International Journal of Earth Sciences

, Volume 103, Issue 7, pp 2063–2079 | Cite as

Radiative forcing and climate impact resulting from SO2 injections based on a 200,000-year record of Plinian eruptions along the Central American Volcanic Arc

  • D. Metzner
  • S. Kutterolf
  • M. Toohey
  • C. Timmreck
  • U. Niemeier
  • A. Freundt
  • K. KrügerEmail author
Original Paper


We present for the first time a self-consistent methodology connecting volcanological field data to global climate model estimates for a regional time series of explosive volcanic events. Using the petrologic method, we estimated SO2 emissions from 36 detected Plinian volcanic eruptions occurring at the Central American Volcanic Arc (CAVA) during the past 200,000 years. Together with simple parametrized relationships collected from past studies, we derive estimates of global maximum volcanic aerosol optical depth (AOD) and radiative forcing (RF) describing the effect of each eruption on radiation reaching the Earth’s surface. In parallel, AOD and RF time series for selected CAVA eruptions are simulated with the global aerosol model MAECHAM5-HAM, which shows a relationship between stratospheric SO2 injection and maximum global mean AOD that is linear for smaller volcanic eruptions (<5 Mt SO2) and nonlinear for larger ones (≥5 Mt SO2) and is qualitatively and quantitatively consistent with the relationship used in the simple parametrized approximation. Potential climate impacts of the selected CAVA eruptions are estimated using an earth system model of intermediate complexity by RF time series derived by (1) directly from the global aerosol model and (2) from the simple parametrized approximation assuming a 12-month exponential decay of global AOD. We find that while the maximum AOD and RF values are consistent between the two methods, their temporal evolutions are significantly different. As a result, simulated global maximum temperature anomalies and the duration of the temperature response depend on which RF time series is used, varying between 2 and 3 K and 60 and 90 years for the largest eruption of the CAVA dataset. Comparing the recurrence time of eruptions, based on the CAVA dataset, with the duration of climate impacts, based on the model results, we conclude that cumulative impacts due to successive eruptions are unlikely. The methodology and results presented here can be used to calculate approximate volcanic forcings and potential climate impacts from sulfur emissions, sulfate aerosol or AOD data for any eruption that injects sulfur into the tropical stratosphere.


Volcanic eruptions Radiative forcing CAVA Climate Petrologic method 



This publication is contribution no. 204 of the Sonderforschungsbereich 574 “Volatiles and Fluids in Subduction Zones” at Kiel University. For providing the model code of CLIMBER-2 we would like to thank the PIK and Viktor Brovkin (MPI-M) for his helpful assistance with the model set-up. The authors acknowledge stimulating discussion within the MPI-M Super Volcano project. We would also like to thank the 2 anonymous reviewers and the co-editor Ralf Halama for their large effort by carefully reading this manuscript and by giving very helpful comments.


  1. Ammann C, Meehl GA, Washington WM, Zender CS (2003) A monthly and latitudinally volcanic forcing dataset in simulations of the 20th century climate. Geophys Res Lett 30:1657. doi: 10.1029/2003GL016875 CrossRefGoogle Scholar
  2. Ansmann A, Mattis I, Wandinger U, Wagner F, Reichardt J, Deshler T (1997) Evolution of the Pinatubo aerosol: Raman lidar observations of particle optical depth, effective radius, mass, and surface area over Central Europe at 53.4°N. J Atmos Sci 54:2630–2641CrossRefGoogle Scholar
  3. Bauer E, Claussen M, Brovkin V (2003) Assessing climate forcings of the Earth system for the past millennium. Geophys Res Lett 30:1276. doi: 10.1029/2002GL016639 CrossRefGoogle Scholar
  4. Bekki S (1995) Oxidation of volcanic SO2: a sink for stratospheric OH and H2O. Geophys Res Lett 22:913–916CrossRefGoogle Scholar
  5. Bluth GJS, Doiron SD, Schnetzler CC, Krueger AJ, Walter LS (1992) Global tracking of the SO2 clouds from the June, 1991 Mount Pinatubo eruptions. Geophys Res Lett 19:151–154CrossRefGoogle Scholar
  6. Brovkin V, Bendtsen J, Claussen M, Ganopolski A, Kubatzki C, Petoukhov V, Andreev A (2002) Carbon cycle, vegetation, and climate dynamics in the Holocene: experiments with the CLIMBER-2 model. Glob Biogeochem Cycl 16:1139. doi: 10.1029/2001GB001662 CrossRefGoogle Scholar
  7. Brovkin V, Petoukhov V, Claussen M, Bauer E, Archer D, Jaeger C (2009) Geoengineering climate by stratospheric sulfur injections: earth system vulnerability to technological failure. Clim Chang 92:243–259. doi: 10.1007/s10584-008-9490-1 CrossRefGoogle Scholar
  8. Carey S, Sparks RSJ (1986) Quantitative models of fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125CrossRefGoogle Scholar
  9. Castellano E, Becagli S, Hansson M, Hutteli M, Petit JR, Rampino MR, Severi M, Steffensen JP, Traversi R, Udisti R (2005) Holocene volcanic history as recorded in the sulfate stratigraphy of the European Project for Ice Coring in Antarctica Dome C (EDC96) ice core. J Geophys Res 110:D06114.47Google Scholar
  10. Castellano E, Becagli S, Jouzel J, Migliori A, Severi M, Steffensen JP, Traversi R, Udisti R (2004) Volcanic eruption frequency over the last 45 ky as recorded in Epica-Dome C ice core (East Antarctica) and its relationship with climatic changes. Glob Planet Chang 42:195–205CrossRefGoogle Scholar
  11. CEL (1992) Desarrollo de los Recursos Geotermicos del Area Centro-Occidental de El Salvador. Prefactibilidad Geotermica del Area de Coatepeque. Reconocimiento Geotermico, Commision Ejecutiva Hidroelectrica del Rio Lempa, San SalvadorGoogle Scholar
  12. CEL (1995) Prestacion de Servicios de Consultoria para desarrollar Estudios Geocientificos Complementarios en el Campo Geotermico Berlin—Partida 4: Estudio Geovulcanica, y Recursos Geotermicos del Area Berlin-Chinameca. Prefactibilidad Geotermica del Area de Coatepeque. Reconocimiento Geotermico. Informe Definitivo. Internal report, Commision Ejecutiva Hidroelectrica del Rio Lempa, San SalvadorGoogle Scholar
  13. Chesner CA, Luhr J (2010) Melt inclusion study of the Toba Tuffs, Sumatra, Indonesia. J Volcanol Geotherm Res. doi: 10.1016/j.jvolgeores.2010.06.001 Google Scholar
  14. Claussen M, Kubatzki C, Brovkin V, Ganopolski A, Hoelzmann P, Pachur H-J (1999) Simulation of an abrupt change in Saharan vegetation in the Mid-Holocene. Geophys Res Lett 26:2037–2040CrossRefGoogle Scholar
  15. Cole-Dai J, Ferris D, Lanciki A, Savarino J, Baroni M, Thiemens MH (2009) Cold decade (AD 1810–1819) caused by Tambora (1815) and another (1809) stratospheric volcanic eruption. Geophys Res Lett 36. doi: 10.1029/2009GL040882
  16. Cole-Dai J (2010) Volcanoes and climate. Wiley Interdiscip Rev Clim Chang 1:824–839. doi: 10.1002/wcc.76 Google Scholar
  17. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277CrossRefGoogle Scholar
  18. Crowley TJ, Kim K-Y (1999) Modeling the temperature response to forced climate change over the last six centuries. Geophys Res Lett 26(13):1901. doi: 10.1029/1999GL900347 CrossRefGoogle Scholar
  19. Deligne NI, Coles SG, Sparks RSJ (2010) Recurrence rates of large explosive volcanic eruptions. J Geophys Res 115:B06203. doi: 10.1029/2009JB006554 Google Scholar
  20. Devine JD, Sigurdsson H, Davis AN, Self S (1984) Estimates of sulfur and chlorine yield to the atmosphere from volcanic eruptions and potential climatic effect. J Geophys Res 89:6309–6325CrossRefGoogle Scholar
  21. Dutton EG, Christy JR (1992) Solar radiative forcing at selected locations and evidence for global lower tropospheric cooling following the eruptions of El Chichón and Pinatubo. Geophys Res Lett 19:2313–2316CrossRefGoogle Scholar
  22. Free M, Robock A (1999) Global warming in the context of the Little Ice Age. J Geophys Res 104(D16):19057–19070. doi: 10.1029/1999JD900233 CrossRefGoogle Scholar
  23. Ganopolski A, Kubatzki C, Claussen M, Brovkin V, Petoukhov V (1998) The influence of vegetation–atmosphere–ocean interaction on climate during the Mid-Holocene. Science 280:1916–1919CrossRefGoogle Scholar
  24. Ganopolski A, Petoukhov V, Rahmstorf S, Brovkin V, Claussen M, Eliseev A, Kubatzki C (2000) CLIMBER-2: a climate system model of intermediate complexity. Part II: model sensitivity. Clim Dyn 17:735–751CrossRefGoogle Scholar
  25. Gao C, Oman L, Robock A, Stenchikov GL (2007) Atmospheric volcanic loading derived from bipolar ice cores: accounting for the spatial distribution of volcanic deposition. J Geophys Res 112(D9). doi: 10.1029/2006JD007461
  26. Gao C, Robock A, Ammann C (2008) Volcanic forcing of climate over the past 1500 years: an improved ice-core-based index for climate models. J Geophys Res 113. doi: 10.1029/2008JD010239
  27. Giorgetta MA, Manzini E, Roeckner E, Esch M, Bengtsson L (2006) Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model. J Clim 19:3882. doi: 10.1175/JCLI38301 CrossRefGoogle Scholar
  28. Guo S (2004) Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors. Geochem Geophys Geosyst 5(4). doi: 10.1029/2003GC000654
  29. Hamill P, Kiang CS, Cadle RD (1977) The nucleation of H2SO4–H2O solution aerosol particles in the stratosphere. J Atmos Sci 34:150–162CrossRefGoogle Scholar
  30. Hammer CU (1980) Acidity of polar ice cores in relation to absolute dating, past volcanism and radio echoes. J Glaciol 25:359–372Google Scholar
  31. Hansen J, Travis LD (1974) Light scattering in planetary atmospheres. Space Sci Rev 16:527–610CrossRefGoogle Scholar
  32. Hansen J, Sato M, Ruedy R, Nazarenko L, Lacis A, Schmidt GA, Russell G, Aleinov I, Bauer M, Bauer S, Bell N, Cairns B, Canuto V, Chandler M, Cheng Y, Del Genio A, Faluvegi G, Fleming E, Friend A, Hall T, Jackman C, Kelley M, Kiang N, Koch D, Lean J, Lerner J, Lo K, Menon S, Miller R, Minnis P, Novakov T, Oinas V, Perlwitz J, Perlwitz J, Rind D, Romanou A, Shindell D, Stone P, Sun S, Tausnev N, Thresher D, Wielicki B, Wong T, Yao M, Zhang S (2005) Efficacy of climate forcings. J Geophys Res 110. doi: 10.1029/2005JD005776
  33. Hegerl GC, Crowley TJ, Allen M, Hyde WT, Pollack HN, Smerdon J, Zorita E (2007) Detection of human influence on a new, validated 1500-year temperature reconstruction. J Clim 20:650–666CrossRefGoogle Scholar
  34. Holton JR, Haynes PH, McIntyre ME, Douglass AR, Rood RB, Pfister L (1995) Stratosphere–troposphere exchange. Rev Geophys 33:403–439CrossRefGoogle Scholar
  35. Hyde WT, Crowley TJ (2000) Probability of future climatically significant volcanic eruptions. J Clim 13:1445–1450CrossRefGoogle Scholar
  36. Jaeger H, Uchino O, Nagai T, Fujimoto T, Freudenthaler V, Homburg F (1995) Groundbased remote sensing of the decay of the Pinatubo eruption cloud at three Northern Hemisphere sites. Geophys Res Lett 22:607–610CrossRefGoogle Scholar
  37. Jansen E, Overpeck J, Briffa KR, Duplessy J-C, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WR, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Palaeoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 66Google Scholar
  38. Jones GS, Gregory J, Stott P, Tett S, Thorp R (2005) An AOGCM simulation of the climate response to a volcanic super-eruption. Clim Dyn 25:725–738. doi: 10.1007/s00382-005-0066-8 CrossRefGoogle Scholar
  39. Kempter KA, Benner SG, Williams SN (1996) Rincón de la Vieja volcano, Guanacaste province, Costa Rica: geology of the southwestern flank and hazards implications. J Volcanol Geotherm Res 71:109–127CrossRefGoogle Scholar
  40. Koch AJ, McLean H (1975) Pleistocene tephra and ash-flow deposits in the volcanic highlands of Guatemala. Geol Soc Am Bull 86:529–541CrossRefGoogle Scholar
  41. Kurbatov AV, Zielinski GA, Dunbar NW, Mayewski PA, Meyerson EA, Sneed SB, Taylor KC (2006) A 12,000 year record of explosive volcanism in the Siple Dome Ice Core, West Antarctica. J Geophys Res 111:D12307. doi: 10.1029/2005JD006072 CrossRefGoogle Scholar
  42. Kutterolf S, Freundt A, Peréz W (2008) Pacific offshore record of plinian arc volcanism in Central America: 1. Tephra volumes and erupted masses. Geochem Geophys Geosyst 9(2). doi: 10.1029/2007GC001791
  43. Kutterolf S, Freundt A, Peréz W, Wehrmann H, Schminke H-U (2007) Late Pleistocene to Holocene temporal succession and magnitudes of highly-explosive volcanic eruptions in west-central Nicaragua. J Volcanol Geotherm Res 163:55–82CrossRefGoogle Scholar
  44. Long CS, Stowe LL (1994) Using the NOAA/AVHRR to study stratospheric aerosol optical thickness following the Mt. Pinatubo eruption. Geophys Res Lett 21:2215–2218CrossRefGoogle Scholar
  45. McCormick MP, Veiga RE (1992) SAGE II measurements of early Pinatubo aerosols. Geophys Res Lett 19(2):155–158CrossRefGoogle Scholar
  46. McCormick MP, Thomason LW, Trepte CR (1995) Atmospheric effects of the Mt Pinatubo eruption. Nature 373:299–404CrossRefGoogle Scholar
  47. Miller GH, Geirsdóttir Á, Zhong Y, Larsen DJ, Otto-Bliesner BL, Holland MM, Bailey DA, Refsnider KA, Lehman SJ, Southon JR, Anderson C, Björnsson H, Thordarson T (2012) Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea–ice/ocean feedbacks. Geophys Res Lett 39:L02708. doi: 10.1029/2011GL050168 CrossRefGoogle Scholar
  48. Newhall CG (1981) Geology of the Lake Atitlán area, Guatemala: a study of subduction zone volcanism and caldera formation. PhD thesis, Dartmouth College, Hanover, 364Google Scholar
  49. Niemeier U, Timmreck C, Graf H-F, Kinne S, Rast S, Self S (2009) Initial fate of fine ash and sulfur from large volcanic eruptions. ACP 9:9043–9057. Google Scholar
  50. Oman L, Robock A, Stenchikov GL, Thordarson T, Koch D, Shindel DT, Gao C (2006) Modeling the distribution of the volcanic aerosol cloud from the 1783–1784 Laki eruption. J Geophys Res 111:D12209. doi: 10.1029/2005JD006899 CrossRefGoogle Scholar
  51. Partida EG, Gutiérrez AG, Rodríguez VT (1997) Thermal and petrologic study of the CH-A well from the Chipilapa-Ahuachapán geothermal area, El Salvador. Geothermics 26:701–713CrossRefGoogle Scholar
  52. Petoukhov V, Ganopolski A, Brovkin V, Claussen M, Eliseev A, Kubatzki C, Rahmstorf S (2000) CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate. Clim Dyn 16:1–17CrossRefGoogle Scholar
  53. Pinto JP, Turco RP, Toon OB (1989) Self-limiting physical and chemical effects in volcanic eruption clouds. J Geophys Res 94:11165–11174CrossRefGoogle Scholar
  54. Pyle DM, Beattie PD, Bluth GJS (1996) Sulphur emissions to the stratosphere from explosive volcanic eruptions. Bull Volcanol 57:663–671CrossRefGoogle Scholar
  55. Rampino MR, Self S (1992) Volcanic winter and accelerated glaciations following the Toba super-eruption. Nature 359:50–52CrossRefGoogle Scholar
  56. Read WG, Froidevaux L, Waters JW (1993) Microwave limb sounder measurements of 25 stratospheric SO2 from the Mt. Pinatubo volcano. Geophys Res Lett 20:1299–1302CrossRefGoogle Scholar
  57. Robock A (1984) Climate model simulations of the effects of the El Chichón eruption. Geofísica Internacional 23:403–414Google Scholar
  58. Robock A, Free MP (1995) Ice cores as an index of global volcanism from 1850 to the present. J Geophys Res 100:11549–11567CrossRefGoogle Scholar
  59. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219CrossRefGoogle Scholar
  60. Robock A, Ammann CM, Oman L, Sindell D, Levis S, Stenchikov G (2009) Did the Toba volcanic eruption of ~74 ka B. P. produce widespread glaciation? J Geophys Res 114:D10107CrossRefGoogle Scholar
  61. Roeckner E, Baeuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5—part I. MPI Rep 349:127Google Scholar
  62. Rose WI (1987) Santa Maria, Guatemala: bimodal soda-rich calc-alkalic stratovolcano. J Volcanol Geotherm Res 33:109–129CrossRefGoogle Scholar
  63. Rose WI, Newhall CG, Bornhorst TJ, Self S (1987) Quaternary silicic pyroclastic deposits of Atitlán Caldera, Guatemala. J Volcanol Geotherm Res 33:57–80CrossRefGoogle Scholar
  64. Russell PB, Livingston JM, Pueschel RF, Pollack JB, Brooks S, Hamill P, Hughes J, Thomason L, Stowe L, Deshler T, Dutton E (1996) Global to microscale evolution of the Pinatubo volcanic aerosol, derived from diverse measurements and analyses. J Geophys Res 101:18745–18763CrossRefGoogle Scholar
  65. Santer BD, Wigley TML, Doutriaux C, Boyle JS, Hansen JE, Jones PD, Meehl GA, Roeckner E, Sengupta S, Taylor KE (2001) Accounting for the effects of volcanoes and ENSO in comparisons of modeled and observed temperature trends. J Geophys Res 106:28033–28059CrossRefGoogle Scholar
  66. Sato M, Hansen JE, McCormick MP, Pollack JB (1993) Stratospheric aerosol optical depth, 1850–1990. J Geophys Res 98(D12):22987–22994CrossRefGoogle Scholar
  67. Self S, Gertisser R, Thordarson T, Rampino MR, Wolff JA (2004) Magma volume, volatile emissions, and stratospheric aerosols from the 1815 eruption of Tambora. Geophys Res Lett 31:L20608. doi: 10.1029/2004GL020925
  68. Self S, King AJ (1996) Petrology and sulfur and chlorine emissions of the 1963 eruption of Gunung Agung, Bali, Indonesia. Bull Volcanol 58:263–285. doi: 10.1007/s004450050139 CrossRefGoogle Scholar
  69. Self S, Rampino MR, Carr MJ (1989) A reappraisal of the 1835 eruption of Cosigüina and its atmospheric impact. Bull Volcanol 52:57–65CrossRefGoogle Scholar
  70. SPARC Report No. 4 (2006) Assessment of Stratospheric Aerosol Properties (ASAP), WCRP-124, WMO/TD-No. 1295Google Scholar
  71. Sparks RSJ, Bursik MI, Carey SN, Gilbert JS, Glaze LS, Sigurdsson H, Woods AW (1997) Volcanic plumes. Wiley, ChichesterGoogle Scholar
  72. Stenchikov G, Hamilton K, Stouffer RJ, Robock A, Ramaswamy V, Santer B, Graf H-F (2006) Arctic oscillation response to volcanic eruptions in the IPCC AR4 climate models. J Geophys Res 111:D07107. doi: 10.1029/2005JD006286 Google Scholar
  73. Stenchikov G, Delworth TL, Ramaswamy V, Stouffer RJ, Wittenberg A, Zeng F (2009) Volcanic signals in oceans. J Geophys Res 114:D16104. doi: 10.1029/2008JD011673 CrossRefGoogle Scholar
  74. Stier P, Feichter J, Kinne S, Kloster S, Vignati E, Wilson J, Ganzeveld L, Tegen I, Werner M, Balkanski Y, Schulz M, Boucher O, Minikin A, Petzold A (2005) The aerosol-climate model ECHAM5-HAM. Atmos Chem Phys 5:1125–1156CrossRefGoogle Scholar
  75. Stothers RB (1984a) The great Tambora eruption in 1815 and its aftermath. Science 224:1191–1198CrossRefGoogle Scholar
  76. Stothers RB (1984b) Mystery cloud of AD 536. Nature 307:344–345CrossRefGoogle Scholar
  77. Stothers RB (1996) Major optical depth perturbations to the stratosphere from volcanic eruptions: Pyrheliometric period, 1881–1978. J Geophys Res 101:3901–3920CrossRefGoogle Scholar
  78. Thompson DWJ, Wallace JM, Jones PD, Kennedy JJ (2009) Identifying signatures of natural climate variability in time series of global-mean surface temperature: methodology and Insights. J Clim 22:6120–6141CrossRefGoogle Scholar
  79. Tie XX, Lin X, Brasseur G (1994) Two-dimensional coupled dynamical/chemical/microphysical simulation of global distribution of El Chichón volcanic aerosols. J Geophys Res 99:16779–16792CrossRefGoogle Scholar
  80. Timmreck C (2012) Modeling the climatic effects of volcanic eruptions, invited review paper revised to Wiley Interdisciplinary Reviews: Climate ChangeGoogle Scholar
  81. Timmreck C, Graf H-F, Lorenz SJ, Niemeier U, Zanchettin D, Matei D, Jungclaus JH, Crowley TJ (2010) Aerosol size confines climate response to volcanic super-eruptions. Geophys Res Lett 37:L24705. doi: 10.1029/2010GL045464 CrossRefGoogle Scholar
  82. Timmreck C, Lorenz SJ, Crowley TJ, Kinne S, Raddatz TJ, Thomas MA, Jungclaus JH (2009) Limited temperature response to the very large AD 1258 volcanic eruption. Geophys Res Lett 36:L21708. doi: 10.1029/2009GL040083
  83. Toohey M, Krüger K, Niemeier U, Timmreck C (2011) The influence of eruption season on the global aerosol evolution and radiative impact of tropical volcanic eruptions. ACP 11:12351–12367. doi: 10.5194/acp-11-12351-2011 Google Scholar
  84. Waugh DW, Hall TM (2002) Age of stratospheric air: theory, observations, and models. Rev Geophys 40. doi: 10.1029/2000RG000101
  85. Wundermann RL (1982) Amatilàn, an active resurgent caldera immediately south of Guatemala City, Guatemala, Geology and Geological Engineering. PhD thesis, Michigan Technology University, 192Google Scholar
  86. Wundermann RL, Rose WI (1984) Amatitlàn, an actively resurging caldron 10 km south of Guatemala City. J Geophys Res 89:8525–8539CrossRefGoogle Scholar
  87. Zielinski GA (1995) Stratospheric loading and optical depth estimates of explosive volcanism over the last 2100 years derived from the Greenland Ice Sheet Project 2 ice core. J Geophys Res 100:20937–20955CrossRefGoogle Scholar
  88. Zielinski GA, Mayewski PA, Meeker LD, Whitlow S, Twickler M (1996) A 110,000 year record of explosive volcanism from the GISP2 (Greenland) ice core. Quat Res 45:109–118CrossRefGoogle Scholar
  89. Zielinski GA, Mayewski PA, Meeker LD, Gronvold K, Germani MS, Whitlow S, Twickler MS, Taylor K (1997) Volcanic aerosol records and tephrochronology of the Summit, Greenland, ice cores. J Geophys Res 102:26625–26640CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • D. Metzner
    • 1
  • S. Kutterolf
    • 1
  • M. Toohey
    • 1
  • C. Timmreck
    • 2
  • U. Niemeier
    • 2
  • A. Freundt
    • 1
  • K. Krüger
    • 1
    Email author
  1. 1.GEOMAR, Helmholtz Centre for Ocean Research KielKielGermany
  2. 2.Max Planck Institute for MeteorologyHamburgGermany

Personalised recommendations