International Journal of Earth Sciences

, Volume 103, Issue 7, pp 1817–1829 | Cite as

Quantification of methane emission from bacterial mat sites at Quepos Slide offshore Costa Rica

  • Deniz Karaca
  • Tina Schleicher
  • Christian Hensen
  • Peter Linke
  • Klaus Wallmann
Original Paper

Abstract

Seafloor methane emission from the Quepos Slide on the submarine segment of the Costa Rica fore-arc margin was estimated by extrapolating flux measurements from individual seeps to the total area covered by bacterial mats. This approach is based on the combination of detailed mapping to determine the abundance of seeps and the application of a numerical model to estimate the amount of benthic methane fluxes. Model results suggest that the majority of the studied seeps transport rather limited amount of methane (on average: ~177 μmol cm−2 a−1) into the water column due to moderate upward advection, allowing for intense anaerobic oxidation of methane (AOM; on average: 53 % of the methane flux is consumed). Depth-integrated AOM rates (56–1,538 μmol CH4 cm−2 a−1) are comparable with values reported from other active seep sites. The overall amount of dissolved methane released into the water column from the entire area covered by bacterial mats on the Quepos Slide is estimated to be about 0.28 × 106 mol a−1. This conservative estimate which relies on rather accurate determinations of seafloor methane fluxes emphasizes the potential importance of submarine slides as sites of natural methane seepage; however, at present the global extent of methane seepage from submarine slides is largely unknown.

Keywords

Methane Fluid seepage Submarine landslide Central American margin Reactive-transport modeling Bacterial mats 

Notes

Acknowledgments

We would like to thank the captains, crew members and the members of the scientific parties of R/V Sonne cruise SO173/2 and R/V Meteor cruise M66/2 for their helpful assistance at sea. Many thanks to Anke Bleyer, Bettina Domeyer and Regina Surberg for having carried out the chemical analyses onboard and at shore-based laboratories. This work was funded by the German Science Foundation (DFG). This publication is contribution no. 235 of the Sonderforschungsbereich 574 “Volatiles and Fluids in Subduction Zones” at Kiel University.

References

  1. Aloisi G, Wallmann K, Haese R, Saliège J-F (2004) Chemical, biological and hydrological controls on the 14C content of cold seep carbonate crusts: numerical modeling and implications for convection at cold seeps. Chem Geol 213(4):359–383CrossRefGoogle Scholar
  2. Berner RA (1980) Early diagenesis. A theoretical approach. Princeton University Press, New York, p 241Google Scholar
  3. Boetius A, Suess E (2004) Hydrate Ridge: a natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates. Chem Geol 205:291–310CrossRefGoogle Scholar
  4. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Giesecke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626. doi: 10.1016/j.chemgeo.2004.07.008 CrossRefGoogle Scholar
  5. Bohrmann G, Heeschen K, Jung C, Weinrebe W, Baranov B, Cailleau B, Heath R, Hühnerbach V, Hort M, Masson D, Trummer I (2002) Widespread fluid expulsion along the seafloor of the Costa Rica convergent margin. Terra Nova 14:69–79CrossRefGoogle Scholar
  6. Boudreau BP (1984) On the equivalence of nonlocal and radial-diffusion models for porewater irrigation. J Mar Res 42:731–735CrossRefGoogle Scholar
  7. Boudreau BP (1997) Diagenetic models and their implementation: modelling transport and reactions in aquatic sediments. Springer, Berlin, p 414CrossRefGoogle Scholar
  8. Brückmann W, Rhein M, Rehder G, Bialas J, Kopf A (2009) SUBFLUX, Cruise No.66, METEOR-Berichte, 09-2, Universität Hamburg, pp 158Google Scholar
  9. de Beer D, Sauter E, Niemann H, Kaul N, Foucher JP, Witte U, Schlueter M, Boetius A (2006) In situ fluxes and zonation of microbial activity in surface sediments of the Hakon Mosby Mud Volcano. Limnol Oceanogr 51(3):1315–1331CrossRefGoogle Scholar
  10. Dimitrov LI (2002) Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth Sci Rev 59:49–76CrossRefGoogle Scholar
  11. Etiope G (2004) New directions: GEM—geologic emissions of methane, the missing source in the atmospheric methane budget. Atmos Environ 38(19):3099–3100CrossRefGoogle Scholar
  12. Etiope G, Klusman RW (2002) Geologic emissions of methane to the atmosphere. Chemosphere 49(8):777–789CrossRefGoogle Scholar
  13. Etiope G, Milkov AV (2004) A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere. Environ Geol 46(8):997–1002CrossRefGoogle Scholar
  14. Feseker T, Foucher JP, Harmegnies F (2008) Fluid flow or mud eruptions? Sediment temperature distributions on Hakon Mosby mud volcano, SW Barents Sea slope. Mar Geol 247(3–4):194–207CrossRefGoogle Scholar
  15. Flüh ER, Suess E, Söding E (2004) Cruise Report SO1731 and SO173/3+4; Subduction II GEOMAR-Report, 115. GEOMAR, Kiel, p 491Google Scholar
  16. Füri E, Hilton DR, Tryon MD, Brown KM, McMurtry GM, Bruckmann W, Wheat CG (2010) Carbon release from submarine seeps at the Costa Rica fore arc: implications for the volatile cycle at the Central America convergent margin. Geochem Geophy Geosyst 11:Q04s21. doi: 10.1029/2009gc002810
  17. Ginsburg GD, Milkov AV, Soloviev VA, Egorov AV, Cherkashev GA, Vogt PR, Crane K, Lorenson TD, Khutorskoy MD (1999) Gas hydrate accumulation at the Haakon Mosby Mud Volcano. Geo-Mar Lett 19:57–67CrossRefGoogle Scholar
  18. Greinert J, McGinnis DF, Naudts L, Linke P, De Batist M (2010) Atmospheric methane flux from bubbling seeps: spatially extrapolated quantification from a Black Sea shelf area. J Geophys Res 115:C01002. doi: 10.1029/2009JC005381 Google Scholar
  19. Grubbs FE (1950) Sample criteria for testing outlying observations. Ann Math Stat 21:27–58CrossRefGoogle Scholar
  20. Gubsch S (2010) Detektion und Quantifizierung von subaquatischen Porenwasserfreisetzungen geringer Intensitäten. Shaker Verlag, Reihe Umweltwissenschaft Ph.D Dissertation, Universität Hamburg-Harburg, pp 174Google Scholar
  21. Haese RR, Meile C, Van Cappellen P, De Lange GJ (2003) Carbon geochemistry of cold seeps: methane fluxes and transformation in sediments from Kazan mud volcano, eastern Mediterranean Sea. Earth Planet Sci Lett 212:361–375CrossRefGoogle Scholar
  22. Haese R, Hensen C, De Lange GJ (2006) Pore water geochemistry of eastern Mediterranean mud volcanoes: implications for fluid transport and fluid origin. Mar Geol 225:191–208CrossRefGoogle Scholar
  23. Henry P, Foucher JP, Lepichon X, Sibuet M, Kobayashi K, Tarits P, Chamotrooke N, Furuta T, Schultheiss P (1992) Interpretation of temperature-measurements from the Kaiko-Nankai Cruise—modeling of fluid-flow in clam colonies. Earth Planet Sci Lett 109(3–4):355–371CrossRefGoogle Scholar
  24. Henry P, Le Pichon X, Lallemant S, Lance S, Martin JB, Foucher J-P, Fiala-Médioni A, Rostek F, Guilhaumou N, Pranal V, Castrec M (1996) Fluid flow in and around a mud volcano field seaward of the Barbados accretionary wedge: results from Manon cruise. J. Geophys Res 101(B9):20297–220323Google Scholar
  25. Hensen C, Wallmann K (2004) Methane fluxes and gas hydrate reservoirs in slope sediments along Costa Rica continental margin. EGU 1st General Assembly, Nice, France, EGU04-A-05859Google Scholar
  26. Hensen C, Wallmann K, Schmidt M, Ranero CR, Suess E (2004) Fluid expulsion related to mud extrusion off Costa Rica—a window to the subducting slab. Geology 32:201–204Google Scholar
  27. Hensen C, Nuzzo M, Hornibrook E, Pinheiro LM, Bock B, Magalhães VH , Brückmann W (2007) Sources of mud volcano fluids in the Gulf of Cadiz—indications for hydrothermal imprint. Geochim Cosmochim Acta 71:1232–1248Google Scholar
  28. Hovland M, Judd AG, Burke JRA (1993) The global flux of methane from shallow submarine sediments. Chemosphere 26(Nos. 1–4):559–578Google Scholar
  29. Hovland M, Svensen H, Forsberg CF, Johansen H, Fichler C, Fossa JH, Jonsson R, Rueslatten H (2005) Complex pockmarks with carbonate-ridges off mid-Norway: products of sediment degassing. Mar Geol 218:191–206CrossRefGoogle Scholar
  30. Imhoff JF, Sahling H, Suling J, Kath T (2003) 16S rDNA-based phylogeny of sulphur-oxidising bacterial endosymbionts in marine bivalves from cold-seep habitats. Mar Ecol Progress Ser 249:39–51CrossRefGoogle Scholar
  31. Judd AG (2004) Natural seabed gas seeps as sources of atmospheric methane. Environ Geol 46(8):988–996CrossRefGoogle Scholar
  32. Karaca D (2011) Quantification of methane fluxes and authigenic carbonate formation at cold seeps along the continental margin offshore Costa Rica: a numerical modeling approach. Ph.D. Thesis, University of Kiel, Kiel, pp 117Google Scholar
  33. Karaca D, Hensen C, Wallmann K (2010) Controls on authigenic carbonate precipitation at cold seeps along the convergent margin off Costa Rica. Geochemistry Geophysics Geosystems 11(Q08S27). doi: 10.1029/2010GC003062
  34. Kessler JD, Reeburgh WS, Southon J, Seifert R, Michaelis W, Tyler SC (2006) Basin-wide estimates of the input of methane from seeps and clathrates to the Black Sea. Earth Planet Sci Lett 243(3–4):366–375CrossRefGoogle Scholar
  35. Kimura G, Silver E, Blum P, a.c. participants (1997) Proceedings of the Ocean Drilling Program, Initial Reports, vol 170. Ocean Drilling Program, College Station, TX, pp 458Google Scholar
  36. Klaucke I, Masson DG, Petersen CJ, Weinrebe W, Ranero CR (2008) Multifrequency geoacoustic imaging of fluid escape structures offshore Costa Rica: implications for the quantification of seep processes. Geochem Geophys Geosyst 9:Q04010. doi: 10.1029/2007gc001708 CrossRefGoogle Scholar
  37. Kopf A (2002) Significance of mud volcanisms. Rev Geophys 40(2):1–52CrossRefGoogle Scholar
  38. Kvenvolden KA, Rogers BW (2005) Gaia’s breath—global methane exhalations. Mar Pet Geol 22(4):579–590CrossRefGoogle Scholar
  39. Lichtschlag A, Felden J, Wenzhofer F, Schubotz F, Ertefai TF, Boetius A, de Beer D (2010) Methane and sulfide fluxes in permanent anoxia: in situ studies at the Dvurechenskii mud volcano (Sorokin Trough, Black Sea). Geochim Cosmochim Acta 74(17):5002–5018CrossRefGoogle Scholar
  40. Linke P, Wallmann K, Suess E, Hensen C, Rehder G (2005) In-situ benthic fluxes from an intermittently active mud volcano at the Costa Rica convergent margin. Earth Planet Sci Lett 235:79–95CrossRefGoogle Scholar
  41. Linke P, Sommer S, Rovelli L, McGinnis DF (2010) Physical limitations of dissolved methane fluxes: the role of bottom-boundary layer processes. Mar Geol 272(1–4):209–222CrossRefGoogle Scholar
  42. Luff R, Wallmann K (2003) Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: numerical modeling and mass balances. Geochim Cosmochim Acta 67(18):3403–3421CrossRefGoogle Scholar
  43. Luff R, Wallmann K, Grandel S, Schlüter M (2000) Numerical modelling of benthic processes in the deep Arabian Sea. Deep Sea Res II 47(14):3039–3072CrossRefGoogle Scholar
  44. Luyendyk B, Kennett J, Clark JF (2005) Hypothesis for increased atmospheric methane input from hydrocarbon seeps on exposed continental shelves during glacial low sea level. Mar Pet Geol 22(4):591–596CrossRefGoogle Scholar
  45. Mau S, Sahling H, Rehder G, Suess E, Linke P, Soeding E (2006) Estimates of methane output from mud extrusions at the erosive convergent margin off Costa Rica. Mar Geol 225:129–144CrossRefGoogle Scholar
  46. Niemann H, Losekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schluter M, Klages M, Foucher JP, Boetius A (2006) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443(7113):854–858CrossRefGoogle Scholar
  47. Ranero CR, Von Huene R (2000) Subduction erosion along the Middle America convergent margin. Nature 404:748–752CrossRefGoogle Scholar
  48. Ranero CR, Grevemeyer I, Sahling H, Barckhausen U, Hensen C, Wallmann K, Weinrebe W, Vannucchi P, von Huene R, McIntosh K (2008) Hydrogeological system of erosional convergent margins and its influence on tectonics and interplate seismogenesis. Geochem Geophys Geosyst 9(3):Q03S04. doi: 10.1029/2007GC001679
  49. Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107(2):486–513CrossRefGoogle Scholar
  50. Sahling H, Masson DG, Ranero CR, Hühnerbach V, Weinrebe W, Klaucke I, Bürk D, Brückmann W, Suess E (2008) Fluid seepage at the continental margin offshore Costa Rica and southern Nicaragua. Geochem Geophys Geosyst 9:Q05S05. doi: 10.1029/2008GC001978
  51. Schleicher T (2006) Bestimmung von ventspezifischen Faunenvergesellschaftungen am mittelamerikanischen Kontinentalrand mit Hilfe quantitativer Videoauswertung. Diploma Thesis University of Kiel, Kiel, p 68Google Scholar
  52. Schmidt M, Hensen C, Mörz T, Müller C, Grevemeyer I, Wallmann K, Mau S, Kaul N (2005) Methane hydrate accumulation in “Mound 11” mud volcano, Costa Rica forearc. Mar Geol 216:83–100Google Scholar
  53. Schneider von Deimling J, Rehder G, Greinert J, McGinnnis DF, Boetius A, Linke P (2011) Quantification of seep-related methane gas emissions at Tommeliten, North Sea. Cont Shelf Res 31:867–878CrossRefGoogle Scholar
  54. Solomon EA, Kastner M, Jannasch H, Robertson G, Weinstein Y (2008) Dynamic fluid flow and chemical fluxes associated with a seafloor gas hydrate deposit on the northern Gulf of Mexico slope. Earth Planet Sci Lett 270(1–2):95–105CrossRefGoogle Scholar
  55. Sommer S, Pfannkuche O, Linke P, Luff R, Greinert J, Drews M, Gubsch S, Pieper M, Poser M, Viergutz T (2006) Efficiency of the benthic filter: biological control of the emission of dissolved methane from sediments containing shallow gas hydrates at Hydrate Ridge. Global Biogeochem Cycles 20(2):Gb2019. doi: 10.1029/2004gb002389 Google Scholar
  56. Sommer S, Linke P, Pfannkuche O, Schleicher T, von Deimling JS, Reitz A, Haeckel M, Flogel S, Hensen C (2009) Seabed methane emissions and the habitat of frenulate tubeworms on the Captain Arutyunov mud volcano (Gulf of Cadiz). Mar Ecol Progress Ser 382:69–86CrossRefGoogle Scholar
  57. Tishchenko P, Hensen C, Wallmann K, Wong CS (2005) Calculation of the stability and solubility of methane hydrate in seawater. Chem Geol 219(1–4):37–52CrossRefGoogle Scholar
  58. Torres ME, McManus J, Hammond DE, de Angelis MA, Heeschen KU, Colbert SL, Tryon MD, Brown KM, Suess E (2002) Fluid and chemical fluxes in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, I: hydrological provinces. Earth Planet Sci Lett 201(3–4):525–540CrossRefGoogle Scholar
  59. Treude T, Boetius A, Knittel K, Wallmann K, Jørgensen BB (2003) Anaerobic oxidation of methane above gas hydrates. Mar Ecol Prog Ser 264:1–14CrossRefGoogle Scholar
  60. Tryon MD, Wheat CG, Hilton DR (2010) Fluid sources and pathways of the Costa Rica erosional convergent margin. Geochemistry Geophysics Geosystems 11:Q04s22. doi: 10.1029/2009gc002818
  61. Vannucchi P, Ranero CR, Galeotti S, Straub SM, Scholl DW, McDougall-Ried K (2003) Fast rates of subducting erosion along the Costa Rica Pacific margin: implications for nonsteady rates of crustal recycling at subduction zones. J Geophys Res 108(No. B11). doi: 10.1029/2002JB002207
  62. von Huene R, Ranero CR, Weinrebe W, Hinz K (2000) Quaternary convergent margin tectonics of Costa Rica, segmentation of the Cocos Plate, and Central American volcanism. Tectonics 19(2):314–334CrossRefGoogle Scholar
  63. von Huene R, Ranero CR, Watts P (2004) Tsunamigenic slope failure along the Middle America Trench in two tectonic settings. Mar Geol 203(3–4):303–317CrossRefGoogle Scholar
  64. Wallmann K, Linke P, Suess E, Bohrmann G, Sahling H, Schlüter M, Dählmann A, Lammers S, Greinert J, Mirbach Nv (1997) Quantifying fluid flow, solute mixing, and biogeochemical turnover at cold vents of the eastern Aleutian subduction zone. Geochim Cosmochim Acta 61(24):5209–5219CrossRefGoogle Scholar
  65. Wallmann K, Drews M, Aloisi G, Bohrmann G (2006) Fluid expulsion from the Dvurechenskii mud volcano (Black Sea): part II. Methane fluxes and new estimates of global methane discharge into the ocean via submarine mud volcanism. Earth Planet Sci Lett 248:544–559Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Deniz Karaca
    • 1
  • Tina Schleicher
    • 2
  • Christian Hensen
    • 1
    • 3
  • Peter Linke
    • 1
    • 3
  • Klaus Wallmann
    • 1
    • 3
  1. 1.Collaborative Research Center (SFB) 574GEOMAR, Helmholz Centre for Ocean Research KielKielGermany
  2. 2.Department of BioinformaticsUniversity of WürzburgWürzburgGermany
  3. 3.Helmholtz Centre for Ocean Research Kiel (GEOMAR)KielGermany

Personalised recommendations