International Journal of Earth Sciences

, Volume 102, Issue 2, pp 415–433 | Cite as

Timing, styles, and kinematics of Cambro–Ordovician extension in the Teplá–Barrandian Unit, Bohemian Massif, and its bearing on the opening of the Rheic Ocean

Original Paper

Abstract

This paper describes late Cambrian dikes and Early Ordovician volcano-sedimentary successions of the Prague Basin, Bohemian Massif, to discuss the timing and kinematics of breakup of the northern margin of Gondwana. Andesitic dikes indicate minor E–W crustal extension in the late Cambrian, whereas the Tremadocian to Dapingian lithofacies distribution and linear array of depocenters suggest opening of this Rheic Ocean rift-related basin during NW–SE pure shear-dominated extension. This kinematic change was associated with the onset of basic submarine volcanism, presumably resulting from decompression mantle melting as the amount of extension increased. We conclude from these inferences and from a comparison with other Avalonian–Cadomian terranes that the rifting along the northern Gondwana margin was a two-stage process involving one major pulse of terrane detachment in the early Cambrian and one in the Early Ordovician. While the geodynamic cause for the former phase remains unclear, but still may include effects of Cadomian subduction (roll-back, slab break-off), isostatic rebound, or mantle plume, the incipient stage of the latter phase may have been triggered by the onset of subduction of the Iapetus Ocean at around 510 Ma, followed by advanced extension broadly coeval (Tremadocian to Darriwilian) in large portions of the Avalonian–Cadomian belt. Unequal amounts of extension resulted in the separation and drift of some terranes, while other portions of the belt remained adjacent to Gondwana.

Keywords

Anisotropy of magnetic susceptibility (AMS) Bohemian Massif Extension Rheic Ocean Rifting Teplá–Barrandian Unit 

Notes

Acknowledgments

We gratefully acknowledge Martin Oczlon and Ulf Linnemann for their very constructive reviews which helped to improve the original manuscript significantly. Michal Mergl is thanked for showing us some of the well-hidden dikes in the Plzeň area. Financial support for this research was provided by the Grant Agency of the Czech Republic through Grants No. 205/09/0630 (to František Holub) and No. P210/10/2351 (to Petr Pruner), and by the Ministry of Education, Youth and Sports of the Czech Republic through Research Plans No. MSM0021620855 and SVV261203. This study is also part of the Ph.D. research of Jaroslava Hajná.

Supplementary material

531_2012_811_MOESM1_ESM.xls (63 kb)
Supplementary material 1 (XLS 63 kb)

References

  1. Arenas R, Martínez Catalán JR, Sánchez Martínez S, Fernández-Suárez J, Andonaegui P, Pearce JA, Corfu F (2007) The Vila de Cruces ophiolite: a remnant of the early Rheic Ocean in the Variscan suture of Galicia (northwest Iberian Massif). J Geol 115:129–148CrossRefGoogle Scholar
  2. Babuška V, Plomerová J, Vecsey L (2008) Mantle fabric of western Bohemian Massif (central Europe) constrained by 3D seismic P and S anisotropy. Tectonophysics 462:149–163CrossRefGoogle Scholar
  3. Babuška V, Fiala J, Plomerová J (2010) Bottom to top lithosphere structure and evolution of western Eger Rift (Central Europe). Int J Earth Sci 99:891–907CrossRefGoogle Scholar
  4. Belka Z, Ahrendt H, Franke W, Wemmer K (2000) The Baltica–Gondwana suture in central Europe: evidence from K–Ar ages of detrital muscovites and biogeographical data. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt, vol 179. Geological Society, London, Special Publications, pp 87–102Google Scholar
  5. Belka Z, Valverde-Vaquero P, Dörr W, Ahrendt H, Wemmer K, Franke W, Schäfer J (2002) Accretion of first Gondwana-derived terranes at the margin of Baltica. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe, vol 201. Geological Society, London, Special Publications, pp 19–36Google Scholar
  6. Borradaile GJ, Jackson M (2004) Anisotropy of magnetic susceptibility (AMS): magnetic petrofabrics of deformed rocks. In: Martín-Hernández F, Lüneburg CM, Auborg C, Jackson M (eds) Magnetic fabric: methods and application, vol 238. Geological Society, London, Special Publications, pp 299–360Google Scholar
  7. Borradaile GJ, Jackson M (2010) Structural geology, petrofabrics and magnetic fabrics (AMS, AARM, AIRM). J Struct Geol 32:1519–1551CrossRefGoogle Scholar
  8. Bouchez JL (1997) Granite is never isotropic: an introduction to AMS studies of granitic rocks. In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer Academic Publishers, Dordrecht, pp 95–112Google Scholar
  9. Cañón-Tapia E (2004) Anisotropy of magnetic susceptibility of lava flows and dykes: a historical account. In: Martín-Hernández F, Lüneburg CM, Aubourg C, Jackson M (eds) Magnetic fabric: methods and applications, vol 238. Geological Society, London, Special Publications, pp 205–225Google Scholar
  10. Cañón-Tapia E, Chávez-Álvarez MJ (2004) Theoretical aspects of particle movement in flowing magma: implication for the anisotropy of magnetic susceptibility of dykes and lava flows. In: Martín-Hernández F, Lüneburg CM, Aubourg C, Jackson M (eds) Magnetic fabric: methods and applications, vol 238. Geological Society, London, Special Publications, pp 227–249Google Scholar
  11. Chadima M, Cajz V, Týcová P (2009) On the interpretation of normal and inverse magnetic fabric in dikes: examples from the Eger Graben, NW Bohemian Massif. Tectonophysics 466:47–63CrossRefGoogle Scholar
  12. Chichorro M, Pereira MF, Díaz-Azpiroz M, Williams IS, Fernández C, Pin C, Silva JB (2008) Cambrian ensialic rift-related magmatism in the Ossa-Morena Zone (Évora-Aracena metamorphic belt, SW Iberian Massif): Sm–Nd isotopes and SHRIMP zircon U–Th–Pb geochronology. Tectonophysics 461:91–113CrossRefGoogle Scholar
  13. Chlupáč I, Havlíček V, Kříž J, Kukal Z, Štorch P (1998) Palaeozoic of the Barrandian (Cambrian to Devonian). Czech Geological Survey, PragueGoogle Scholar
  14. Cocks LRM (2000) The early Palaeozoic geography of Europe. J Geol Soc Lond 157:1–10CrossRefGoogle Scholar
  15. Cocks LRM, Fortey RA (1982) Faunal evidence for oceanic separations in the Palaeozoic of Britain. J Geol Soc Lond 139:465–478CrossRefGoogle Scholar
  16. Cocks LRM, Fortey RA (2009) Avalonia: a long-lived terrane in the Lower Palaeozoic? In: Bassett MG (ed) Early Palaeozoic peri-Gondwana terranes: new insights from tectonics and biogeography, vol 325. Geological Society, London, Special Publications, pp 141–155Google Scholar
  17. Cocks LRM, Torsvik TH (2002) Earth geography from 500 to 400 million years ago: a faunal and palaeomagnetic review. J Geol Soc Lond 159:631–644CrossRefGoogle Scholar
  18. Cocks LRM, McKerrow WS, van Staal CR (1997) The margins of Avalonia. Geol Mag 134:627–636CrossRefGoogle Scholar
  19. Crowley QG, Floyd PA, Winchester JA, Franke W, Holland JG (2000) Early Palaeozoic rift-related magmatism in Variscan Europe: fragmentation of the Armorican Terrane Assemblage. Terra Nova 12:171–180CrossRefGoogle Scholar
  20. Dornsiepen UF (1979) Rb–Sr whole rock ages within the European Hercynian, a review. Krystalinikum 14:33–49Google Scholar
  21. Dörr W, Fiala J, Vejnar Z, Zulauf G (1998) U–Pb zircon ages and structural development of metagranitoids of the Teplá crystalline complex: evidence for pervasive Cambrian plutonism within the Bohemian massif (Czech Republic). Geol Rundsch 87:135–149CrossRefGoogle Scholar
  22. Dörr W, Zulauf G, Fiala J, Franke W, Vejnar Z (2002) Neoproterozoic to Early Cambrian history of an active plate margin in the Teplá–Barrandian unit—a correlation of U–Pb isotopic-dilution-TIMS ages (Bohemia, Czech Republic). Tectonophysics 352:65–85CrossRefGoogle Scholar
  23. Dostal J, Patočka F, Pin C (2001) Middle/Late Cambrian intracontinental rifting in the central West Sudetes, NE Bohemian Massif (Czech Republic): geochemistry and petrogenesis of bimodal volcanic rocks. Geol J 36:1–17CrossRefGoogle Scholar
  24. Drost K (2008) Sources and geotectonic setting of Late Neoproterozoic–Early Paleozoic volcano-sedimentary successions of the Teplá–Barrandian unit (Bohemian Massif): evidence from petrographical, geochemical, and isotope analyses. Geol Saxon 54:1–165Google Scholar
  25. Drost K, Linnemann U, McNaughton N, Fatka O, Kraft P, Gehmlich M, Tonk C, Marek J (2004) New data on the Neoproterozoic–Cambrian geotectonic setting of the Teplá–Barrandian volcano-sedimentary successions: geochemistry, U–Pb zircon ages, and provenance (Bohemian Massif, Czech Republic). Int J Earth Sci 93:742–757CrossRefGoogle Scholar
  26. Drost K, Romer RL, Linnemann U, Fatka O, Kraft P, Marek J (2007) Nd–Sr–Pb isotopic signatures of Neoproterozoic–Early Paleozoic siliciclastic rocks in response to changing geotectonic regimes: a case study from the Barrandian area (Bohemian Massif, Czech Republic). In: Linnemann U, Nance D, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian active margin to Alleghenian–Variscan collision. Geol Soc Am Spec Paper 423:191–208Google Scholar
  27. Drost K, Gerdes A, Jeffries T, Linnemann U, Storey C (2011) Provenance of Neoproterozoic and early Paleozoic siliciclastic rocks of the Teplá–Barrandian unit (Bohemian Massif): evidence from U–Pb detrital zircon ages. Gondwana Res 19:213–231CrossRefGoogle Scholar
  28. Etxebarria M, Chalot-Prat F, Apraiz A, Eguíluz L (2006) Birth of a volcanic passive margin in Cambrian time: rift paleogeography of the Ossa-Morena Zone, SW Spain. Precambrian Res 147:366–386CrossRefGoogle Scholar
  29. Fatka O, Mergl M (2009) The ‘microcontinent’ Perunica: status and story 15 years after conception. In: Bassett MG (ed) Early Palaeozoic peri-Gondwana terranes: new insights from tectonics and biogeography, vol 325. Geological Society, London, Special Publications, pp 65–101Google Scholar
  30. Fatka O, Micka V, Szabad M, Vokáč V, Vorel T (2011) Nomenclature of Cambrian lithostratigraphy of the Skryje–Týřovice basin. Bull Geosci 86:841–858CrossRefGoogle Scholar
  31. Fernández RD, Castiñeiras P, Barreiro JG (2012) Age constraints on Lower Paleozoic convection system: magmatic events in the NW Iberian Gondwana margin. Gondwana Res 21:1066–1079CrossRefGoogle Scholar
  32. Fiala F (1971) Ordovician diabase volcanism and biotite lamprophyres of the Barrandian. J Geol Sci Geol 19:7–97Google Scholar
  33. Fiala F (1976) The Silurian doleritic diabases and ultrabasic rocks of the Barrandian area. Krystalinikum 12:47–77Google Scholar
  34. Floyd PA, Winchester JA, Seston R, Kryza R, Crowley QG (2000) Review of geochemical variation in Lower Palaeozoic metabasites from the NE Bohemian Massif: intracratonic rifting and plume–ridge interaction. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt, vol 179. Geological Society, London, Special Publications, pp 155–174Google Scholar
  35. Franke W (1999) Tectonic and plate tectonic units at the north Gondwana margin: evidence from the Central European Variscides. Abh Geol Bundesanst 54:7–13Google Scholar
  36. Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt, vol 179. Geological Society, London, Special Publications, pp 337–354Google Scholar
  37. Franke W (2006) The Variscan orogen in Central Europe: construction and collapse. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics, vol 32. Geological Society, London, Memoirs, pp 333–343Google Scholar
  38. Furnes H, Kryza R, Muszynski A, Pin C, Garmann LB (1994) Geochemical evidence for progressive, rift-related early Palaeozoic volcanism in the western Sudetes. J Geol Soc Lond 151:91–109CrossRefGoogle Scholar
  39. Gaggero L, Oggiano G, Funedda A, Buzzi L (2012) Rifting and arc-related early Paleozoic volcanism along the north Gondwana margin: geochemical and geological evidence from Sardinia (Italy). J Geol 120:273–292CrossRefGoogle Scholar
  40. Gebauer D (1993) Overview of geochronology. In: Bauberger W (ed) Explanations to the geological map of Bavaria 1:25000, sheet 6439 Tännesberg, pp 10–22Google Scholar
  41. Geyer G, Elicki O, Fatka O, Zylinska A (2008) Cambrian. In: McCann T (ed) The geology of Central Europe. Precambrian and Palaeozoic, vol 1. Geological Society, London, pp 155–202Google Scholar
  42. Hajná J (2012) Tectonic evolution of the central part of the Teplá–Barrandian unit. Dissertation, Charles University in PragueGoogle Scholar
  43. Hajná J, Žák J, Kachlík V, Chadima M (2010) Subduction-driven shortening and differential exhumation in a Cadomian accretionary wedge: the Teplá–Barrandian unit, Bohemian Massif. Precambrian Res 176:27–45CrossRefGoogle Scholar
  44. Hajná J, Žák J, Kachlík V (2011) Structure and stratigraphy of the Teplá–Barrandian Neoproterozoic, Bohemian Massif: a new plate-tectonic reinterpretation. Gondwana Res 19:495–508CrossRefGoogle Scholar
  45. Havlíček V (1963) Tectogenetic disruption of the Barrandian Paleozoic. J Geol Sci Geol 1:77–102Google Scholar
  46. Havlíček V (1971) Stratigraphy of the Cambrian of Central Bohemia. J Geol Sci Geol 20:7–52Google Scholar
  47. Havlíček V (1980) Development of Paleozoic basins in the Bohemian Massif (Cambrian–Lower Carboniferous). J Geol Sci Geol 34:31–65Google Scholar
  48. Havlíček V (1981) Development of a linear sedimentary depression exemplified by the Prague Basin (Ordovician–Middle Devonian; Barrandian area—central Bohemia). J Geol Sci Geol 35:7–48Google Scholar
  49. Havlíček V, Vaněk J, Fatka O (1994) Perunica microcontinent in the Ordovician (its position within the Mediterranean Province, series division, benthic and pelagic associations). J Geol Sci Geol 46:23–56Google Scholar
  50. Hrouda F (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys Surv 5:37–82CrossRefGoogle Scholar
  51. Hrouda F, Kahan Š (1991) The magnetic fabric relationship between sedimentary and basement nappes in the High Tatra Mountains, N. Slovakia. J Struct Geol 13:431–442CrossRefGoogle Scholar
  52. Hrubcová P, Środa P, Špičák A, Guterch A, Grad M, Keller GR, Brueckl E, Thybo H (2005) Crustal and uppermost mantle structure of the Bohemian Massif based on CELEBRATION 2000 data. J Geophys Res 110:B11305CrossRefGoogle Scholar
  53. Hrubcová P, Środa P, Grad M, Geissler WH, Guterch A, Vozár J, Hegedüs E, Sudetes 2003 Working Group (2010) From the Variscan to the Alpine Orogeny: crustal structure of the Bohemian Massif and the Western Carpathians in the light of the SUDETES 2003 seismic data. Geophys J Int 183:611–633CrossRefGoogle Scholar
  54. Ilnicki S (2012) Amphibolites from the Szklarska Poreba hornfels belt, West Sudetes, SW Poland: magma genesis and implications for the break-up of Gondwana. Int J Earth Sci 101:1253–1272Google Scholar
  55. Kachlík V, Patočka F (1998) Cambrian/Ordovician intracontinental rifting and Devonian closure of the rifting generated basins in the Bohemian Massif realms. Acta Univ Carol Geol 42:433–441Google Scholar
  56. Kalvoda J, Bábek O, Fatka O, Leichmann J, Melichar R, Nehyba S, Špaček P (2008) Brunovistulian terrane (Bohemian Massif, Central Europe) from late Proterozoic to late Paleozoic: a review. Int J Earth Sci 97:497–518CrossRefGoogle Scholar
  57. Kemnitz H, Romer RL, Oncken O (2002) Gondwana break-up and the northern margin of the Saxothuringian belt (Variscides of Central Europe). Int J Earth Sci 91:246–259CrossRefGoogle Scholar
  58. Keppie JD, Dostal J, Nance RD, Miller BV, Ortega-Rivera A, Lee JKW (2006) Circa 546 Ma plume-related dykes in the ~1 Ga Novillo Gneiss (east-central Mexico): evidence for the initial separation of Avalonia. Precambrian Res 147:342–353CrossRefGoogle Scholar
  59. Keppie JD, Dostal J, Murphy JB, Nance RD (2008) Synthesis and tectonic interpretation of the westernmost Paleozoic Variscan orogen in southern Mexico: from rifted Rheic margin to active Pacific margin. Tectonophysics 461:277–290CrossRefGoogle Scholar
  60. Kettner R (1916) On Cambrian igneous rocks in the Barrandian and their relationship to the Krušná hora beds (d ). Trans Czech Acad Caesar Franz Josef Sci Liter Art 25:1–49Google Scholar
  61. Kettner R, Kettnerová M (1918) On granodiorite and porphyry intrusions near Rokycany. Trans Czech Acad Caesar Franz Josef Sci Liter Art 26:1–19Google Scholar
  62. Klomínský J, Jarchovský T, Rajpoot GS (2010) Atlas of plutonic rocks and orthogneisses in the Bohemian Massif. Radioactive Waste Repository Authority of the Czech Republic, Technical Report TR-01-2010Google Scholar
  63. Kodym O (1936) Algonkium. In: Čepek L, Hynie O, Kodym O, Matějka A (eds) Explanations to the geological map of the Czechoslovak Republic, sheet 3952 Kladno, pp 11–20Google Scholar
  64. Kraft P, Kraft J (2003) Facies of the Klabava Formation (?Tremadoc–Arenig) and their fossil content (Barrandian area, Czech Republic). In: Albanesi GL, Beresi MS, Peralta SH (eds) Ordovician from the Andes. INSUGEO, Serie Correlación Geologica 17:309–314Google Scholar
  65. Kraft P, Kraft J (2006) Faunal responses to changes in the Prague Basin during Lower/Middle Ordovician. In: Sennikov NV, Kanygin OT, Obut OT, Kipriyanova TP (eds) Palaeogeography and global correlation of Ordovician events. Academic Publishing House Geo, Novosibirsk, pp 26–27Google Scholar
  66. Kraft P, Lehnert O, Frýda J (2004) Evolution of the Prague Basin reflecting the lifecycle of the Rheic Ocean. In: Kraft P, Linnemann U, Mazur S (eds) Gondwanan margin of the Rheic Ocean in the Bohemian Massif. Excursion guidebooks and abstracts, opening meeting of the IGCP project No. 497, Prague, p 101Google Scholar
  67. Kraft P, Lehnert O, Frýda J (2007) The history of a northern Gondwana rift-basin (Prague Basin) and its relation to evolution of the Rheic Ocean. Proceedings of the IGCP485 and IGCP497 joint conference, El Jadida, Morocco, pp 52–53Google Scholar
  68. Kříž J (1992) Silurian field excursions: Prague Basin (Barrandian), Bohemia. National Museum of Wales, Geological Series, no. 13Google Scholar
  69. Krs M, Krsová M, Pruner P, Havlíček V (1988) Palaeomagnetism, magnetism and palaeography of the Middle and Upper Cambrian rocks of the Barrandian area in the Bohemian Massif. J Geol Sci Appl Geophys 22:9–48Google Scholar
  70. Krs M, Krsová M, Pruner P (1997) Palaeomagnetism and palaeogeography of the Variscan and pre-Variscan formations of the Bohemian Massif. In: Vrána S, Štědrá V (eds) Geological model of western Bohemia related to the KTB borehole in Germany, J Geol Sci Geol 47:162–173Google Scholar
  71. Kukal Z (1966) The source of clastic material in the sediments of the Příbram–Jince Cambrian. J Geol Sci Geol 10:83–116Google Scholar
  72. Kukal Z (1971) Sedimentology of Cambrian deposits of the Barrandian area (Central Bohemia). J Geol Sci Geol 20:53–100Google Scholar
  73. Linnemann U, Gehmlich M, Tichomirowa M, Buschmann B, Nasdala L, Jonas P, Lützner H, Bombach K (2000) From Cadomian subduction to Early Palaeozoic rifting: the evolution of Saxo-Thuringia at the margin of Gondwana in the light of single zircon geochronology and basin development (Central European Variscides, Germany). In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt, vol 179. Geological Society, London, Special Publications, pp 131–153Google Scholar
  74. Linnemann U, McNaughton NJ, Romer RL, Gehmlich M, Drost K, Tonk C (2004) West African provenance for Saxo-Thuringia (Bohemian Massif): did Armorica ever leave pre-Pangean Gondwana? U/Pb-SHRIMP zircon evidence and the Nd-isotopic record. Int J Earth Sci 93:683–705CrossRefGoogle Scholar
  75. Linnemann U, Gerdes A, Drost K, Buschmann B (2007) The continuum between Cadomian orogenesis and opening of the Rheic Ocean: constraints from LA-ICP-MS U–Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, northeastern Bohemian Massif, Germany). In: Linnemann U, Nance D, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian active margin to Alleghenian–Variscan collision. Geol Soc Am Spec Paper 423:61–96Google Scholar
  76. Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A (2008a) The Cadomian Orogeny and the opening of the Rheic Ocean: the diacrony of geotectonic processes constrained by LA-ICP-MS U–Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461:21–43CrossRefGoogle Scholar
  77. Linnemann U, D’Lemos RS, Drost K, Jeffries T, Gerdes A, Romer RL, Samson SD, Strachan, RA (2008b) Cadomian tectonics. In: McCann T (ed) The geology of Central Europe. Precambrian and Palaeozoic, vol 1. Geological Society, London, pp 103–154Google Scholar
  78. Linnemann U, Drost K, Elicki O, Gaitzsch B, Gehmlich M, Hahn T, Kroner U, Romer RL (2008c) Das Saxothuringikum. Staatliche Naturhistorische Sammlungen, Museum für Mineralogie und Geologie, DresdenGoogle Scholar
  79. López-Guijarro R, Armendáriz M, Quesada C, Fernández-Suárez J, Murphy JB, Pin C, Bellido F (2008) Ediacaran–Palaeozoic tectonic evolution of the Ossa Morena and Central Iberian zones (SW Iberia) as revealed by Sm–Nd isotope systematics. Tectonophysics 461:202–214CrossRefGoogle Scholar
  80. Mašek J, Straka J, Hrazdíra P, Pálenský P, Štěpánek P, Hůla P (1997) Křivoklátsko. Geological and nature conservation map of the protected landscape area and biosphere reserve 1:50,000. Czech Geological Survey, PragueGoogle Scholar
  81. Melichar R (2004) Tectonics of the Prague Synform: a hundred years of scientific discussion. Krystalinikum 30:167–187Google Scholar
  82. Murphy JB, Eguiluz L, Zulauf G (2002) Cadomian orogens, peri-Gondwanan correlatives and Laurentia–Baltica connections. Tectonophysics 352:1–9CrossRefGoogle Scholar
  83. Murphy JB, Pisarevsky SA, Nance RD, Keppie JD (2004) Neoproterozoic–Early Paleozoic evolution of peri-Gondwanan terranes: implications for Laurentia–Gondwana connections. Int J Earth Sci 93:659–682CrossRefGoogle Scholar
  84. Murphy JB, Gutiérrez-Alonso G, Nance RD, Fernández-Suárez J, Keppie JD, Quesada C, Strachan RA, Dostal J (2006) Origin of the Rheic Ocean: rifting along a Neoproterozoic suture? Geology 34:325–328CrossRefGoogle Scholar
  85. Musil V (2004) Geology, petrology, and geochemistry of volcanic rocks of the Křivoklát–Rokycany belt near Skryje. Diploma thesis, Charles University in PragueGoogle Scholar
  86. Nance RD, Linnemann U (2008) The Rheic Ocean: origin, evolution, and significance. GSA Today 18:4–12CrossRefGoogle Scholar
  87. Nance RD, Murphy JB, Keppie JD (2002) A Cordilleran model for the evolution of Avalonia. Tectonophysics 352:11–31CrossRefGoogle Scholar
  88. Nance RD, Miller BV, Keppie JD, Murphy JB, Dostal J (2007) Vestige of the Rheic Ocean in North America: the Acatlán Complex of southern Mexico. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian active margin to Alleghenian–Variscan collision. Geol Soc Am Spec Paper 423:437–452Google Scholar
  89. Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, Strachan RA, Woodcock NH (2010) Evolution of the Rheic Ocean. Gondwana Res 17:194–222CrossRefGoogle Scholar
  90. Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, Strachan RA, Woodcock NH (2012) A brief history of the Rheic Ocean. Geosci Frontiers 3:125–135CrossRefGoogle Scholar
  91. Oczlon MS, Seghedi A, Carrigan CW (2007) Avalonian and Baltican terranes in the Moesian Platform (southern Europe, Romania, and Bulgaria) in the context of Caledonian terranes along the southwestern margin of the East European craton. In: Linnemann U, Nance D, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian active margin to Alleghenian–Variscan collision. Geol Soc Am Spec Paper 423:375–400Google Scholar
  92. Ortega-Obregon C, Murphy JB, Keppie JD (2010) Geochemistry and Sm–Nd isotopic systematics of Ediacaran–Ordovician, sedimentary and bimodal igneous rocks in the western Acatlán Complex, southern Mexico: evidence for rifting on the southern margin of the Rheic Ocean. Lithos 114:155–167CrossRefGoogle Scholar
  93. Patočka F, Smulikowski W (2000) Early Palaeozoic intracontinental rifting and incipient oceanic spreading in the Czech/Polish East Krkonoše/Karkonosze Complex, West Sudetes (NE Bohemian Massif). Geol Sudetica 33:1–15Google Scholar
  94. Patočka F, Štorch P (2004) Evolution of geochemistry and depositional settings of Early Palaeozoic siliciclastics of the Barrandian (Teplá–Barrandian Unit, Bohemian Massif, Czech Republic). Int J Earth Sci 93:728–741CrossRefGoogle Scholar
  95. Patočka F, Vlašímský P, Blechová K (1993) Geochemistry of Early Paleozoic volcanics of the Barrandian basin (Bohemian Massif, Czech Republic): implications for paleotectonic reconstructions. Jahrb Geol Bundesanst 136:873–896Google Scholar
  96. Patočka F, Galle A, Vavrdová M, Vlašímský P (1994) Early Paleozoic evolution of the Barrandian Terrane, Bohemian Massif, Czech Republic: paleotectonic implications of sedimentary, fossil and volcanic record. J Czech Geol Soc 39:82–83Google Scholar
  97. Patočka F, Fajst M, Kachlík V (2000) Mafic–felsic to mafic–ultramafic Early Palaezoic magmatism of the West Sudetes (NE Bohemian Massif): the South Krkonoše complex. Z Geol Wiss 28:177–210Google Scholar
  98. Patočka F, Pruner P, Štorch P (2003) Palaeomagnetism and geochemistry of Early Palaeozoic rocks of the Barrandian (Teplá–Barrandian Unit, Bohemian Massif): palaeotectonic implications. Phys Chem Earth 28:735–749CrossRefGoogle Scholar
  99. Pharaoh TC (1999) Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): a review. Tectonophysics 314:17–41CrossRefGoogle Scholar
  100. Pharaoh TC, Winchester JA, Verniers J, Lassen A, Seghedi A (2006) The western accretionary margin of the East European Craton: an overview. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics, vol 32. Geological Society, London, Memoirs, pp 291–311Google Scholar
  101. Pin C, Marini F (1993) Early Ordovician continental break-up in Variscan Europe: Nd–Sr isotope and trace element evidence from bimodal igneous associations of the Southern Massif Central, France. Lithos 29:177–196CrossRefGoogle Scholar
  102. Pin C, Kryza R, Oberc-Dziedzic T, Mazur S, Turniak K, Waldhausrová J (2007) The diversity and geodynamic significance of Late Cambrian (ca. 500 Ma) felsic anorogenic magmatism in the northern part of the Bohemian Massif: a review based on Sm–Nd isotope and geochemical data. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian active margin to Alleghenian–Variscan collision. Geol Soc Am Spec Paper 423:209–229Google Scholar
  103. Plomerová J, Babuška V (2010) Long memory of mantle lithosphere fabric—European LAB constrained from seismic anisotropy. Lithos 120:131–143CrossRefGoogle Scholar
  104. Pollock JC, Hibbard JP, Sylvester PJ (2009) Early Ordovician rifting of Avalonia and birth of the Rheic Ocean: U–Pb detrital zircon constraints from Newfoundland. J Geol Soc Lond 166:501–515CrossRefGoogle Scholar
  105. Prigmore JK, Butler AJ, Woodcock NH (1997) Rifting during separation of Eastern Avalonia from Gondwana: evidence from subsidence analysis. Geology 25:203–206CrossRefGoogle Scholar
  106. Robardet M (2003) The Armorica ‘microplate’: fact or fiction? Critical review of the concept and contradictory palaeobiogeographical data. Palaeogeogr Palaeoclimatol Palaeoecol 195:125–148CrossRefGoogle Scholar
  107. Rochette P, Jackson M, Aubourg C (1992) Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Rev Geophys 30:209–226CrossRefGoogle Scholar
  108. Rochette P, Aubourg C, Perrin M (1999) Is this magnetic fabric normal? A review and case studies in volcanic formations. Tectonophysics 307:219–234CrossRefGoogle Scholar
  109. Sánchez-García T, Quesada C, Bellido F (2003) Geodynamic setting and geochemical signatures of Cambrian–Ordovician rift-related igneous rocks (Ossa-Morena Zone, SW Iberia). Tectonophysics 365:233–255CrossRefGoogle Scholar
  110. Sánchez-García T, Quesada C, Bellido F, Dunning GR, del Tanago JG (2008) Two-step magma flooding of the upper crust during rifting: the Early Paleozoic of the Ossa Morena Zone (SW Iberia). Tectonophysics 461:72–90CrossRefGoogle Scholar
  111. Sánchez-García T, Bellido F, Pereira MF, Chichorro M, Quesada C, Pin C, Silva JB (2010) Rift-related volcanism predating the birth of the Rheic Ocean (Ossa-Morena zone, SW Iberia). Gondwana Res 17:392–407CrossRefGoogle Scholar
  112. Schätz M, Zwing A, Tait J, Belka Z, Soffel HC, Bachtadse V (2006) Paleomagnetism of Ordovician carbonate rocks from Malopolska Massif, Holy Cross Mountains, SE Poland—magnetostratigraphic and geotectonic implications. Earth Planet Sci Lett 244:349–360CrossRefGoogle Scholar
  113. Servais T, Sintubin M (2009) Avalonia, Armorica, Perunica: terranes, microcontinents, microplates or palaeobiogeographical provinces? In: Bassett MG (ed) Early Palaeozoic peri-Gondwana terranes: new insights from tectonics and biogeography, vol 325. Geological Society, London, Special Publiction, pp 103–115Google Scholar
  114. Silva JB, Pereira MF (2004) Transcurrent continental tectonics model for the Ossa-Morena Zone Neoproterozoic–Paleozoic evolution, SW Iberian Massif, Portugal. Int J Earth Sci 93:886–896CrossRefGoogle Scholar
  115. Sláma J, Dunkley DJ, Kachlík V, Kusiak MA (2008) Transition from island-arc to passive setting on the continental margin of Gondwana: U–Pb zircon dating of Neoproterozoic metaconglomerates from the SE margin of the Teplá–Barrandian Unit, Bohemian Massif. Tectonophysics 461:44–59CrossRefGoogle Scholar
  116. Soejono I, Žáčková E, Janoušek V, Machek M, Košler J (2010) Vestige of an Early Cambrian incipient oceanic crust incorporated in the Variscan orogen: Letovice Complex, Bohemian Massif. J Geol Soc Lond 167:1113–1130CrossRefGoogle Scholar
  117. Štědrá V, Kachlík V, Kryza R (2002) Coronitic metagabbros of the Mariánské Lázně Complex and Teplá Crystalline Unit: inferences for the tectonometamorphic evolution of the western margin of the Teplá–Barrandian Unit, Bohemian Massif. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe, vol 201. Geological Society, London, Special Publications, pp 217–237Google Scholar
  118. Tait J, Bachtadse V, Soffel H (1995) Upper Ordovician palaeogeography of the Bohemian Massif: implications for Armorica. Geophys J Int 122:211–218CrossRefGoogle Scholar
  119. Tait J, Schätz M, Bachtadse V, Soffel H (2000) Palaeomagnetism and palaeogeography of Gondwana and European terranes. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt, vol 179. Geological Society, London, Special Publications, pp 21–34Google Scholar
  120. Tarling DH, Hrouda F (1993) The magnetic anisotropy of rocks. Chapman and Hall, LondonGoogle Scholar
  121. Tasáryová Z, Janoušek V, Frýda J (2010a) Whole-rock geochemistry of the Sv. Jan diabase sills and dykes in the Loděnice–Bubovice area. Geosci Res Reports 2009:256–258Google Scholar
  122. Tasáryová Z, Janoušek V, Frýda J, Manda Š (2010b) Geochemistry of the Silurian effusive volcanics in the Prague Basin. In: Radoň M, Rapprich V (eds) 2nd Volcanologic seminar of the Expert Group in Volcanology of the Czech Geological Society. Abstracts and field guide, pp 47–49Google Scholar
  123. Tasáryová Z, Janoušek V, Frýda J, Manda Š, Štorch P, Trubač J (2011) Geochemical constraints on petrogenesis and geotectonic setting for Silurian basalts of the Prague Synform (Bohemian Massif). Miner Mag 75:1988Google Scholar
  124. Thompson MD, Grunow AM, Ramezani J (2010) Cambro–Ordovician paleogeography of the Southeastern New England Avalon Zone: implications for Gondwana breakup. Geol Soc Am Bull 122:76–88CrossRefGoogle Scholar
  125. Timmermann H, Štědrá V, Gerdes A, Noble SR, Parrish RR, Dörr W (2004) The problem of dating high-pressure metamorphism: a U–Pb isotope and geochemical study on eclogites and related rocks of the Mariánské Lázně Complex, Czech Republic. J Petrol 45:1311–1338Google Scholar
  126. Timmermann H, Dörr W, Krenn E, Finger F, Zulauf G (2006) Conventional and in situ geochronology of the Teplá Crystalline unit, Bohemian Massif: implications for the processes involving monazite formation. Int J Earth Sci 95:629–647CrossRefGoogle Scholar
  127. Valverde-Vaquero P, Dörr W, Belka Z, Franke W, Wiszniewska J, Schastok J (2000) U–Pb single-grain dating of detrital zircon in the Cambrian of central Poland: implications for Gondwana versus Baltica provenance studies. Earth Planet Sci Lett 184:225–240CrossRefGoogle Scholar
  128. Venera Z, Schulmann K, Kröner A (2000) Intrusion within a transtensional tectonic domain: the Čistá granodiorite (Bohemian Massif)—structure and rheological modelling. J Struct Geol 22:1437–1454CrossRefGoogle Scholar
  129. Verniers J, Pharaoh T, André L, Debacker TN, de Vos W, Everaerts M, Herbosch A, Samuelson J, Sintubin M, Vecoli M (2002) The Cambrian to mid Devonian basin development and deformation history of Eastern Avalonia, east of the Midlands Microcraton: new data and a review. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe, vol 201. Geological Society, London, Special Publications, pp 47–93Google Scholar
  130. Vidal P, Auvray B, Charlot R, Fediuk F, Hameurt J, Waldhausrová J (1975) Radiometric age of volcanics of the Cambrian Křivoklát–Rokycany complex (Bohemian Massif). Geol Rundsch 64:563–570CrossRefGoogle Scholar
  131. von Raumer JF, Stampfli GM (2008) The birth of the Rheic Ocean–Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics 461:9–20CrossRefGoogle Scholar
  132. von Raumer JF, Stampfli GM, Borel G, Bussy F (2002) Organization of pre-Variscan basement areas at the north-Gondwanan margin. Int J Earth Sci 91:35–52CrossRefGoogle Scholar
  133. von Raumer JF, Stampfli GM, Bussy F (2003) Gondwana-derived microcontinents—the constituents of the Variscan and Alpine collisional orogens. Tectonophysics 365:7–22CrossRefGoogle Scholar
  134. Vrána S, Štědrá V (1997) Geological model of western Bohemia related to the KTB borehole in Germany. J Geol Sci Geol 47:5–240Google Scholar
  135. Waldhausrová J (1971) The chemistry of the Cambrian volcanics in the Barrandian area. Krystalinikum 8:45–75Google Scholar
  136. Winchester JA (2002) Palaeozoic amalgamation of Central Europe: new results from recent geological and geophysical investigations. Tectonophysics 360:5–21CrossRefGoogle Scholar
  137. Winchester JA, Pharaoh TC, Verniers J, Ioane D, Seghedi A (2006) Palaeozoic accretion of Gondwana-derived terranes to the East European Craton: recognition of detached terrane fragments dispersed after collision with promontories. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics, vol 32. Geological Society, London, Memoirs, pp 232–332Google Scholar
  138. Zulauf G (1997) From very low-grade to eclogite-facies metamorphism: tilted crustal sections as a consequence of Cadomian and Variscan orogeny in the Teplá–Barrandian unit (Bohemian Massif). Geotekt Forsch 89:1–302Google Scholar
  139. Zulauf G, Helferich S (1997) Strain and strain rate in a synkinematic trondhjemitic dike: evidence for melt-induced strain softening during shearing (Bohemian Massif, Czech Republic). J Struct Geol 19:639–652CrossRefGoogle Scholar
  140. Zulauf G, Dörr W, Fiala J, Vejnar Z (1997) Late Cadomian crustal tilting and Cambrian transtension in the Teplá–Barrandian unit (Bohemian Massif, Central European Variscides). Geol Rundsch 86:571–584CrossRefGoogle Scholar
  141. Zulauf G, Schitter F, Riegler G, Finger F, Fiala J, Vejnar Z (1999) Age constraints on the Cadomian evolution of the Teplá Barrandian unit (Bohemian Massif) through electron microprobe dating of metamorphic monazite. Zeitschr deutsch geol Gesellsch 150:627–639Google Scholar
  142. Zulauf G, Romano SS, Dörr W, Fiala J (2007) Crete and Minoan terranes: age constraints from U–Pb dating of detrital zircons. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian active margin to Alleghenian–Variscan collision. Geol Soc Am Spec Paper 423:401–411Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Institute of Geology and Paleontology, Faculty of ScienceCharles UniversityPragueCzech Republic

Personalised recommendations