International Journal of Earth Sciences

, Volume 103, Issue 7, pp 2029–2042 | Cite as

Probabilities of future VEI ≥ 2 eruptions at the Central American Volcanic Arc: a statistical perspective based on the past centuries’ eruption record

  • Yvonne Dzierma
  • Heidi WehrmannEmail author
Original Paper


A probabilistic eruption forecast is provided for seven historically active volcanoes along the Central American Volcanic Arc (CAVA), as a pivotal empirical contribution to multi-disciplinary volcanic hazards assessment. The eruption probabilities are determined with a Kaplan–Meier estimator of survival functions, and parametric time series models are applied to describe the historical eruption records. Aside from the volcanoes that are currently in a state of eruptive activity (Santa María, Fuego, and Arenal), the highest probabilities for eruptions of VEI ≥ 2 occur at Concepción and Cerro Negro in Nicaragua, which are likely to erupt to 70–85 % within the next 10 years. Poás and Irazú in Costa Rica show a medium to high eruption probability, followed by San Miguel (El Salvador), Rincón de la Vieja (Costa Rica), and Izalco (El Salvador; 24 % within the next 10 years).


Central American Volcanic Arc Eruption time series Kaplan–Meier estimator Probabilistic eruption forecasting Volcanic hazards 



We sincerely thank Joan Martí and Servando De la Cruz-Reyna for detailed and constructive reviews that have greatly improved the clarity of this paper. We would also like to thank Ralf Halama for useful comments and for the editorial handling of the manuscript. An anonymous reviewer provided comments on an earlier version. This paper is contribution No. 220 of Sonderforschungsbereich (SFB) 574 at the University of Kiel, Germany, funded by the German Research Foundation.

Supplementary material

531_2012_803_MOESM1_ESM.jpg (490 kb)
Supplementary material 1 (JPG 490 kb)
531_2012_803_MOESM2_ESM.jpg (543 kb)
Supplementary material 2 (JPG 540 kb)
531_2012_803_MOESM3_ESM.pdf (8 kb)
Supplementary material 3 (PDF 8.4 kb)
531_2012_803_MOESM4_ESM.pdf (8 kb)
Supplementary material 4 (PDF 8 kb)
531_2012_803_MOESM5_ESM.pdf (11 kb)
Supplementary material 5 (PDF 10 kb)


  1. Aalen OO, Johansen S (1978) An empirical transition matrix for non-homogeneous Markov chains based on censored observations. Skand J Stat 5:141–150Google Scholar
  2. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281Google Scholar
  3. Anderson TW, Darling DA (1952) Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Ann Math Stat 23(2):193–212CrossRefGoogle Scholar
  4. Bebbington MS (2007) Identifying volcanic regimes using Hidden Markov Models. Geophys J Int 171:921–942. doi: 10.1111/j.1365-246X.2007.03559.x CrossRefGoogle Scholar
  5. Bice DC (1985) Quaternary volcanic stratigraphy of Managua, Nicaragua: correlation and source assignment for multiple overlapping plinian deposits. Geol Soc Am Bull 96:553–566CrossRefGoogle Scholar
  6. Borgia A, van Wyk de Vries B (2003) The volcano-tectonic evolution of Concepción, Nicaragua. Bull Volcanol 65:248–265CrossRefGoogle Scholar
  7. Breslow NE, Crowley J (1974) A large sample study of the life table and product limit estimates under random censorship. Ann Stat 2:437–453CrossRefGoogle Scholar
  8. Carr MJ, Pointier NK (1981) Evolution of a young parasitic cone towards a mature central vent; Izalco and Santa Ana volcanoes in El Salvador, Central America. J Volcanol Geotherm Res 11:277–292CrossRefGoogle Scholar
  9. Cartagena R, Olmos R, López DL, Soriano T, Barahona F, Hernández PA, Pérez NM (2004) Diffuse soil degassing of carbon dioxide, radon, and mercury at San Miguel volcano, El Salvador. In: Rose WI, Bommer JJ, López DL, Carr MJ, Major JJ (eds) Natural hazards in El Salvador, Geol Soc Amer Spec Pap 375:203–212Google Scholar
  10. Chesner CA, Pullinger CR, Escobar CD (2004) Physical and chemical evolution of San Miguel volcano, El Salvador. In: Rose WI, Bommer JJ, López DL, Carr MJ, Major JJ (eds) Natural hazards in El Salvador, Geol Soc Amer Spec Pap 375:213–226Google Scholar
  11. Clark SK, Reagan MK, Trimble DA (2006) Tephra deposits for the past 2600 years from Irazú volcano, Costa Rica. In: Rose WI, Bluth GJS, Carr MJ, Ewert JW, Patino LC, Vallance JW (eds) Volcanic hazards in Central America, Geol Soc Amer Spec Pap 412:225–234Google Scholar
  12. Collett D (2003) Modelling survival data in medical research. Boca RatonGoogle Scholar
  13. Connor CB, Hill BE, Winfrey B, Franklin NM, La Femina PC (2001) Estimation of volcanic hazards related to tephra fallout. Nat Haz Rev 2:33–42CrossRefGoogle Scholar
  14. Connor CB, Sparks RSJ, Mason RM, Bonadonna C (2003) Exploring links between physical and probabilistic models of volcanic eruptions: the Soufrière Hills Volcano, Montserrat. Geophys Res Let 30/13:1701. doi: 10.1029/2003GL017384
  15. De la Cruz-Reyna S (1996) Long-term probabilistic analysis of future explosive eruptions. In: Scarpa R, Tilling RI (eds) Monitoring and mitigation of volcanic hazards. Springer, BerlinGoogle Scholar
  16. Dzierma Y, Wehrmann H (2010a) Statistical eruption forecast for the Chilean Southern Volcanic Zone: typical frequencies of volcanic eruptions as baseline for possibly enhanced activity following the large 2010 Concepción earthquake. Nat Haz Earth Sys Sci 10:2093–2108. doi: 10.5194/nhess-10-2093-2010 CrossRefGoogle Scholar
  17. Dzierma Y, Wehrmann H (2010b) Eruption time series statistically examined: probabilities of future eruptions at Villarrica and Llaima Volcanoes, Southern Volcanic Zone, Chile. J Volcanol Geotherm Res 193:82–92. doi: 10.1016/j.volgeores.2010.03.009 CrossRefGoogle Scholar
  18. Freundt A, Kutterolf S, Schmincke HU, Hansteen T, Wehrmann H, Pérez W, Strauch W, Navarro M (2006) Volcanic hazards in Nicaragua: Past, present, and future. In: Rose WI, Bluth GJS, Carr MJ, Ewert JW, Patino LC, Vallance JW (eds) Volcanic hazards in Central America. Geol Soc Am Spec Pap 412:141–165Google Scholar
  19. Gibbons JP (1976) Nonparametric method for quantitative analysis. Holt, Rinehart and Winston, New YorkGoogle Scholar
  20. Greenwood M (1926) The errors of sampling of the survivorship tables. Reports on public health and statistical subjects 33, App 1, HMSO, LondonGoogle Scholar
  21. Hill BE, Conner CB, Jarzemba MS, La Femina PC, Navarro M, Strauch W (1998) 1995 eruptions of Cerro Negro volcano, Nicaragua, and risk assessment for future eruptions. Geol Soc Amer Bull 110:1231–1241CrossRefGoogle Scholar
  22. Hilton DR, Fischer TP, Marty B (2002) Noble gases and volatile recycling at subduction zones. Rev Miner Geochem 47:319–370. doi: 10.2138/rmg.2002.47.9 CrossRefGoogle Scholar
  23. Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481CrossRefGoogle Scholar
  24. Kempter K, Benner SG, Williams SN (1996) Rincón de la Vieja, Guanacaste province, Costa Rica: geology of the southwestern flank and hazard implications. J Volcanol Geotherm Res 71:109–127CrossRefGoogle Scholar
  25. Klein FW (1982) Patterns of historical eruptions at Hawaiian volcanoes. J Volcanol Geotherm Res 12:1–35CrossRefGoogle Scholar
  26. Kutterolf S, Freundt A, Pérez W (2008) The Pacific offshore record of Plinian arc volcanism in Central America, part 2: Tephra volumes and erupted masses. Geochem Geophys Geosyst. 9/2, Q02S02. doi: 10.1029/2007GC001791
  27. La Femina PC, Conner CB, Hill BE, Strauch W, Armando Saballos J (2004) Magma-tectonic interactions in Nicaragua: the 1999 seismic swarm and eruption of Cerro Negro volcano. J Volcanol Geotherm Res 137:187–199CrossRefGoogle Scholar
  28. Major JJ, Schilling SP, Pullinger CR, Escobar CD (2004) Debris-flow hazards at San Salvador, San Vicente, and San Miguel volcanoes, El Salvador. In: Rose WI, Bommer JJ, López DL, Carr MJ, Major JJ (eds) Natural hazards in El Salvador. Geol Soc Am Spec Pap 375:89–108Google Scholar
  29. Marshall AW, Olkin I (2007) Life distributions: structure of non-parametric, semiparametric, and parametric families, Springer Series in StatisticsGoogle Scholar
  30. Martínez M, Fernandez E, Valdes J, Barboza V, van der Laat R, Duarte E, Malavassi E, Sandoval L, Barquero J, Marino T (2000) Chemical evolution and volcanic activity of the active crater lake of Poás Volcano, Costa Rica, 1993–1997. J Volcanol Geotherm Res 97:127–141CrossRefGoogle Scholar
  31. Meier P (1975) Estimation of a distribution function from incomplete observations. In: Gani J (ed) Perspectives in probabilities and statistics. Academic Press, London, pp 67–87Google Scholar
  32. Mendoza-Rosas AT, De la Cruz-Reyna S (2008) A statistical method linking geological and historical eruption time series for volcanic hazard estimations: application to active polygenetic volcanoes. J Volcanol Geotherm Res 176:277–290. doi: 10.1016/j.volgeores.2008.04.005 CrossRefGoogle Scholar
  33. Meyer-Abich H (1956a) La erupción del volcán de Izalco (El Salvador) del 20 de febrero de 1955 y su actividad hasta principios de 1956. Anales del Servicio Geológico Nacional de El Salvador, Bol 2:3–18Google Scholar
  34. Meyer-Abich H (1956b) Los volcanes activos de Guatemala y El Salvador, (America Central). Anales del Servicio Geológico Nacional de El Salvador, Bol. 3, 102 pGoogle Scholar
  35. Newhall CG, Self S (1982) The Volcanic Explosivity Index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87/C2:1231–1238CrossRefGoogle Scholar
  36. Pérez W, Freundt A (2006) The youngest highly explosive basaltic eruptions from Masaya Caldera (Nicaragua): stratigraphy and hazard assessment. In: Rose WI, Bluth GJS, Carr MJ, Ewert JW, Patino LC, Vallance JW (eds) Volcanic Hazards in Central America. Geol Soc Am Spec Pap 412:189–207Google Scholar
  37. Reagan M, Duarte MK, Soto GJ, Fernández E (2006) The eruptive history of Turrialba volcano, Costa Rica, and potential hazards from future eruptions. In: Rose WI, Bluth GJS, Carr MJ, Ewert JW, Patino LC, Vallance JW (eds) Volcanic hazards in Central America. Geol Soc Am Spec Pub 412:235–257Google Scholar
  38. Roggensack K (2001) Sizing up crystals and their melt inclusions: a new approach to crystallization studies. Earth Planet Sci Let 187(1–2):221–237CrossRefGoogle Scholar
  39. Rymer H, Cassidy J, Locke CA, Barboza MV, Barquero J, Brenes J, van der Laat R (2000) Geophysical studies of the recent 15-year eruptive cycle at Poás Volcano, Costa Rica. J Volcanol Geotherm Res 97:425–442CrossRefGoogle Scholar
  40. Sadofsky SJ, Portnyagin MV, Hoernle K, van den Bogaard P (2008) Subduction cycling of volatile and trace elements through the Central American Volcanic Arc: evidence from melt inclusions. Contrib Min Pet 155(4):433–456. doi: 10.1007/s00410-007-0251-3 CrossRefGoogle Scholar
  41. Salazar JML, Hernández PA, Pérez NM, Olmos R, Barahona F, Catragena R, Soriano T, López DL, Sumino H, Notsu K (2004) Spatial and temporal variations of diffusive CO2 degassing at Santa Ana-Izalco-Coatepeque volcanic complex, El Salvador, Central America. In: Rose WI, Bommer JJ, López DL, Carr MJ, Major JJ (eds) Natural hazards in El Salvador. Geol Soc Am Spec Pap 375:135–146Google Scholar
  42. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464CrossRefGoogle Scholar
  43. Siebert L, Simkin T (2002–) Volcanoes of the world: an illustrated catalog of Holocene volcanoes and their eruptions. Smithsonian Institution, Global Volcanism Program, Digital Information Series, GVP-3, Access 2011
  44. Simkin T, Siebert L (1994) Volcanoes of the world, 2nd edn. Geosciences Press, TucsonGoogle Scholar
  45. Soto GJ, Alvarado GE, Goold S (2003) Erupciones < 3800 a.P. del Volcán Rincón de la Vieja, Costa Rica. Rev Geol Amer Central 29:67–86Google Scholar
  46. Stine CM, Banks NG (1991) Costa Rica volcano profile. USGS open file report 91-591Google Scholar
  47. Turner MB, Cronin SJ, Bebbington MS, Platz T (2008) Developing probabilistic eruption forecast for dormant volcanoes: a case study from Mt Taranaki, New Zealand. Bull Volcanol 70:507–515. doi: 10.1007/s00445-007-0151-4 CrossRefGoogle Scholar
  48. Vallance JW, Schilling SP, Devoli G, Howell MM (2001) Lahar hazards at Concepción volcano, Nicaragua. US Geol Surv Open File Rpt 01–457:1–33Google Scholar
  49. Wehrmann H, Dzierma Y (2011) Applicability of statistical eruption analysis to the geological record of Villarrica and Lanín volcanoes, Southern Volcanic Zone, Chile. J Volcanol Geotherm Res 200:99–115CrossRefGoogle Scholar
  50. Wehrmann H, Bonadonna C, Freundt A, Houghton BF, Kutterolf S (2006) Fontana Tephra: a basaltic plinian eruption in Central Nicaragua. In: Rose WI, Bluth GJS, Carr MJ, Ewert JW, Patino LC, Vallance JW (eds) Volcanic hazards in Central America. Geol Soc Am spec pap 412:209–223. doi: 10.113/2006.2412(11)
  51. Wehrmann H, Hoernle K, Portnyagin M, Wiedenbeck M, Heydolph K (2011) Volcanic CO2 output at the Central American subduction zone inferred from melt inclusions in olivine crystals from mafic tephras. Geochem Geophys Geosyst 12(6):Q06003. doi: 10.1029/2010GC003412 CrossRefGoogle Scholar
  52. Williams SN (1983) Plinian airfall deposits of basaltic composition. Geology 11:211–214CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.SFB 574University of KielKielGermany
  2. 2.SFB 574GEOMAR | Helmholtz Centre for Ocean Research KielKielGermany

Personalised recommendations