International Journal of Earth Sciences

, Volume 101, Issue 8, pp 2215–2223 | Cite as

Seismicity patterns associated with the September 10th, 2008 Qeshm earthquake, South Iran

  • Mohammad Reza Sorbi
  • Faramarz Nilfouroushan
  • Ahmad Zamani
Original Paper

Abstract

The b value of the Gutenberg-Richter relation and the standard deviate, Z, were calculated to investigate the temporal and spatial variations in seismicity patterns associated with the September 10th, 2008 (Mw = 6.1) Qeshm earthquake. The temporal variations of b value illustrate a distinct dramatic drop preceding the Qeshm earthquake, and the spatial changes in b value highlight a zone with an abnormally low b value around the epicenter of this event. The cumulative number and Z value as a function of time show a precursory seismic quiescence preceding the 2008 Qeshm earthquake that observed for 1 year in a circle with R = 50 km around its epicenter. The spatial distribution map of the standard deviate, Z, also exhibits an obvious precursory seismic quiescence region before the 2008 Qeshm event around the epicenter of this event. Interestingly, the precursory seismic quiescence region is approximately consistent with low b value anomaly region, and both have E–W to NE–SW trend. These two precursory anomalies took place in relatively large regions, which were possibly relevant to the preparation zone of the 2008 Qeshm event.

Keywords

Seismicity patterns b value Z value Qeshm earthquake Earthquake precursors 

Notes

Acknowledgments

FN is funded by Research council of Sweden (VR). MRS acknowledges of the support provided by the Center of Excellence for Environmental Geohazards and the Research Council of Shiraz University. Part of this research was carried out at Uppsala University, and therefore, Hemin Koyi is thanked for the helps and discussions during the 1st author’s visit of Uppsala. We also thank Stefan Wiemer for the ZMAP software. We are grateful to Mehdi Zare and Maryam Agh-Atabai for valuable comments.

References

  1. Adams A, Brazier R, Nyblade A, Rodgers A, Al-Amri A (2009) Source parameters for moderate earthquakes in the Zagros Mountains with implications for the depth extent of seismicity. Bull Seismol Soc Am 99:2044–2049CrossRefGoogle Scholar
  2. Bahroudi A, Koyi HA (2003) Effect of spatial distribution of Hormuz salt on deformation style in the Zagros fold-thrust belt. J Geol Soc Lond 160:719–733CrossRefGoogle Scholar
  3. Bernard P, Lyon-Caen H, Briole P, Deschamps A, Boudin F, Makropoulos K, Papadimitriou P, Lemeille F, Patau G, Billiris H, Paradissis D, Papazissi K, Castarède H, Charade O, Nercessian A, Avallone A, Pacchiani F, Zahradnik J, Sacks S, Linde A (2006) Seismicity, deformation and seismic hazard in the western rift of Corinth: new insights from the Corinth Rift Laboratory (CRL). Tectonophysics 426:7–30CrossRefGoogle Scholar
  4. Bhatt KM, Kumar S (2009) Anomalous b-value in seismogenic layer of Bhuj Region. J Ind Geophys Union 13(3):99–106Google Scholar
  5. Bridges DL, Gao SS (2006) Spatial variation of seismic b-values beneath Makushin Volcano, Unalaska Island, Alaska. Earth Planet Sci Lett 245:408–415CrossRefGoogle Scholar
  6. Chouliaras G (2009) Seismicity anomalies prior to 8 June 2008, Mw = 6.4 earthquake in Western Greece. Nat Hazards Earth Syst Sci 9:327–335CrossRefGoogle Scholar
  7. Gorgun E, Zang A, Bohnhoff M, Milkereit C, Dresen G (2009) Analysis of Izmit aftershocks 25 days before the November 12th 1999 Düzceearthquake, Turkey. Tectonophysics 474:507–515CrossRefGoogle Scholar
  8. Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188Google Scholar
  9. Habermann RE (1987) Man-made changes of seismicity rates. Bull Seism Soc Am 77:141–159Google Scholar
  10. Hessami K, Nilforoushan F, Talbot CJ (2006) Active deformation within Zagros Mountains deduced from GPS measurements. J Geol Soc Lond 163(1):143–148CrossRefGoogle Scholar
  11. Islam MS, Shinjo R (2010) Neotectonic stress field and deformation pattern within the Zagros and its adjoining area: an approach from finite element modeling. J Geol Min Res 2(7):170–182Google Scholar
  12. Kanamori H (1981) The nature of seismic patterns before large earthquakes. In earthquake prediction. An international review. V 4 AGU Washington, DC, pp 1–19Google Scholar
  13. Katsumata K (2011) Long term seismic quiescence started 23 years before the 2011 off the Pacific coast of Tohoku earthquake (M = 9.0). Earth Planets Space 63:709–712CrossRefGoogle Scholar
  14. Koyi HA, Hessami K, Teixell A (2000) Epicentre distribution and magnitude of earthquakes in fold-thrust belts: insights from sandbox modelling. Geophys Res Lett 27:273–276CrossRefGoogle Scholar
  15. Maeda K, Wiemer S (1999) Significance test for seismicity rate changes before the 1987 Chiba-toho-oki earthquake (M6.7), Japan. Ann Geofis 42(5):833–850Google Scholar
  16. Motaghi K, Hessami K, Tatar M (2010) Pattern recognition of major asperities using local recurrence time in Alborz Mountains, Northern Iran. J Seismol 14:787–802. doi: 10.1007/s10950-010-9201-z CrossRefGoogle Scholar
  17. Murru M, Montuori C, Wyss M, Privitera E (1999) The locations of magma chambers at Mt. Etna, Italy, mapped by b values. Geophys Res Lett 26:2553–2556CrossRefGoogle Scholar
  18. Murru M, Console R, Falcone G, Montuori C, Sgroi T (2007) Spatial mapping of the b value at Mount Etna, Italy, using earthquake data recorded from 1999 to 2005. J Geophys Res 112:B12303. doi: 10.1029/2006JB004791 CrossRefGoogle Scholar
  19. Nilforoushan F, Masson F, Vernant P, Vigny C, Martinod J, Abbassi M, Nankali H, Hatzfeld D, Bayer R, Tavakoli F, Ashtiani A, Doerflinger E, Daignières M, Collard P (2003) GPS network monitors the Arabia-Eurasia collision deformation in Iran. J Geodesy 77:411–422CrossRefGoogle Scholar
  20. Nilforoushan F, Koyi HA, Swantesson J, Talbot CJ (2008) Effect of basal friction on surface and volumetric strain in models of convergent settings measured by laser scanner. J Struct Geo 30:366–379. doi: 10.1016/j.jsg.2007.09.013 CrossRefGoogle Scholar
  21. Nissen E, Yamini-Fard F, Tatar M, Gholamzadeh A, Bergman E, Elliott JR, Jackson JA, Parsons B (2010) The vertical separation of main shock rupture and microseismicity at Qeshm Island in the Zagros simply folded belt, Iran. Earth Planet Sci Lett 296:181–194CrossRefGoogle Scholar
  22. Nissen E, Tatar M, Jackson JA, Mark B, Allen MB (2011) New views on earthquake faulting in the Zagros fold-and-thrust belt of Iran. Geophys J Int. doi: 10.1111/j.1365-246X.2011.05119.x
  23. Nuannin P, Kulhánek O, Persson L (2005) Spatial and temporal b-value anomalies preceding the devastating off coast of NW Sumatra earthquake of December 26, 2004. Geophys Res Lett 32:L11307. doi: 10.1029/2005GL022679 CrossRefGoogle Scholar
  24. Parsons T (2007) Forecast experiment: do temporal and spatial b value variations along the Calaveras fault portend M 4.0 earthquakes? J Geophys Res 112:B03308. doi: 10.1029/2006JB004632 CrossRefGoogle Scholar
  25. Rani VS, Srivastava K, Srinagesh D, Dimri VP (2011) Spatial and temporal variations of b-value and fractal analysis for the Makran region. Mar Geodesy 34:77–82CrossRefGoogle Scholar
  26. Reasenberg PA (1985) Second-order moment of Central California Seismicity. J Geophys Res 90:5479Google Scholar
  27. Rudolf-Navarro AH, Muñoz-Diosdado A, Angulo-Brown F (2010) Seismic quiescence patterns as possible precursors of great earthquakes in Mexico. Int J Phys Sci 56:651–670Google Scholar
  28. Rundle JB, Tiampo KF, Klein W, Martins JSS (2002) Self-organization in leaky threshold systems: the influence of near-mean field dynamics and its implications for earthquakes. Neurobiol Forecast Proc Natl Acad Sci USA 99:2514–2521CrossRefGoogle Scholar
  29. Rydelek PA, Sacks IS (1989) Testing the completeness of earthquake catalogs and the hypothesis of self-similarity. Nature 337:251–253CrossRefGoogle Scholar
  30. Scholz CM (1988) Mechanism of seismic quiescence. Pageoph 126:701–707CrossRefGoogle Scholar
  31. Schorlemmer D, Neri G, Wiemer S, Mostaccio A (2003) Stability and significance tests for b-value anomalies: example from the Tyrrhenian Sea. Geophys Res Lett 30(16):1835. doi: 10.1029/2003GL017335 CrossRefGoogle Scholar
  32. Schorlemmer D, Wiemer S, Wyss M (2004) Earthquake statistics at Parkfield, Stationarity of b values. J Geophys Res 109:B12307. doi: 10.1029/2004JB003234 CrossRefGoogle Scholar
  33. Schorlemmer D, Wiemer S, Wyss M (2005) Variations in earthquake-size distribution across different stress regimes. Nature 437:539–542CrossRefGoogle Scholar
  34. Sepehr M, Cosgrove J, Moieni M (2006) The impact of cover rock rheology on the style of folding in the Zagros fold-thrust belt. Tectonophysics 427:265–281CrossRefGoogle Scholar
  35. Stiphout T, Schorlemmer D, Wiemer S (2011) The effect of uncertainties on estimates of background seismicity rate. Bull Seismol Soc Am 101(2):482–494. doi: 10.1785/0120090143 CrossRefGoogle Scholar
  36. Talebian MM, Jackson JA (2004) A reappraisal of earthquake focal mechanisms and active shortening in the Zagros Mountains of Iran. Geophys J Int 156:506–526CrossRefGoogle Scholar
  37. Tsukakoshi Y, Shimazaki K (2008) Decreased b-value prior to the M 6.2 Northern Miyagi, Japan, earthquake of 26 July 2003. Earth Planets Space 60:915–924Google Scholar
  38. Urbancic TI, Trifu CI, Long JM, Toung RP (1992) Space–time correlations of b values with stress release. Pure Appl Geophys 139:449–462CrossRefGoogle Scholar
  39. Utsu T (1992) On seismicity, report of the joint research institute for statistical mathematics. Inst For Stat Math Tokyo 34:139–157Google Scholar
  40. Westerhaus M, Wyss M, Yilmaz R, Zschau J (2002) Correlating variations of b values and crustal deformation during the 1990’s may have pinpointed the rupture initiation of the Mw = 7.4 Izmit earthquake of 1999 August 17. Geophys J Int 148:139–152CrossRefGoogle Scholar
  41. White BJP, Smith RB, Husen S, Farrell J, Wong I (2009) Seismicity and earthquake hazard analysis of the Teton–Yellowstone region, Wyoming. J Volcanol Geotherm Res 188:277–296CrossRefGoogle Scholar
  42. Wiemer S (2001) A program to analyse seismicity: ZMAP. Geophys Res Lett 72:373–382Google Scholar
  43. Wiemer S, Wyss M (1994) Seismic quiescence before the landers (M = 7.5) and big bear (M = 6.5), 1992 earthquakes. Bull Seismol Soc Am 84(3):900–916Google Scholar
  44. Wiemer S, Wyss M (1997) Mapping the frequency-magnitude distribution in asperities: an improved technique to calculate recurrence times? J Geophys Res 102(15):115–128Google Scholar
  45. Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan. Bull Seismol Soc Am 90(4):859–869CrossRefGoogle Scholar
  46. Wiemer S, Wyss M (2002) Mapping spatial variability of the frequency–magnitude distribution of earthquakes. Adv Geophys 45:259–302CrossRefGoogle Scholar
  47. Wu YM, Chiao LY (2006) Seismic quiescence before the 1999 Chi–Chi, Taiwan Mw7.6 earthquake. Bull Seism Soc Am 96:321–327CrossRefGoogle Scholar
  48. Wu YM, Chen CC, Zhao L, Chang CH (2008) Seismicity characteristics before the 2003 Chengkung, Taiwan, earthquake. Tectonophysics 457:177–182CrossRefGoogle Scholar
  49. Wyss M, Habermann RE (1988) Precursory seismic quiescence. Pure Appl Geophys 126:319–332CrossRefGoogle Scholar
  50. Wyss M, Stefansson R (2006) Nucleation points of recent main shocks in southern Iceland mapped by b-values. Bull Seismol Soc Am 96:599–608. doi: 10.1785/0120040056 CrossRefGoogle Scholar
  51. Wyss M, Sobolev G, Clippard JD (2004) Seismic quiescence precursors to two M7 earthquakes on Sakhalin Island, measured by two methods. Earth Planets Space 56:725–740Google Scholar
  52. Wyss M, Pacchiani F, Deschamps A, Patau G (2008) Mean magnitude variations of earthquakes as a function of depth: different crustal stress distribution depending on tectonic setting. Geophys Res Lett 35:L01307. doi: 10.1029/2007GL031057 CrossRefGoogle Scholar
  53. Zamani A, Agh-Atabai M (2009) Temporal characteristics of seismicity in the Alborz and Zagros regions of Iran, using a multifractal approach. J Geodyn 47:271–279CrossRefGoogle Scholar
  54. Zamani A, Agh-Atabai M (2011) Multifractal analysis of the spatial distribution of earthquake epicenters in the Zagros and Alborz-Kopeh Dagh regions of Iran. J Sci Technol A1:39–51Google Scholar
  55. Zamani A, Hashemi N (2000) A comparison between seismicity, topographic relief, and gravity anomalies of the Iranian Plateau. Tectonophysics 327:25–36CrossRefGoogle Scholar
  56. Zamani A, Khalili M, Gerammi A (2011) Computer-based self-organized tectonic zoning revisited: scientific criterion for determining the optimum number of zones. Tectonophysics 510:207–216CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Mohammad Reza Sorbi
    • 1
  • Faramarz Nilfouroushan
    • 2
  • Ahmad Zamani
    • 1
  1. 1.Department of Earth Sciences, College of SciencesShiraz UniversityShirazIran
  2. 2.Department of Earth SciencesUppsala UniversityUppsalaSweden

Personalised recommendations