyrénéesToulouseFrance
  4. 4.Helmholtz Centre for Ocean Research (GEOMAR)KielGermany

Personalised recommendations