International Journal of Earth Sciences

, Volume 103, Issue 7, pp 1733–1745 | Cite as

Moho structure of Central America based on three-dimensional lithospheric density modelling of satellite-derived gravity data

  • Oscar H. Lücke
Original Paper


The Central American isthmus hosts a highly variable Moho structure due to the diverse origin and composition of the crustal basement and the influence of large-scale neotectonic processes. Gravity data from the combined geopotential model EGM2008 were interpreted via forward modelling to outline the three-dimensional lithospheric density structure along the Middle American Trench, as well as the segmentation of the oceanic Cocos and Nazca plates and the overriding Caribbean plate. In this work, results for the depth of the Moho obtained from the density model are presented. The Quaternary volcanic arc correlates with a maximum Moho depth of 44 km in western Guatemala. To the south-east of the continental shelf, the Caribbean plate shows Moho depths between 20 and 12 km whereas to the north, values as shallow as 8 km are observed at the Cayman trough. For the oceanic Cocos plate, depths between 16 and 21 km are obtained for the Moho along the Cocos ridge, contrasting with values between 15 and 12 km for the seamount segment and 8 and 11 km for the segments of the crust that are not affected by the Galapagos hot-spot track.


Moho Satellite Gravity Density model 



The author sincerely acknowledges the support of the German Academic Exchange Service (DAAD) as well as the University of Costa Rica (UCR), the Collaborative Research Centre 574 and the Special Priority Program 1257 ‘Mass Transport and Mass Distribution in the Earth System’ of the German Research Foundation (DFG). Sincere thanks are also expressed to Prof. Dr. Götze and the members of the working group on Geophysics and Geoinformatics at the University of Kiel for their scientific contributions throughout the gravity modelling process and Dr. W. Pérez for her insights into Central American volcanism. This publication is contribution no. 225 of the Sondernforschungsbereich 574 ‘Volatiles and Fluids in Subduction Zones’ at Kiel University.


  1. Alvarado GE, Dengo C, Martens U, Bundschuh J, Aguilar T, Bonis SB (2007) Stratigraphy and geologic history. In: Alvarado GE, Bundschuh J (eds) Central America: geology, resources and hazards. Taylor & Francis, London, pp 345–393Google Scholar
  2. Arroyo IG, Husen S, Flueh ER, Gossler J, Kissling E, Alvarado GE (2009) Three-dimensional P-wave velocity structure on the shallow part of the Central Costa Rican Pacific margin from local earthquake tomography using off- and onshore networks. Geophys J Int. doi: 10.1111/j.1365-246X.2009.04342.x
  3. Barckhausen U, Ranero C, von Huene R, Cande SC, Roeser HA (2001) Revised tectonic boundaries in the Cocos plate off Costa Rica: implications for the segmentation of the convergent margin and for plate tectonic models. J Geophys Res 106(B9):207–220Google Scholar
  4. Barthelmes F (2009) Definition of functionals of the geopotential and their calculation from spherical harmonic models. GFZ scientific technical report STR09/02Google Scholar
  5. Baumgartner P, Flores K, Bandini A, Girault F, Cruz D (2008) Upper Triassic to cretaceous radiolaria from Nicaragua and northern Costa Rica—the Mesquito composite oceanic terrane. Ofioliti 33(1):1–19Google Scholar
  6. Birch F (1960) The velocity of compressional waves in rocks to 10 kilobars, Part 1. J Geophys Res 65(4):1083–1102CrossRefGoogle Scholar
  7. Bousquet R, Goffé B, Le Pichon X, de Capitani C, Chopin C, Henry P (2005) Comment on “subduction factory: 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents” by Bradley R. Hacker, Geoffrey A. Abers and Simon M. Peacock. J Geophys Res 110. doi: 10.1029/2004JB003450
  8. Brocher TM (2005) Empirical relations between elastic wavespeeds and density in Earth’s crust. Bull Seismol Soc Am 95(6):2081–2092CrossRefGoogle Scholar
  9. Carr MJ (1984) Symetrical and segmented variation of physical and geochemical characteristics of the Central American volcanic front. J Volcanol Geothermal Res 20:231–252CrossRefGoogle Scholar
  10. Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res 100:9761–9788CrossRefGoogle Scholar
  11. Coffin MF, Gahaga LM, Lawyer LA (1998) Present-day plate boundary digital data compilation. University of Texas Institute for geophysics technical report, vol 174, p 5Google Scholar
  12. DeBoer JZ, Defant MJ, Stewart RH, Restrepo JF, Clark LF, Ramirez AH (1988) Quaternary calc-alkaline volcanism in western Panama: regional variation and implication for the plate tectonic framework. J S Am Earth Sci 1(3):275–293CrossRefGoogle Scholar
  13. DeMets C (2001) A new estimate for present-day Cocos-Caribbean plate motion: Implications for slip along the Central American volcanic arc. Geophys Res Lett 28(21):4043–4046. doi: 10.1029/2001GL013518 CrossRefGoogle Scholar
  14. Dengo G (1985) Mid America: tectonic setting for the Pacific margin from southern Mexico to northwestern Columbia. In: Nairn A, Stehli F, Uyeda S (eds) The Ocean Basins and margins, vol 7A. Plenum Press, New York, pp 123–180CrossRefGoogle Scholar
  15. Dzierma Y, Thorwart MM, Rabbel W, Flueh ER, Alvarado GE, Mora MM (2010) Imaging crustal structure in south central Costa Rica with receiver functions. Geochem Geophys Geosyst 11(8):1–21. doi: 10.1029/2009GC002936 CrossRefGoogle Scholar
  16. Ewing J, Antoine J, Ewing M (1960) Geophysical measurements in the western Caribbean Sea and in the Gulf of Mexico. J Geophys Res 65(12):4087–4126CrossRefGoogle Scholar
  17. Freymueller JT, Kellogg JN, Vega V (1993) Plate motions in the North Andean region. J Geophys Res 98(12):853–863. doi: 10.1029/93jb00520 Google Scholar
  18. Gardner GHF, Gardner LW, Gregory AR (1974) Formation velocity and density—the diagnostic basics for stratigraphic traps. Geophysics 39:770–780CrossRefGoogle Scholar
  19. Godfrey NJ, Beaudoin BC, Klempererthe SL, Mendocino Working Group USA, Klemperer SL (1997) Ophiolitic basement to the Great Valley forearc basin, California, from seismic and gravity data: implications for crustal growth at the North American continental margin. Geol Soc Am Bull 109:1536–1562CrossRefGoogle Scholar
  20. Götze HJ (1976) Ein numerisches Verfahren zur Berechnung der gravimetrischen und magnetischen Feldgrößen für dreidimensionale Modellkörper. TU Clausthal, GermanyGoogle Scholar
  21. Götze HJ, Lahmeyer B (1988) Application of three-dimensional interactive modeling in gravity and magnetics. Geophysics 53(8):1096–1108CrossRefGoogle Scholar
  22. Götze HJ, Schmidt S (2010) IGMAS+ a new 3D gravity, FTG and magnetic modeling software. In: Lane RJL (ed) Airborne gravity 2010—expanded abstracts from the ASEG-PESA airborne gravity 2010 workshop, Sydney, Australia, 22 August 2010. Geoscience Australia, pp 91–96Google Scholar
  23. Hackney RI, Featherstone WE (2003) Geodetic versus geophysical perspectives of the ‘gravity anomaly’. Geophys J Int 154:35–43CrossRefGoogle Scholar
  24. Hey R (1977) Tectonic evolution of the Cocos-Nazca spreading center. Geol Soc Am Bull 88:1404–1420CrossRefGoogle Scholar
  25. Hoernle K, Hauff F, van den Bogaard P (2004) A 70 m.y. history (139–69 Ma) for the Caribbean large igneous province. Geology 32(8):697–700CrossRefGoogle Scholar
  26. Husen S, Quintero R, Kissling E, Hacker B (2003) Subduction zone structure and magmatic processes beneath Costa Rica constrained by local earthquake tomography and petrological modelling. Geophys J Int 155:11–32CrossRefGoogle Scholar
  27. Kellogg J, Vega V (eds) (1995) Tectonic development of Panama, Costa Rica, and the Colombian Andes: constraints from Global Positioning System geodetic studies and gravity, vol 295. Geologic and Tectonic Development of the Caribbean Plate Boundary in Southern Central America. Geological Society of America special paper 295, Boulder, ColoradoGoogle Scholar
  28. Kim JJ, Matumoto T, Latham GV (1982) A crustal section of northern Central America as inferred from wide-angle reflections from shallow earthquakes. Bull Seismol Soc Am 72(3):940–952Google Scholar
  29. Köther N, Götze HJ, Gutknecht BD, Jahr T, Jentzsch G, Lücke OH, Mahatsente R, Sharma R, Zeumann S (2011) The seismically active Andean and Central American margins: Can satellite gravity map lithospheric structures? J Geodyn. doi: 10.1016/j.jog.2011.11.004
  30. Li X, Götze HJ (2001) Ellipsoid, geoid, gravity, geodesy and geophysics. Geophysics 66(6):1660–1668CrossRefGoogle Scholar
  31. Linkimer L, Beck SL, Schwartz SY, Zandt G, Levin V (2010) Nature of crustal terranes and the Moho in northern Costa Rica from receiver function analysis. Geochem Geophys Geosyst 11(1):1–24. doi: 10.1029/2009GC002795 CrossRefGoogle Scholar
  32. Lonsdale P (2005) Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics 404:237–264. doi: 10.1016/j.tecto.2005.05.011 CrossRefGoogle Scholar
  33. Lonsdale P, Klitgord KD (1978) Structure and tectonic history of the eastern Panama basin. Geol Soc Am Bull 89:981–999CrossRefGoogle Scholar
  34. MacKenzie L, Abers GA, Fischer KM, Syracuse EM, Protti M, González V, Strauch W (2008) Crustal structure along the southern Central American volcanic front. Geochem Geophys Geosyst 9(8):1–19. doi: 10.1029/2008GC001991 CrossRefGoogle Scholar
  35. Marshall JS (2007) The Geomorphology and Physiographic Provinces of Central America, vol 1. In: Alvarado GE, Bundschuh J (eds) Central America: geology, resources and hazards. Taylor & Francis, London, pp 75–121Google Scholar
  36. Marshall JS, Fisher DM, Gardner TW (2000) Central Costa Rica deformed belt: kinematics of diffuse faulting across the western Panama block. Tectonics 19(3):468–492CrossRefGoogle Scholar
  37. Matumoto T, Ohtake M, Latham G, Umaña J (1977) Crustal Structure in Southern Central America. Bull Seism Soc Am 67:121–134Google Scholar
  38. Müller RD, Sdrolias M, Gaina C, Roest WR (2008) Age, spreading rates and spreading symmetry of the world’s ocean crust. Geochem Geophys Geosyst (9). doi: 10.1029/2007GC001743
  39. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An earth gravitational model to degree 2160: EGM2008. Paper presented at the European Geosciences Union General Assembly, Vienna, Austria, April 13–18Google Scholar
  40. Peacock SM, van Keken PE, Holloway SD, Hacker BR, Abers GA, Fergason RL (2005) Thermal structure of the Costa Rica—Nicaragua subduction zone. Phys Earth Planet Interiors 149:187–200CrossRefGoogle Scholar
  41. Rogers RD, Mann P, Emmet PA (2007) Tectonic terranes of the Chortis block based on integration of regional aeromagnetic and geologic data. Geol Soc Am Spec Pap 248:65–88. doi: 10.1130/2007.2428(04 Google Scholar
  42. Ryan WBF, Carbotte SM, Coplan JO, O’Hara S, Melkonian A, Arko R, Weissel RA, Ferrini V, Goodwillie A, Nitsche F, Bonczkowski J, Zemsky R (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst (10). doi: 10.1029/2008GC002332
  43. Sallarès V, Dañobeitia JJ, Flueh ER (2001) Lithospheric structure of the Costa Rican isthmus: effects of subduction zone magmatism on an oceanic plateau. J Geophys Res 106(1):621–643CrossRefGoogle Scholar
  44. Sallarès V, Charvis P, Flueh ER, Bialas J (2003) Seismic structure of Cocos and Malpelo Volcanic ridges and implications for hot spot-ridge interactions. J Geophys Res 108(B12):2564. doi: 10.1029/2002JB002431 CrossRefGoogle Scholar
  45. Siebert L, Simkin T (2002) Volcanoes of the World: an illustrated catalog of Holocene Volcanoes and their eruptions. Smithsonian Institution, Global Volcanism Program Digital Information Series, GVP-3.
  46. Stavenhagen AU, Flueh ER, Ranero C, McIntosh KD, Shipley T, Leandro G, Schulze A, Dañobeitia JJ (1997) Seismic wide-angle investigations in Costa Rica: a crustal velocity model from the Pacific to the Caribbean coast. Zbl Geol Paläont 6(1–3):393–408Google Scholar
  47. Syracuse EM, Abers GA, Fischer K, MacKenzie L, Rychert C, Protti M, González V, Strauch W (2008) Seismic tomography and earthquake locations in the Nicaraguan and Costa Rican upper mantle. Geochem Geophys Geosyst 9(7):1–22. doi: 10.1029/2008GC001963 CrossRefGoogle Scholar
  48. Venable ME (1994) A geologic, tectonic, and metallogenic evaluation of the Siuna terrane. Dissertation, University of Arizona, TucsonGoogle Scholar
  49. von Huene R, Ranero CR, Weinrebe W, Hinz K (2000) Quaternary convergent margin tectonics of Costa Rica, segmentation of the Cocos plate, and Central American volcanism. Tectonics 19(2):314–334CrossRefGoogle Scholar
  50. Walther CHE (2003) The crustal structure of the Cocos ridge off Costa Rica. J Geophys Res 108(B3):2136. doi: 10.1029/2001JB000888 CrossRefGoogle Scholar
  51. Walther CHE, Flueh ER, Ranero CR, von Huene R, Strauch W (2000) Crustal structure across the Pacific margin of Nicaragua: evidence for ophiolitic basement and a shallow mantle sliver. Geophys J Int 141:759–777CrossRefGoogle Scholar
  52. Wollard GP (1969) Regional variations in gravity. In: Hart PJ (ed) The Earth’s crust and upper mantle. Am Geophys Union Geophys Monogr 13:320–340Google Scholar
  53. Worzewski T, Jegen M, Kopp H, Brasse H, Taylor WT (2011) Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone. Nat Geosci 4:108–111CrossRefGoogle Scholar
  54. Ye S, Bialas J, Flueh ER, Stavenhagen A, von Huene R, Leandro G, Hinz K (1996) Crustal structure of the Middle American Trench off Costa Rica from wide-angle seismic data. Tectonics 15(5):1006–1021CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Abt. Geophysik, Institut für GeowissenschaftenChristian-Albrechts-UniversitätKielGermany

Personalised recommendations