International Journal of Earth Sciences

, Volume 102, Issue 1, pp 305–318 | Cite as

Paleoenvironmental reconstruction of the Early to Middle Miocene Central Paratethys using stable isotopes from bryozoan skeletons

  • Marcus M. KeyJr.
  • Kamil Zágoršek
  • William P. Patterson
Original Paper


Stable carbon and oxygen isotope values from single bryozoan colonies were used to reconstruct the paleoenvironments of the Early to Middle Miocene (Ottnangian to Badenian) sediments of the Central Paratethys. This approach utilizes a locally abundant allochem while avoiding matrix and multiple allochem contamination from bulk rock samples. Bryozoan colonies (and a few foraminifera and rock matrix samples) from 14 localities yielded 399 carbon and oxygen isotope values. Data from six of the localities (15 % of the total number of samples) were interpreted as having been diagenetically altered and were rejected. The remaining data indicate a primarily localized upwelling signal with lesser variation caused by global climatic and regional tectonic forcing of sea level, salinity, and temperature. Paleotemperatures were calculated to range from 12 to 21 °C. Despite potential taxonomic and diagenetic problems, bryozoan colonies are a powerful, underutilized source of paleoenvironmental carbon and oxygen isotope data.


Miocene Bryozoa Stable isotopes Central Paratethys 



We thank the following people for assistance with this project. T. Prokopiuk (University of Saskatchewan) provided technical assistance at the Saskatchewan Isotope Laboratory. Helpful reviews by O. Mandic (Vienna Natural History Museum) and B. Berning (Biology Centre Linz) greatly improved this manuscript. This research was funded by the Grant Agency of Czech Republic (GAČR grant 205/09/0103 to KZ). Acknowledgment is also made to the donors of the American Chemical Society Petroleum Research Fund (PRF grant #38713-B8 to MMK) for the support of this research.


  1. Armstrong-Altrin S, Lee YI, Verma SP, Worden RH (2009) Carbon, oxygen, and strontium isotope geochemistry of carbonate rocks of the upper Miocene Kudankulam Formation, southern India: implications for paleoenvironment and diagenesis. Chem Erde 69:45–60CrossRefGoogle Scholar
  2. Báldi K (2006) Paleoceanography and climate of the Badenian (Middle Miocene 16.4–13.0 Ma) in the Central Paratethys based on foraminifera and stable isotope (δ18O and δ13C) evidence. Int J Earth Sci 95:119–142CrossRefGoogle Scholar
  3. Berning B (2006) The cheilostome bryozoan fauna from the Late Miocene of Niebla (Guadalquivir Basin, SW Spain): environmental and biogeographic implications. Mitt Geol Paläont Inst Univ Hamburg 90:7–156Google Scholar
  4. Bicchi E, Ferrero E, Gonera M (2003) Palaeoclimatic interpretation based on Middle Miocene planktonic Foraminifera: the Silesia Basin (Paratethys) and Monteferrato (Tethys) records. Palaeogeogr Palaeoclimatol Palaeoecol 196:265–303CrossRefGoogle Scholar
  5. Blakey R (2011) Mollewide plate tectonic map of the Miocene (20 Ma). Colorado plateau geosystems. Accessed 9 June 2011
  6. Böhme M (2003) The Miocene climatic optimum: evidence from ectothermic vertebrates of Central Europe. Palaeogeogr Palaeoclimatol Palaeoecol 195:389–401CrossRefGoogle Scholar
  7. Böhme M (2004) Migration history of air-breathing fishes reveal Neogene atmospheric circulation pattern. Geology 32:393–396CrossRefGoogle Scholar
  8. Bojar AV, Hiden H, Fenninger A, Neubauer F (2004) Middle Miocene seasonal temperature changes in the Styrian basin Austria, as recorded by the isotopic composition of pectinid and brachiopod shells. Palaeogeogr Palaeoclimatol Palaeoecol 203:95–105CrossRefGoogle Scholar
  9. Cicha I (1978) Židlochovice. In: Papp A, Cicha I, Seneš J, Steininger F (eds) Chronostratigraphie und Neostratotypen Miozän der zentralen Paratethys, M4 Badenien. Veda, Bratislava, pp 168–170Google Scholar
  10. Cicha I, Rögl F, Rupp C, Ctyroká I (1998) Oligocene–Miocene foraminifera of the Central Paratethys. Abh Senckenb Naturforsch Ges 549:1–325Google Scholar
  11. Ćorić S, Rögl F (2004) Roggendorf-1 borehole, a key-section for lower Badenian transgressions and the stratigraphic position of the Grund Formation (Molasse Basin, lower Austria). Geol Carpathica 55:165–178Google Scholar
  12. Cornée JJ, Moissette P, Saint Martin JP, Kázmér M, Tóth E, Görög A, Dulai A, Müller P (2009) Marine carbonate systems in the Sarmatian (Middle Miocene) of the Central Paratethys: the Zsámbék Basin of Hungary. Sedimentology 56:1728–1750CrossRefGoogle Scholar
  13. Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149CrossRefGoogle Scholar
  14. Crowley SF, Taylor PD (2000) Stable isotope composition of modern bryozoan skeletal carbonate from the Otago Shelf, New Zealand. NZ J Mar Freshw Res 34:331–351CrossRefGoogle Scholar
  15. D’Croz L, O’Dea A (2007) Variability in upwelling along the Pacific shelf of Panama and implications for the distribution of nutrients and chlorophyll. Estuar Coast Shelf Sci 73:325–340CrossRefGoogle Scholar
  16. De Leeuw AA, Bukowski KK, Krijgsman WW, Kuiper KF (2010) Age of the Badenian salinity crisis; impact of Miocene climate variability on the Circum-Mediterranean region. Geology 38:715–718CrossRefGoogle Scholar
  17. Delaygue G, Bard E, Rollion C, Jouzel J, Stievenard M, Duplessy JC, Ganssen G (2001) Oxygen isotope/salinity relationship in the northern Indian Ocean. J Geophys Res 106:4565–4574CrossRefGoogle Scholar
  18. Di Stefano A, Foresi LM, Lirer F, Iaccarino SM, Turco E, Amore FO, Mazzei R, Morabito S, Salvatorini G, Aziz HA (2008) Calcareous plankton high resolution bio-magnetostratigraphy for the Langhian of the Meditterranean area. Riv Ital Paleontol Stratigr 114:51–76Google Scholar
  19. Durakiewicz T, Gonera M, Peryt TM (1997) Oxygen and carbon isotopic changes in the Middle Miocene (Badenian) foraminifera of the Gliwice area (SW Poland). Bull Pol Acad Sci Earth Sci 45:145–156Google Scholar
  20. Faul KL, Ravelo AC, Delaney ML (2000) Reconstructions of upwelling, productivity, and photic zone depth in the eastern equatorial Pacific Ocean using planktonic foraminiferal stable isotopes and abundances. J Foraminiferal Res 30:110–125CrossRefGoogle Scholar
  21. Flower BP, Kennett JP (1994) The Middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr Palaeoclimatol Palaeoecol 108:537–555CrossRefGoogle Scholar
  22. Golonka J, Gahagan L, Krobicki M, Marko F, Oszczypko N, Ślaczka A (2006) Plate-tectonic evolution and paleogeography of the circum-Carpathian region. In: Golonka J, Picha FJ (eds) The Carpathians and their foreland: geology and hydrocarbon resources. AAPG Memoir 84, pp 11–46Google Scholar
  23. Gonera M, Peryt TM, Durakiewicz T (2000) Biostratigraphical and palaeoenvironmental implications of isotopic studies (18O, 13C) of Middle Miocene (Badenian) foraminifers in the Central Paratethys. Terra Nova 12:231–238CrossRefGoogle Scholar
  24. Gradstein FM, Ogg JG, Smith AG, Bleeker W, Lourens LJ (2004) A new geologic time scale, with special reference to Precambrian and Neogene. Episodes 27:83–100Google Scholar
  25. Grill R (1968) Erläuterungen zur Geologischen Karte des nordöstlichen Weinviertels und zu Blatt Gänserndorf. Flyschausläufer, Waschbergzone mit angrenzenden Teilen der flachlagernden Molasse, Korneuburger Becken, Inneralpines Wiener Becken nördlich der Donau. Wien, Geologische BundesanstaltGoogle Scholar
  26. Grunert P, Soliman A, Harzhauser M, Müllegger S, Piller WE, Roetzel R, Rögl F (2010) Upwelling conditions in the Early Miocene Central Paratethys Sea. Geol Carpathica 61:129–145CrossRefGoogle Scholar
  27. Hageman SJ, Bone Y, McGowran B, James NP (1997) Bryozoan colonial growth-forms as paleoenvironmental indicators: evaluation of methodology. Palaios 12:405–419CrossRefGoogle Scholar
  28. Hallock P (1999) Symbiont-bearing foraminifera. In: Gupta BKS (ed) Modern foraminifera. Kluwer, Dordrecht, pp 123–139Google Scholar
  29. Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic (250 million years ago to present). Science 235:1156–1167CrossRefGoogle Scholar
  30. Hardenbol J, Thierry J, Farley MB, Jacquin T, Graciansky P-C de, Vail, PR (1998) Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. In: Graciansky P-C de, Hardenbol J, Jacquin T, Vail PR (eds) Mesozoic-Cenozoic sequence stratigraphy of European Basins. SEPM Spec Pub 60, pp 3–13Google Scholar
  31. Harzhauser M, Piller WE (2007) Benchmark data of a changing sea—palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeogr Palaeoclimatol Palaeoecol 253:8–31CrossRefGoogle Scholar
  32. Hilgen FJ, Abels HA, Iaccarino S, Krijgsman W, Raffi I, Sprovieri R, Turco E, Zachariasse WJ (2009) The Global Stratotype Section and Point (GSSP) of the Serravallian Stage (middle Miocene). Episodes 32:152–166Google Scholar
  33. Hladíková J, Hamršmíd B (1986) Isotopic composition of lower Badenian fossils and sediments from the Carpathian Foredeep (SW Moravia, Czechoslovakia). Isotopes in Nature, 4th working meeting proceedings, pp 345–352Google Scholar
  34. Hladilová Š, Zdražílková N (1989) Paleontologické lokality karpatské předhlubně. Dissertation, Universita Jana Evangelistu Purkyně, fakulta přírodovědecká, BrnoGoogle Scholar
  35. Hladilová Š, Hladíková J, Kováč M (1998) Stable isotope record in Miocene fossils and sediments from Rohožník (Vienna Basin, Slovakia). Slovak Geol Mag 4(2):87–94Google Scholar
  36. Hohenegger J, Wagreich M (2012) Time calibration of sedimentary sections based on insolation cycles using combined cross-correlation: dating the gone Badenian stratotype (Middle Miocene, Paratethys, Vienna Basin, Austria) as an example. Int J Earth Sci 101:339–349. doi: 10.1007/s00531-011-0658-y CrossRefGoogle Scholar
  37. Hohenegger J, Ćorić S, Khatun M, Pervesler P, Rögl F, Rupp C, Selge A, Uchman A, Wagreich M (2009) Cyclostratigraphic dating in the Lower Badenian (Middle Miocene) of the Vienna Basin (Austria): the Baden-Sooss core. Int J Earth Sci 98:915–930. doi: 10.1007/s00531-007-0287-7 CrossRefGoogle Scholar
  38. Holcová K, Zágoršek K (2007) Foraminifera from the base of the Middle Miocene Bryozoa event of the Central Paratethys. In: Krzymińska J (ed) Abstracts of the 6th Polish micropalaeontological workshop, Gdansk, Poland. Polish Geological Institute, Gdansk, pp 16–18Google Scholar
  39. Holcová K, Zágoršek K (2008) Bryozoa, foraminifera and calcareous nannoplankton as environmental proxies of the “bryozoan event” in the Middle Miocene of the Central Paratethys (Czech Republic). Palaeogeogr Palaeoclimatol Palaeoecol 267:216–234CrossRefGoogle Scholar
  40. Holcová K, Zágoršek K, Jašková V, Lehotský T (2007) The oldest Miocene Bryozoa from the Carpathian Foredeep (boreholes Přemyslovice). Scripta Fac Sci Nat Uni Masaryk Brun Geol 36:47–55Google Scholar
  41. Hotinski RM, Toggweiler JR (2003) Impact of a Tethyan circumglobal passage on ocean heat transport and “equable” climates. Paleoceanography 18:1007. doi: 10.1029/2001PA000730 CrossRefGoogle Scholar
  42. Ivanov D, Ashraf AR, Mosbrugger V, Palamarev E (2002) Palynological evidence for Miocene climate change in the Forecarpathian Basin (Central Paratethys, NW Bulgaria). Palaeogeogr Palaeoclimatol Palaeoecol 178:19–37CrossRefGoogle Scholar
  43. Jenke YB (1993) Palaeoecological studies of benthic foraminifera from the Zogelsdorf Formation (Eggenburgian, Early Miocene) in the Eggenburg area (Austria). Contr Tert Quatern Geol 30:105–145Google Scholar
  44. Jiménez-Moreno G, Rodríguez-Tovar FJ, Pardo-Igúzquiza E, Fauquette S, Suc J-P, Müller P (2005) High-resolution palynological analysis in late early–middle Miocene core from the Pannonian Basin, Hungary: climatic changes, astronomical forcing and eustatic fluctuations in the Central Paratethys. Palaeogeogr Palaeoclimatol Palaeoecol 216:73–97CrossRefGoogle Scholar
  45. Key MM Jr (1987) Partitioning of morphologic variation across stability gradients in Upper Ordovician trepostomes. In: Ross JRP (ed) Bryozoa: present and past. Western Washington University, Bellingham, pp 145–152Google Scholar
  46. Key MM Jr, Wyse Jackson PN, Patterson WP, Moore MD (2005a) Stable isotope evidence for diagenesis of the Ordovician Courtown and Tramore Limestones, southeastern Ireland. Irish J Earth Sci 23:25–38CrossRefGoogle Scholar
  47. Key MM Jr, Wyse Jackson PN, Håkansson E, Patterson WP, Moore MD (2005b) Gigantism in Permian trepostomes from Greenland testing the algal symbiosis hypothesis using δ13C and δ18O values. In: Moyano GHI, Cancino JM, Wyse Jackson PN (eds) Bryozoan studies 2004. Balkema, Leiden, pp 141–151Google Scholar
  48. Killingley JS, Berger WH (1979) Stable isotopes in a mollusk shell: detection of upwelling events. Science 205:186–188CrossRefGoogle Scholar
  49. Kim S-T, O’Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61:3461–3475CrossRefGoogle Scholar
  50. Knowles T, Leng MJ, Williams M, Taylor PD, Sloane HJ, Okamura B (2010) Interpreting seawater temperature range using oxygen isotopes and zooid size variation in Pentapora foliacea (Bryozoa). Marine Biol 157:1171–1180CrossRefGoogle Scholar
  51. Kováč M (2000) Geodynamic, paleogeographic and structural development of the Carpathian–Pannonian region during the Miocene: a new view on Neogene basins of Slovakia (in Slovak). VEDA, Bratislava, pp 5–203Google Scholar
  52. Kováč M, Baráth I, Harzhauser M, Hlavatý I, Hudáčková N (2004) Miocene depositional systems and sequence stratigraphy of the Vienna Basin. Cour Forschungsinstitut Senckenb 246:187–212Google Scholar
  53. Kováčová P, Hudáčková N (2009) Late Badenian foraminifers from the Vienna Basin (Central Paratethys): stable isotope study and paleoecological implications. Geol Carpathica 60:59–70. doi: 10.2478/v10096-009-0006-3 CrossRefGoogle Scholar
  54. Kováčová P, Emmanuel L, Hudáčková N, Renard M (2009) Central Paratethys paleoenvironment during the Badenian (Middle Miocene): evidence from foraminifera and stable isotope (δ13C and δ 18O) study in the Vienna Basin (Slovakia). Int J Earth Sci 98:1109–1127. doi: 10.1007/s00531-008-0307-2 CrossRefGoogle Scholar
  55. Kroh A (2005) Catalogus Fossilium Austriae. Band 2. Echinoidea neogenica. Österreichische Akademie der Wissenschaften, WienGoogle Scholar
  56. Kroh A, Harzhauser M, Piller WE, Rögl F (2003) The Lower Badenian (Middle Miocene) Hartl Formation (Eisenstadt - Sopron Basin, Austria). In: Piller WE (ed) Stratigraphia Austriaca. Österreichische Akademie der Wissenschaften, Schriftenr Erdwiss Komm 16, pp 87–109Google Scholar
  57. Latal Ch, Piller WE, Harzhauser M (2004) Palaeoenvironmental reconstructions by stable isotopes of Middle Miocene gastropods of the Central Paratethys. Palaeogeogr Palaeoclimatol Palaeoecol 211:157–196Google Scholar
  58. Latal Ch, Piller WE, Harzhauser M (2006) Shifts in oxygen and carbon isotope signals in marine molluscs from the Central Paratethys (Europe) around the Lower/Middle Miocene transition. Palaeogeogr Palaeoclimatol Palaeoecol 231:347–360CrossRefGoogle Scholar
  59. Lear HC, Elderfield P, Wilson PA (2000) Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287:269–272CrossRefGoogle Scholar
  60. Lee H-J, Chao S-Y, Fan K-L, Wang Y-H, Liang N-K (1997) Tidally induced upwelling in a semi-enclosed basin: Nan Wan Bay. J Oceanogr 53:467–480Google Scholar
  61. Lewis AR, Marchant DR, Ashworth AC, Hemming SR, Machlus ML (2007) Major middle Miocene global climate change: evidence from East Antarctica and the Transantarctic Mountains. Geol Soc Am Bull 119:1449–1461Google Scholar
  62. Mandic O, Harzhauser M, Spezzaferri S, Zuschin M (2002) The paleoenvironment of an early Middle Miocene Paratethys sequence in NE Austria with special emphasis on mollusks and foraminifera. Geobios 24:193–206CrossRefGoogle Scholar
  63. Marques WS, de Menor EA, Sial AN, Manso VA, Freire SS (2007) Oceanographic parameters in continental margin of the State of Ceará (northeastern Brazil) deduced from C and O isotopes in foraminifers. An Acad Brasil Cienc 79:129–139CrossRefGoogle Scholar
  64. Marshall JD (1992) Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geol Mag 129:143–160CrossRefGoogle Scholar
  65. Martini E (1971) Standard tertiary and quaternary calcareous nannoplankton zonation. In: Proceeding of 2nd planktonic conference, Roma 1970. Edizioni Tecnoscienza, Rome, pp 739–785Google Scholar
  66. Meulenkamp JE, Sissingh W (2003) Tertiary palaeogeography and tectonostratigraphic evolution of the Northern and Southern Peri-Tethys platforms and the intermediate domains of the African–Eurasian convergent plate boundary zone. Palaeogeogr Palaeoclimatol Palaeoecol 196:209–228CrossRefGoogle Scholar
  67. Miller KG, Wright JD, Fairbanks RG (1991) Unlocking the ice house: Oligocene–Miocene oxygen isotopes, eustasy, and margin erosion. J Geophys Res 96:6829–6848CrossRefGoogle Scholar
  68. Moissette P (2000) Changes in bryozoan assemblages and bathymetric variations. Examples from the Messinian of northwest Algeria. Palaeogeogr Palaeoclimatol Palaeoecol 155:305–326CrossRefGoogle Scholar
  69. Moissette P, Dulai A, Escarguel G, Kázmér M, Müller P, Saint Martin JP (2007) Mosaic of environments recorded by bryozoan faunas from the Middle Miocene of Hungary. Palaeogeogr Palaeoclimatol Palaeoecol 252:530–556CrossRefGoogle Scholar
  70. Mourik AA, Abels HA, Hilgen FJ, Di Stefano A, Zachariasse WJ (2011) Improved astronomical age constraints for the middle Miocene climate transition based on high-resolution stable isotope records from the central Mediterranean Maltese Islands. Paleoceanography 26:1–14. doi: 10.1029/2010PA001981 CrossRefGoogle Scholar
  71. Naidu PD, Niitsuma N (2004) Atypical δ13C signature in Globigerina bulloides at the ODP site 723A (Arabian Sea): implications of environmental changes caused by upwelling. Mar Micropaleontol 53:1–10CrossRefGoogle Scholar
  72. Nehyba S, Zágoršek K, Holcová K (2008a) Stable isotope composition of bryozoan skeletons from Podbřežice (Middle Miocene, Central Paratethys, South Moravia, Czech Republic). In: Hageman SJ, Key MM Jr, Winston JE (eds) Bryozoan studies 2007. Virginia Museum of Natural History Special Publication 15, Martinsville, pp 163–175Google Scholar
  73. Nehyba S, Tomanová-Petrová P, Zágoršek K (2008b) Sedimentological and palaeocological records of the evolution of the south western part of the Carpathian Foredeep (Czech Republic) during the early Badenian. Geol Quart 52:45–60Google Scholar
  74. O’Dea A (2003) Seasonality and zooid size variation in Panamanian encrusting bryozoans. J Mar Biol Ass UK 83:1107–1108CrossRefGoogle Scholar
  75. Oke PR, Middleton JH (2000) Topographically induced upwelling off Eastern Australia. J Phys Oceanogr 30:512–531CrossRefGoogle Scholar
  76. Patterson, WP, Smith, GR, Lohmann, KC (1993) Continental paleothermometry and seasonality using the isotopic composition of aragonitic otoliths of freshwater fishes. In Swart PK, Lohmann KC, McKenzie JA, Savin S (eds) Climate change in continental isotopic records. AGU Monogr 78, pp 191–202Google Scholar
  77. Paulissen WE, Luthi SM, Grunert P, Coric S, Harzhauser M (2011) Integrated high-resolution stratigraphy of a middle to late Miocene sedimentary sequence in the central part of the Vienna Basin. Geol Carpath 62:155–169CrossRefGoogle Scholar
  78. Peeters FJC, Brummer G-JA, Ganssen G (2002) The effect of upwelling on the distribution and stable isotope composition of Globigerina bulloides and Globigerina ruber (planktic foraminifers) in modern surface waters of the NW Arabian Sea. Glob Planet Change 34:269–291CrossRefGoogle Scholar
  79. Piller WE, Harzhauser M, Mandic O (2007) Miocene Central Paratethys stratigraphy—current status and future directions. Stratigraphy 4:151–168Google Scholar
  80. Popov SV, Rögl F, Rozanov AY, Steininger FF, Shcherba IG, Kováč M (2004) Lithological–paleogeographic maps of Paratethys. Cour Forschungsinstitut Senckenb 250:1–46Google Scholar
  81. Popov SV, Shcherba IG, Ilyina LB, Nevesskaya LA, Paramonova NP, Khondkarian SO, Magyar I (2006) Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeogr Palaeoclimatol Palaeoecol 238:91–106CrossRefGoogle Scholar
  82. Reichenbacher B, Böhme M, Heissig K, Prieto J, Kossler A (2004) New approach to assess biostratigraphy, palaeoecology and past climate in the South German Molasse Basin during the Early Miocene (Ottnangian, Karpatian). Cour Forschungsinstitut Senckenb 249:71–89Google Scholar
  83. Richards F (1981) Coastal upwelling. coastal and estuarine sciences series, vol 1s. Amer Geophysical Union, Washington, DCGoogle Scholar
  84. Rocholl A, Boehme M, Guenther D, Höfer H, Ulbig A (2008) Prevailing stratospheric easterly wind direction in the Paratethys during the Lower Badenian: Ar–Ar- and Nd-isotopic evidence from rhyolitic ash layers in the Upper Freshwater Molasse, S-Germany Geophys Res Abs 10, EGU2008-A-00000Google Scholar
  85. Roetzel R, Pervesler P (2004) Storm-induced event deposits in the type area of the Grund Formation (Middle Miocene, Lower Badenian) in the Molasse Zone of Lower Austria. Geol Carpathica 55:87–102Google Scholar
  86. Roetzel R, Ćorić S, Galović I, Rögl F (2006) Early Miocene (Ottnangian) coastal upwelling conditions along the southeastern scarp of the Bohemian Massif (Parisdorf, Lower Austria, Central Paratethys). Beitr Paläont 30:387–413Google Scholar
  87. Rögl F (1998) Paleogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Ann Nat Mus Wien 99:279–310Google Scholar
  88. Rögl F (1999) Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geol Carpathica 50:339–349Google Scholar
  89. Saraswati PK (2007) Symbiont-bearing benthic foraminifera of Lakshadweep. Indian J Mar Sci 36:351–354Google Scholar
  90. Schwarz T (1997) Lateritic bauxite in central Germany and implications for Miocene paleoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 129:37–50CrossRefGoogle Scholar
  91. Shackleton NJ (1987) Oxygen isotopes, ice volume and sea-level. Quatern Sci Rev 6:183–190CrossRefGoogle Scholar
  92. Shackleton NJ, Kennett JP (1975) Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277, 279 and 281. In: Kennett JP et al (eds) Initial reports of the deep sea drilling project, vol 29., US Government Printing OfficeWashington, DC, pp 743–755Google Scholar
  93. Smith AM (1995) Palaeoenvironmental interpretation using bryozoans: a review. In: Bosence DWJ, Allison PA (eds) Marine palaeoenvironmental analysis from fossils, vol Spec Pub 83. Geological Society, London, pp 231–243Google Scholar
  94. Smith AM, Key MM Jr (2004) Controls, variation and a record of climate change in a detailed stable isotope profile from a single bryozoan skeleton. Quat Res 61:123–133CrossRefGoogle Scholar
  95. Smith AM, Nelson CS, Key MM Jr, Patterson WP (2004) Stable isotope values in modern bryozoan carbonate from New Zealand and implications for paleoenvironmental interpretation. NZ J Geol Geophys 47:809–821CrossRefGoogle Scholar
  96. Smith AM, Key MM Jr, Gordon DP (2006) Skeletal mineralogy of bryozoans: taxonomic and temporal patterns. Earth Sci Rev 78:287–306CrossRefGoogle Scholar
  97. Spezzaferri S (2004) Foraminiferal paleoecology and biostratigraphy of the Grund Beds (Molasse Basin–Lower Austria). Geol Carpathica 55:155–164Google Scholar
  98. Steens TNF, Ganssen G, Kroon D (1992) Oxygen and carbon isotopes in planktonic foraminifers as indicators of upwelling intensity and upwelling-induced high productivity in sediments from the northwestern Arabian Sea. In: Summerhayes CP, Prell WL, Emeis KC (eds) Upwelling systems: evolution since the early Miocene, vol Spec Pub 64. Geol Soc, London, pp 107–119Google Scholar
  99. Steininger FF, Wessely G (2000) From the Tethyan Ocean to the Paratethys Sea: Oligocene to Neogene stratigraphy, paleogeography and paleobiogeography of the circum-Mediterranean region and the Oligocene to Neogene basin evolution in Austria. Mitt Osterreich Geol Ges 92:95–116Google Scholar
  100. Strauss P, Harzhauser M, Hinsch R, Wagreich M (2006) Sequence stratigraphy in a classic pull-apart basin (Neogene, Vienna Basin). A 3D seismic based integrated approach. Geol Carpathica 57:185–197Google Scholar
  101. Swart PK, Sternberg L, Steinen R, Harrison SA (1989) Controls on the oxygen and hydrogen isotopic composition of waters from Florida Bay. Chem Geol Isotope Geosci Sect 79:113–123CrossRefGoogle Scholar
  102. Vakarcs G, Hardenbol J, Abreu VS, Vail PR, Várnai P, Tari G (1998) Oligocene–middle Miocene depositional sequences of the central Paratethys and their correlation with regional stages. SEPM Spec Pub 60:209–231Google Scholar
  103. Vávra N (1987) Bryozoa from the Early Miocene of the Central Paratethys: biographical and biostratigraphical aspects. In: Ross JRP (ed) Bryozoa: present and past. Western Washington University, Bellingham, pp 285–292Google Scholar
  104. Veizer J (1983) Chemical diagenesis of carbonates: theory and application of trace element technique. In: Arthur MA, Anderson TF, Veizer J, Land LS (eds) Stable isotopes in sedimentary geology. SEPM Short Course 10, pp 1–100Google Scholar
  105. Vennemann TW, Hegner E (1998) Oxygen, strontium, and neodymium isotope composition of fossil shark teeth as a proxy for the palaeoceanography and paleoclimatology of the Miocene northern Alpine Paratethys. Palaeogeogr Palaeoclimatol Palaeoecol 142:107–121CrossRefGoogle Scholar
  106. Verducci M, Foresi LM, Scott GH, Sprovieri M, Lirer F, Pelosi N (2009) The Middle Miocene climatic transition in the Southern Ocean: evidence of paleoclimatic and hydrographic changes at Kerguelen plateau from planktonic foraminifers and stable isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 280:371–386CrossRefGoogle Scholar
  107. Wan S, Kürschner WM, Clift PD, Li A, Li T (2009) Extreme weathering/erosion during the Miocene Climatic Optimum: evidence from sediment record in the South China Sea. Geophys Res Lett 36:L19706. doi: 10.1029/2009GL040279 CrossRefGoogle Scholar
  108. Wefer G, Berger WH, Bijma J, Fischer G (1999) Clues to ocean history: a brief overview of proxies. In: Fischer G, Wefer G (eds) Use of proxies in paleoceanography: examples from the South Atlantic. Springer, Berlin, pp 1–68CrossRefGoogle Scholar
  109. (2011) Wind and weather statistic Brno (Statistics based on observations taken between 5/2003–5/2011 daily from 7am to 7 pm local time). Accessed 9 June 2011
  110. Wurster CM, Patterson WP (2003) Late Holocene metabolic rate changes of freshwater drum (Aplodinotus grunniens): evidence from high-resolution sagittal otolith stable isotope ratios of carbon. Paleobiol 29:492–505CrossRefGoogle Scholar
  111. You Y, Huber M, Müller RD, Poulsen CJ, Ribbe J (2009) Simulation of the middle Miocene climate optimum. Geophys Res Lett 36:L04702. doi: 10.1029/2008GL036571 CrossRefGoogle Scholar
  112. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–692. doi: 10.1126/science.1059412 CrossRefGoogle Scholar
  113. Zágoršek K (2010a) Bryozoa from the Langhian (Miocene) of the Czech Republic. Part 2: systematic description of the suborder Ascophora Levinsen, 1909 and paleoecological reconstruction of the studied paleoenvironment. Acta Mus Natl Pragae Ser B Hist Nat 66:139–255Google Scholar
  114. Zágoršek K (2010b) Bryozoa from the Langhian (Miocene) of the Czech Republic. Part 1: geology of the studied sections, systematic description of the orders Cyclostomata, Ctenostomata, and “Anascan” Cheilostomata (Suborders Malacostega Levinsen, 1902 and Flustrina Smitt, 1868). Acta Mus Natl Pragae Ser B Hist Nat 66:3–136Google Scholar
  115. Zágoršek K, Holcová K (2005) A bryozoan and foraminifera association from the Miocene of Podbřežice, south Moravia (Czech Republic): an environmental history. In: Moyano GHI, Moyano GHI, Cancino JM, Wyse Jackson PN (eds) Bryozoan studies 2004. Balkema, Leiden, pp 383–396Google Scholar
  116. Zágoršek K, Holcová K (2009) Nejstarší spodnobadenský mechovkový event v karpatské předhlubni ve vrtech Přemyslovice (PY-1 až PY-4). Přírodovědné studie Muzea Prostějovska 10–11:171–182Google Scholar
  117. Zágoršek K, Vávra N (2007) Bryozoan fauna from Steinebrunn (Lower Austria, Badenian)—a revision to establish a basis for comparisons with Moravian faunas. Scr Fac Sci Nat Univ Masarykianæ Brun 36. ISBN 978-80-210-4453-1Google Scholar
  118. Zágoršek K, Tomanová Petrová P, Nehyba S, Jašková V, Hladilová Š (2010) Fauna vrtů HL1 a HL2 u Hluchova (střední miocén), Prostějovsko. Geol Výzk Moravě Slezsku 17:99–103Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Marcus M. KeyJr.
    • 1
  • Kamil Zágoršek
    • 2
  • William P. Patterson
    • 3
  1. 1.Department of Earth SciencesDickinson CollegeCarlisleUSA
  2. 2.Department of PaleontologyNational MuseumPrague 1Czech Republic
  3. 3.Department of Geological SciencesUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations