Advertisement

International Journal of Earth Sciences

, Volume 103, Issue 7, pp 2015–2028 | Cite as

Comparison of seismic activity for Llaima and Villarrica volcanoes prior to and after the Maule 2010 earthquake

  • Cindy Mora-Stock
  • Martin Thorwart
  • Tina Wunderlich
  • Stefan Bredemeyer
  • Thor H. Hansteen
  • Wolfgang Rabbel
Original Paper

Abstract

Llaima and Villarrica are two of the most active volcanoes in the Chilean Southern Volcanic Zone and presently show contrasting types of activity. Llaima is a closed vent edifice with fumarolic activity, while Villarrica has an open vent with a lava lake, continuous degassing and tremor activity. This study is focused on characterizing the relationships between volcanic and seismic activity in the months before and after the 2010 M8.8 Maule earthquake, which was located in NNW direction from the volcanoes. Time series for tremors, long-period and volcano-tectonic events were obtained from the catalogue of the Volcanic Observatory of the Southern Andes (OVDAS) and from the SFB 574 temporary volcanic network. An increase in the amount of tremor activity, long-period events and degassing rates was observed at Villarrica weeks before the mainshock and continued at a high level also after it. This increase in activity is interpreted to be caused by enhanced magma influx at depth and may be unrelated to the Maule event. In Llaima, an increase in the volcano-tectonic activity was observed directly after the earthquake. The simultaneous post-earthquake activity at both volcanoes is consistent with a structural adjustment response. Since this enhanced activity lasted for more than a year, we suggest that it is related to a medium-term change in the static stress. Thus, the Maule earthquake may have affected both volcanoes, but did not trigger eruptions, from which we assume that none of the volcanoes were in a critical state.

Keywords

Llaima volcano Villarrica volcano Volcano seismicity Maule earthquake Chile 

Notes

Acknowledgments

Part of the data used in this publication was collected and provided by the Observatorio Volcánico de los Andes del Sur–Servicio Nacional de Geología y Minería (OVDAS–SERNAGEOMIN), and all authors acknowledge both institutions for their collaboration. All authors acknowledge the SFB 574 “Volatiles and Fluids in Subduction Zones” for its funding. The first author is grateful to the Chilean National Council of Research, Science and Technology (CONICYT, acronym in Spanish) and the German Academic Exchange Service (DAAD, acronym in German) and their funding programme BecasChile–DAAD for the grant that facilitates this research. All authors acknowledge the GIPP of the GFZ Helmholtz-Zentrum Potsdam for providing the short-period seismometers used for the SFB 574 project during the period November 2008 to April 2011. All authors appreciate the valuable comments and suggestions of two anonymous reviewers and the Topic Editor D. Völker that helped to improve this manuscript. All figures were drawn using the Generic Mapping Tools (GMT) software from Wessel and Smith (1991). This is contribution number 238 to Sonderforschungsbereich 574 “Volatiles and Fluids in Subduction Zones” at Kiel University, funded by the German Research Foundation.

References

  1. Alam M, Kimura M (2004) Statistical analysis of time–distance relationship between volcanic eruptions and great earthquakes in Japan. Earth Planets Space 56:179–192CrossRefGoogle Scholar
  2. Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca-South America Euler vector. Earth Planet Sci Lett 171:329–334CrossRefGoogle Scholar
  3. Barrientos S (1994) Large thrust earthquakes and volcanic eruptions. Pure Appl Geophys 142(1):225–237CrossRefGoogle Scholar
  4. Bathke H, Shirzaei M, Walter TR (2011) Inflation and deflation at the steep-sided Llaima stratovolcano (Chile) detected by using InSAR. Geophys Res Let 38:L10, 304. doi: 10.1029/2011GL047168
  5. Calder E, Harris A, Peña P, Pilger E, Flynn L, Fuentealba G, Moreno H (2004) Combined thermal and seismic analysis of the Villarrica volcano lava lake, Chile. Revista Geológica de Chile 31(2):259–272CrossRefGoogle Scholar
  6. Carr M (1977) Volcanic activity and great earthquakes at convergent plate margins. Science 197(4304):655–657. doi: 10.1126/science.197.4304.655 CrossRefGoogle Scholar
  7. Cembrano J, Lara L (2009) The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: a review. Tectonophysics 471(1):96–113CrossRefGoogle Scholar
  8. Cembrano J, Moreno H (1994) Geometría y naturaleza contrastante del volcanismo cuaternario entre los 38°S y 46°S: ¿Dominios compresionales y tensionales en un régimen transcurrente? In: Actas del 7° Congreso Geológico Chileno, Universidad de Concepción, vol 1, pp 240–244Google Scholar
  9. Cembrano J, Hervé F, Lavenu A (1996) The Liquiñe-Ofqui fault zone: a long-lived intra-arc fault system in southern Chile. Tectonophysics 259:55–66CrossRefGoogle Scholar
  10. Chouet B (1996) Long-period volcano seismicity: its source and use in eruption forecasting. Nature 380:309–316CrossRefGoogle Scholar
  11. Darwin C (1845) Journal of Researches into the Natural History and Geology of the countries visited during the voyage of H.M.S. Beagle around the world, 2nd edn. http://darwin-online.org.uk
  12. Delouis B, Nocquet JM, Vallée M (2010) Slip distribution of the February 27, 2010 Mw = 8.8 Maule Earthquake, central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data. Geophys Res Lett 37:L17, 305. doi: 10.1029/2010GL043899
  13. Dungan MA, Bouvet de Maisonneuve C, Sellés D, Naranjo JA, Moreno H, Langmuir C, Reubi O, Goldstein S, Jweda J, Escrig S, Bachmann O, Bourdon B (2008) Volcán Llaima (38.7°S, Chilean Southern Volcanic Zone): insights into a dominantly mafic and ‘hyperactive’ subduction-related magmatic system. In: 7th International symposium on Andean geodynamics (ISAG 2008, Nice), Extended AbstractsGoogle Scholar
  14. Dzierma Y, Wehrmann H (2010) Eruption time series statistically examined: probabilities of future eruptions at Villarrica and Llaima Volcanoes, Southern Volcanic Zone, Chile. J Volcanol Geoth Res 193:82–92CrossRefGoogle Scholar
  15. Dzierma Y, Rabbel W, Thorwart M, Koulakov I, Wehrmann H, Hoernle K, Comte D (2012a) Seismic velocity structure of the slab and continental plate in the region of the 1960 Valdivia (Chile) slip maximum—insights into fluid release and plate coupling. Earth Planet Sci Lett 331–332:164–176. doi: 10.1016/j.epsl.2012.02.006 CrossRefGoogle Scholar
  16. Dzierma Y, Thorwart M, Rabbel W, Siegmund C, Comte C, Bataille K, Iglesia P, Prezzi C (2012b) Seismicity near the slip maximum of the 1960 Mw 9.5 Valdivia earthquake (Chile): plate interface lock and reactivation of the subducted Valdivia Fracture Zone. J Geophys Res 117:B06, 312. doi: 10.1029/2011JB008914
  17. Eggert S, Walter TR (2009) Volcanic activity before and after large tectonic earthquakes: observations and statistical significance. Tectonophysics 471:14–26CrossRefGoogle Scholar
  18. Farías M, Vargas G, Tassara A, Carretier S, Baize S, Melnick D, Bataille K (2010) Land-level changes produced by the Mw 8.8 2010 Chilean earthquake. Science 329:916, www.sciencemag.org/cgi/content/full/science.1192094/DC1 (Supporting Material)Google Scholar
  19. Hill D, Pollitz F, Newhall C (2002) Earthquake–volcano interactions. Phys Today 55:41–47CrossRefGoogle Scholar
  20. Lay T, Ammon CJ, Kanamori H, Koper KD, Sufri O, Hutko AR (2010) Teleseismic inversion for rupture process of the 27 February 2010 Chile (Mw 8.8) earthquake. Geophys Res Lett 37:L13, 301. doi: 10.1029/2010GL043379
  21. Leet R (1988) Saturated and subcooled hydrothermal boiling in groundwater flow channels as a source of harmonic tremor. J Geophys Res 93(B5):4835–4849CrossRefGoogle Scholar
  22. Linde AT, Sacks IS (1998) Triggering of volcanic eruptions. Nature 395:888–890CrossRefGoogle Scholar
  23. Lohmar S, Robin C, Parada M, Gourgaud A, López-Escobar L, Moreno H, Naranjo J (2005) The two major postglacial (13–14,000 BP) pyroclastic eruptions of Llaima and Villarrica volcanoes (Southern Andes): a comparison. In: 6th International symposium on Andean geodynamics (ISAG 2005, Barcelona), Extended Abstracts, pp 442–445Google Scholar
  24. Lohmar S, Parada MA, Robin C, Gerbe M, Deniel C, Gourgaud A, López L, Moreno H, Naranjo J (2006) Origin of postglacial ``mafic’’ ignimbrites at Llaima and Villarrica volcanoes (southern Andes, Chile): assimilation of plutonic rocks as one of the triggering factors? In: V South American symposium on isotope geologyGoogle Scholar
  25. Lomnitz C (1994) Fundamentals of earthquake prediction. Wiley, New YorkGoogle Scholar
  26. Lorito S, Romano F, Atzori S, Tong X, Avallone A, McCloskey J, Cocco M, Boschi E, Piatanesi A (2010) Limited overlap between the seismic gap and coseismic slip of the great 2010 Chile earthquake. Nat Geosci 4:173–177. doi: 10.1038/ngeo1073 CrossRefGoogle Scholar
  27. Luttrell K, Tong X, Sandwell D, Brooks B, Bevis M (2011) Estimates of stress drop and crustal tectonic stress from the 27 February 2010 Maule, Chile, earthquake: implications for fault strength. J Geophys Res 116:B11, 401. doi: 10.1029/2011JB008509
  28. Manga M, Brodsky E (2006) Seismic triggering of eruptions in the far field: volcanoes and geysers. Annu Rev Earth Planet Sci 34:263–291CrossRefGoogle Scholar
  29. Melnick D, Echtler H (2006) The Andes—active subduction orogeny, Springer, chap morphotectonic and geologic digital map compilations of the South-Central Andes (36°–42°S), pp 565–568. doi: 10.1007/978-3-540-48684-8_30
  30. Moreno MS, Bolte J, Klotz J, Melnick D (2009) Impact of megathrust geometry on inversion of coseismic slip from geodetic data: application to the 1960 Chile earthquake. Geophys Res Lett 36:L16, 310. doi: 10.1029/2009GL039276
  31. Moreno M, Rosenau M, Oncken O (2010) 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone. Nature 467:198–202. doi: 10.1038/nature09349 CrossRefGoogle Scholar
  32. Muñoz M (1983) Eruption patterns of the Chilean Volcanoes Villarrica, Llaima, and Tupungatito. Pure Appl Geophys 121:835–852CrossRefGoogle Scholar
  33. Newhall C (2007) Seismology and structure of the earth, treatise on geophysics, vol IV, Elsevier, chap Volcanology 101 for seismologists, pp 353–388Google Scholar
  34. Okada Y (1992) Internal deformation due to shear and tensile faults in a halfspace. Bull Seismol Soc Am 82(2):1018–1040Google Scholar
  35. OVDAS (2010) Informe mensual de actividad volcánica Región de La Araucanía (Volcanes: Llaima, Villarrica y Lonquimay) Junio 2010. Tech. rep., Observatorio Volcánico del los Andes del Sur—Servicio Nacional de Geología y Minería (SERNAGEOMIN)Google Scholar
  36. OVDAS (2011) Reporte Especial de Actividad Volcánica No 28, Región de Los Ríos, Complejo Volcánico Puyehue—Cordón Caulle. Tech. rep., Observatorio Volcánico de los Andes del Sur—Servicio Nacional de Geología y Minería (SERNAGEOMIN)Google Scholar
  37. Ortiz R, Moreno H, García A, Fuentealba G, Astiz M, Peña P, Sánchez N, OVDAS (2010) Informe mensual de actividad volcánica Región de La Araucanía (Volcanes: Llaima, Villarrica y Lonquimay) Junio 2010. Tech. rep., Observatorio Volcánico del los Andes del Sur—Servicio Nacional de Geología y Minería (SERNAGEOMIN)Google Scholar
  38. Pardo-Casas F, Molnar P (1987) Relative motion of the Nazca (Farallón) and South American Plates since Late Cretaceous time. Tectonics 6:233–248CrossRefGoogle Scholar
  39. Siebert L, Simkin T (2002) Volcanoes of the world: an illustrated catalog of Holocene volcanoes and their eruptions. Smithsonian Institution, Global Volcanism Program Digital Information Series, GVP-3 http://www.volcano.si.edu/world/, revised October, 2011
  40. Stern C (2004) Active Andean volcanism: its geologic and tectonic setting. Andean Geol 31(2):161–206Google Scholar
  41. Utsu T (1969) Aftershocks and earthquake statistics (1): some parameters which characterize an aftershock sequence and their interrelations. Journal of the Faculty of Science, Hokkaido University Series 7. Geophysics 3(3):129–195Google Scholar
  42. Utsu T (1970) Aftershocks and earthquake statistics (2): further investigation of aftershocks and other earthquake sequences based on a new classification of earthquake sequences. Journal of the Faculty of Science, Hokkaido University Series 7. Geophysics 3(4):197–266Google Scholar
  43. Walter T, Amelung F (2007) Volcanic eruptions following M ≥ 9 megathrust earthquakes: implications for the Sumatra-Andaman volcanoes. Geology 35:539–542. doi: 10.1130/G23429A.1 CrossRefGoogle Scholar
  44. Wessel P, Smith WHF (1991) Free software helps map and display data. EOS Trans AGU 72:441CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Cindy Mora-Stock
    • 1
  • Martin Thorwart
    • 1
  • Tina Wunderlich
    • 1
  • Stefan Bredemeyer
    • 2
  • Thor H. Hansteen
    • 2
  • Wolfgang Rabbel
    • 1
  1. 1.Institut für GeowissenschaftenChristian-Albrechts-UniversitätKielGermany
  2. 2.Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR)KielGermany

Personalised recommendations