International Journal of Earth Sciences

, Volume 101, Issue 7, pp 1855–1873 | Cite as

Deciphering the Variscan tectonothermal overprint and deformation partitioning in the Cadomian basement of the Teplá–Barrandian unit, Bohemian Massif

  • Jaroslava Hajná
  • Jiří Žák
  • Václav Kachlík
  • Martin Chadima
Original Paper

Abstract

The Teplá–Barrandian unit (TBU) has long been considered as a simply bivergent supracrustal ‘median massif’ above the Saxothuringian subduction zone in the Variscan orogenic belt. This contribution reveals a much more complex style of the Variscan tectonometamorphic overprint and resulting architecture of the Neoproterozoic basement of the TBU. For the first time, we describe the crustal-scale NE–SW-trending dextral transpressional Krakovec shear zone (KSZ) that intersects the TBU and thrusts its higher grade northwestern portion severely reworked by Variscan deformation over a southeastern very low grade portion with well-preserved Cadomian structures and only brittle Variscan deformation. The age of movements along the KSZ is inferred as Late Devonian (~380–370 Ma). On the basis of structural, microstructural, and anisotropy of magnetic susceptibility data from the KSZ, we propose a new synthetic model for the deformation partitioning in the Teplá–Barrandian upper crust in response to the Late Devonian to early Carboniferous subduction and underthrusting of the Saxothuringan lithosphere. We conclude that the Saxothuringian/Teplá–Barrandian convergence was nearly frontal during ~380–346 Ma and was partitioned into pure shear dominated domains that accommodated orogen-perpendicular shortening alternating with orogen-parallel high-strain domains that accommodated dextral transpression or bilateral extrusion. The synconvergent shortening of the TBU was terminated by a rapid gravity-driven collapse of the thickened lithosphere at ~346–337 Ma followed by, or partly simultaneous with, dextral strike-slip along the Baltica margin-parallel zones, driven by the westward movement of Gondwana from approximately 345 Ma onwards.

Keywords

Avalonian–Cadomian belt Bohemian Massif Shear zone Teplá–Barrandian unit Transpression Variscan orogeny 

Notes

Acknowledgments

We gratefully acknowledge Gernold Zulauf and Jaroslav Dostal for their very constructive and detailed reviews that helped to improve the original manuscript significantly, and Associate Editor Reinhard Greiling for helpful comments on final version of the manuscript. František Hrouda and Marta Chlupáčová are thanked for providing their AMS data from the Čistá pluton. This study is part of the Ph.D. research of Jaroslava Hajná, supported by Grant No. 134908 from the Grant Agency of Charles University in Prague (GAUK) to J. Hajná, and by the Ministry of Education, Youth and Sports of the Czech Republic Research Plan No. MSM0021620855 and SVV261203.

Supplementary material

531_2012_753_MOESM1_ESM.xls (218 kb)
Supplementary material 1 (XLS 218 kb)
531_2012_753_MOESM2_ESM.tif (6.3 mb)
Supplementary material 2 (TIFF 6427 kb)
531_2012_753_MOESM3_ESM.tif (5.4 mb)
Supplementary material 3 (TIFF 5571 kb)

References

  1. Babuška V, Fiala J, Plomerová J (2010) Bottom to top lithosphere structure and evolution of western Eger Rift (Central Europe). Int J Earth Sci 99:891–907CrossRefGoogle Scholar
  2. Badham JP (1982) Strike slip orogens—an explanation for the Hercynides. J Geol Soc London 139:495–506CrossRefGoogle Scholar
  3. Borradaile GJ, Jackson M (2010) Structural geology, petrofabrics and magnetic fabrics (AMS, AARM, AIRM). J Struct Geol 32:1519–1591CrossRefGoogle Scholar
  4. Burg JP (1999) Ductile structures and instabilities: their implication for Variscan tectonics in the Ardennes. Tectonophysics 309:1–25CrossRefGoogle Scholar
  5. Čech S, Havlíček V, Zikmundová J (1988) Upper Devonian and Lower Carboniferous in north-eastern Bohemia (based on boreholes in the Hradec Králové area). Bull Central Geol Surv 64:65–75Google Scholar
  6. Cháb J, Žáček V (1994) Metamorphism of the Teplá Crystalline complex. KTB Rep 94:33–37Google Scholar
  7. Cháb J, Suchý V, Vejnar Z (1995) Teplá–Barrandian Zone (Bohemicum): metamorphic evolution. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of central and eastern Europe. Springer, Berlin, pp 404–410Google Scholar
  8. Chlupáč I, Zikmundová J (1976) The Devonian and lower Carboniferous in the Nepasice bore in east Bohemia. Bull Central Geol Surv 51:269–278Google Scholar
  9. Chlupáčová M, Hrouda F, Janák J, Rejl L (1975) The fabric, genesis and relative age relations of the granitic rocks of the Čistá–Jesenice massif. Gerlands Beitr Geophys 84:487–500Google Scholar
  10. Crowley QG, Floyd PA, Winchester JA, Franke W, Holland JG (2000) Early Palaeozoic rift-related magmatism in Variscan Europe: fragmentation of the Armorican Terrane Assemblage. Terra Nova 12:171–180CrossRefGoogle Scholar
  11. Crowley QG, Timmermann H, Noble SR, Holland JG (2002) Palaeozoic terrane amalgamation in central Europe: a REE and Sm–Nd isotope study of the pre-Variscan basement, NE Bohemian Massif. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of central Europe. Geol Soc London Spec Publ 201:157–176Google Scholar
  12. Dallmeyer RD, Urban M (1994) Variscan vs. Cadomian tectonothermal evolution within the Teplá–Barrandian zone, Bohemian Massif, Czech Republic: evidence from 40Ar/39Ar mineral and whole-rock slate/phyllite ages. J Czech Geol Soc 39:21–22Google Scholar
  13. Dallmeyer RD, Urban M (1998) Variscan versus Cadomian tectonothermal activity in northwestern sectors of the Teplá–Barrandian zone, Czech Republic: constraints from 40Ar/39Ar ages. Geol Rundsch 87:94–106CrossRefGoogle Scholar
  14. Dörr W, Zulauf G (2010) Elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zone. Int J Earth Sci 99:299–325CrossRefGoogle Scholar
  15. Dörr W, Fiala J, Vejnar Z, Zulauf G (1998) U–Pb zircon ages and structural development of metagranitoids of the Teplá crystalline complex—evidence for pervasive Cambrian plutonism within the Bohemian Massif (Czech Republic). Geol Rundsch 87:135–149CrossRefGoogle Scholar
  16. Dörr W, Zulauf G, Fiala J, Franke W, Vejnar Z (2002) Neoproterozoic to Early Cambrian history of an active plate margin in the Teplá–Barrandian unit—a correlation of U-Pb isotopic-dilution TIMS ages (Bohemia, Czech Republic). Tectonophysics 352:65–85CrossRefGoogle Scholar
  17. Dostal J, Patočka F, Pin C (2001) Middle/Late Cambrian intracontinental rifting in the central west Sudetes, NE Bohemian Massif (Czech Republic): geochemistry and petrogenesis of the bimodal metavolcanic rocks. Geol J 36:1–17CrossRefGoogle Scholar
  18. Drost K, Linnemann U, McNaughton N, Fatka O, Kraft P, Gehmlich M, Tonk C, Marek J (2004) New data on the Neoproterozoic–Cambrian geotectonic setting of the Teplá–Barrandian volcano-sedimentary successions: geochemistry, U–Pb zircon ages, and provenance (Bohemian Massif, Czech Republic). Int J Earth Sci 93:742–757CrossRefGoogle Scholar
  19. Drost K, Gerdes A, Jeffries T, Linnemann U, Storey C (2011) Provenance of Neoproterozoic and early Paleozoic siliciclastic rocks of the Teplá–Barrandian unit (Bohemian Massif): evidence from U–Pb detrital zircon ages. Gondwana Res 19:213–231CrossRefGoogle Scholar
  20. Dubanský A (1984) Determination of the radiogenic age by the K–Ar method (geochronological data from the Bohemian Massif in the ČSR region). Collect Sci Works Tech Univ Ostrava 30:137–170Google Scholar
  21. Filip J, Suchý V (2004) Thermal and tectonic history of the Barrandian Lower Paleozoic, Czech Republic: is there a fission-track evidence for Carboniferous–Permian overburden and pre-Westphalian alpinotype thrusting? Bull Geosci 79:107–112Google Scholar
  22. Floyd PA, Winchester JA, Seston R, Kryza R, Crowley QG (2000) Review of geochemical variation in Lower Palaeozoic metabasites from the NE Bohemian Massif: intracratonic rifting and plume-ridge interaction. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt. Geol Soc London Spec Publ 179:155–174Google Scholar
  23. Forster MA, Lister GS (2008) Tectonic sequence diagrams and the structural evolution of schists and gneisses in multiply deformed terranes. J Geol Soc London 165:923–939CrossRefGoogle Scholar
  24. Franěk J, Schulmann K, Lexa O, Tomek Č, Edel JB (2011) Model of syn-convergent extrusion of orogenic lower crust in the core of the Variscan belt: implications for exhumation of high-pressure rocks in large hot orogens. J Metamorph Geol 29:53–78CrossRefGoogle Scholar
  25. Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt. Geol Soc London Spec Publ 179:35–61Google Scholar
  26. Franke W, Zelazniewicz A (2002) Structure and evolution of the Bohemian arc. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe. Geol Soc London Spec Publ 201: 279–293Google Scholar
  27. Gebauer D (1993) Geochronologische Übersicht. In: Bauberger W (ed) Geologische Karte von Bayern 1:25000, Erläuterungen zum Blatt Nr. 6439 Tännesberg Bayer. Geol L Amt, München, pp 10–22Google Scholar
  28. Glodny J, Grauert B, Fiala J, Vejnar Z, Krohe A (1998) Metapegmatites in the western Bohemian massif: ages of crystallisation and metamorphic overprint, as constrained by U–Pb zircon, monazite, garnet, columbite and Rb–Sr muscovite data. Geol Rundsch 87:124–134CrossRefGoogle Scholar
  29. Hajná J, Žák J, Kachlík V, Chadima M (2010) Subduction-driven shortening and differential exhumation in a Cadomian accretionary wedge: the Teplá–Barrandian unit, Bohemian Massif. Precambrian Res 176:27–45CrossRefGoogle Scholar
  30. Hajná J, Žák J, Kachlík V (2011) Structure and stratigraphy of the Teplá–Barrandian Neoproterozoic: a new plate-tectonic reinterpretation. Gondwana Res 19:495–508CrossRefGoogle Scholar
  31. Havlíček V (1963) Tectogenetic disruption of the Barrandian Paleozoic. J Geol Sci 1:77–102Google Scholar
  32. Havlíček V (1981) Development of a linear sedimentary depression exemplified by the Prague basin (Ordovician–Middle Devonian; Barrandian area—central Bohemia). J Geol Sci 35:7–48Google Scholar
  33. Hofmann M, Linnemann U, Gerdes A, Ullrich B, Schauer M (2009) Timing of dextral strike-slip processes and basement exhumation in the Elbe Zone (Saxo-Thuringian Zone): the final pulse of the Variscan Orogeny in the Bohemian Massif constrained by LA-SF-ICP-MS U-Pb zircon data. Geol Soc London Spec Publ 327:197–214CrossRefGoogle Scholar
  34. Holubec J (1995) Structure (the Teplá–Barrandian Zone). In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of central and eastern Europe. Springer, Berlin, pp 392–397Google Scholar
  35. Hrouda F (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys Surv 5:37–82CrossRefGoogle Scholar
  36. Jackson M, Tauxe L (1991) Anisotropy of magnetic susceptibility and remanence: developments in the characterization of tectonic, sedimentary, and igneous fabric. Rev Geophys 29:371–376Google Scholar
  37. Kachlík V (1996) Contact metamorphic host rocks of the Lestkov massif and their significance for reconstruction of tectonometamorphic evolution of the Teplá–Barrandian unit. Geoscience Research Reports for 1996, pp 81–82Google Scholar
  38. Kachlík V (1999) Relationship between Moldanubicum, the Kutná Hora crystalline unit, and Bohemicum (Central Bohemia, Czech Republic): a result of the polyphase nappe tectonics. J Czech Geol Soc 44:201–289Google Scholar
  39. Klomínský J (1963) Geology of the Čistá Massif. J Geol Sci 3:75–99Google Scholar
  40. Klomínský J, Jarchovský T, Rajpoot GS (2010) The atlas of plutonic rocks and orthogneisses in the Bohemian Massif. Radioactive Waste Repository Authority of the Czech Republic, Technical Report No. TR-01-2010, PragueGoogle Scholar
  41. Konopásek J, Schulmann K (2005) Contrasting Early Carboniferous field geotherms: evidence for accretion of a thickened orogenic root and subducted Saxothuringian crust (central European Variscides). J Geol Soc London 162:463–470CrossRefGoogle Scholar
  42. Kopecký L (1987) The Čistá ring structure, Czechoslovakia. In: Proceedings of the 1st Seminar on carbonatites and alkaline rocks of the Bohemian Massif and ambient regions. Czech Geological Survey, Prague, pp 23–58Google Scholar
  43. Kopecký L, Dobeš M, Fiala J, Št’ovíčková N (1970) Fenites of the Bohemian Massif and the relations between fenitization, alkaline volcanism and deep fault tectonics. J Geol Sci 16:51–107Google Scholar
  44. Kopecký L, Chlupáčová M, Klomínský J, Sokol A (1997) The Čistá–Jesenice pluton in western Bohemia: geochemistry, geology, petrophysics and ore potential. J Geol Sci 31:97–127Google Scholar
  45. Košler J, Bowes DR, Farrow CM, Hopgood AM, Rieder M, Rogers G (1997) Constraints on the timing of events in the multi-episodic of the Teplá–Barrandian complex, western Bohemia, from integration of deformational sequence and Rb–Sr isotopic data. N Jb Miner Mh 5:203–220Google Scholar
  46. Kretz R (1983) Symbols for rock forming minerals. Am Miner 68:277–279Google Scholar
  47. Lüneburg CM, Lebit HDW (1998) The development of a single cleavage in an area of repeated folding. J Struct Geol 20:1531–1548CrossRefGoogle Scholar
  48. Martínez Catalán JR (2011) Are the oroclines of the Variscan belt related to late Variscan strike-slip tectonics? Terra Nova 23:241–247CrossRefGoogle Scholar
  49. Matte P (1986) Tectonic and plate tectonic model for the Variscan belt of Europe. Tectonophysics 126:329–374CrossRefGoogle Scholar
  50. Matte P, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: result of large-scale Variscan shearing. Tectonophysics 177:151–170CrossRefGoogle Scholar
  51. Miller RB, Paterson SR, Lebit H, Alsleben H, Lüneburg C (2006) Significance of composite lineations in the mid- to deep crust: a case study from the North Cascades, Washington. J Struct Geol 28:302–322CrossRefGoogle Scholar
  52. Murphy JB, Pisarevsky SA, Nance RD, Keppie JD (2004) Neoproterozoic–Early Paleozoic evolution of peri-Gondwanan terranes: implications for Laurentia–Gondwana connections. Int J Earth Sci 93:659–682CrossRefGoogle Scholar
  53. Nance RD, Murphy JB, Strachan RA, D’Lemos RS, Taylor GK (1991) Late Proterozoic tectonostratigraphic evolution of the Avalonian and Cadomian terranes. Precambrian Res 53:41–78CrossRefGoogle Scholar
  54. Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, Strachan A, Woodcock NH (2010) Evolution of the Rheic Ocean. Gondwana Res 17:194–222CrossRefGoogle Scholar
  55. Neubauer F (2002) Evolution of late Neoproterozoic to early Paleozoic tectonic elements in Central and Southeast European Alpine mountain belts: review and synthesis. Tectonophysics 352:87–103CrossRefGoogle Scholar
  56. Ordynec GJ, Žukova VI, Habásko J (1984) Prevariscan uranium mineralisation in the Proterozoic of the Bohemian Massif. J Miner Geol 29:69–77Google Scholar
  57. Park RG (1969) Structural correlation in metamorphic belts. Tectonophysics 7:323–338CrossRefGoogle Scholar
  58. Passchier CW, Trouw RAJ (2005) Microtectonics. Springer, BerlinGoogle Scholar
  59. Pertoldová J, Verner K, Vrána S, Buriánek D, Štědrá V, Vondrovic L (2010) Comparison of lithology and tectonometamorphic evolution of units at the northern margin of the Moldanubian Zone: implications for geodynamic evolution in the northeastern part of the Bohemian Massif. J Geosci 55:299–319Google Scholar
  60. Pharaoh TC (1999) Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): a review. Tectonophysics 177:263–292Google Scholar
  61. Pin C, Waldhausrová J (2007) Sm–Nd isotope and trace element study of Late Proterozoic metabasalts (“spilites”) from the Central Barrandian domain (Bohemian Massif, Czech Republic). In: Linnemann U, Nance D, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian active margin to Alleghenian–Variscan collision. Geol Soc Am Spec Paper 423:231–247Google Scholar
  62. Pin C, Kryza R, Oberc-Dziedzic T, Mazur S, Turniak K, Waldhausrová J (2007) The diversity and geodynamic significance of Late Cambrian (ca. 500 Ma) felsic anorogenic magmatism in the northern part of Bohemian Massif: a review based on Sm–Nd isotope and geochemical data. In: Linnemann U, Nance D, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian active margin to Alleghenian–Variscan collision. Geol Soc Am Spec Paper 423:209–229Google Scholar
  63. Pitra P, Burg JP, Schulmann K, Ledru P (1994) Late orogenic extension in the Bohemian Massif: petrostructural evidence in the Hlinsko region. Geodyn Acta 7:15–30Google Scholar
  64. Pitra P, Burg JP, Giraud M (1999) Late-Variscan strike-slip tectonics between the Teplá–Barrandian and Moldanubian terranes (Czech Bohemian Massif): petrostructural evidence. J Geol Soc London 156:1003–1020CrossRefGoogle Scholar
  65. Potts GJ, Reddy SM (1999) Construction and systematic assessment of relative deformation histories. J Struct Geol 21:1245–1253CrossRefGoogle Scholar
  66. Powell CM (1979) A morphological classification of rock cleavage. Tectonophysics 58:21–34CrossRefGoogle Scholar
  67. Rajlich P (1987) Variscan ductile tectonics in the Bohemian Massif. Geol Rundsch 76:755–786CrossRefGoogle Scholar
  68. Rochette P, Jackson M, Aubourg C (1992) Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Rev Geophys 30:209–226CrossRefGoogle Scholar
  69. Scheuvens D, Zulauf G (2000) Exhumation, strain localization, and emplacement of granitoids along the western part of the Central Bohemian shear zone (Bohemian Massif). Int J Earth Sci 89:617–630CrossRefGoogle Scholar
  70. Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux JM, Edel JB, Štípská P, Ulrich S (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. CR Geosci 341:266–286CrossRefGoogle Scholar
  71. Siebel W, Blaha U, Chen F, Rohrmüller J (2005) Geochronology and geochemistry of a dyke–host rock association and implications for the formation of the Bavarian Pfahl shear zone, Bohemian Massif. Int J Earth Sci 94:8–23CrossRefGoogle Scholar
  72. Stampfli GM, Kozur HW (2006) Europe from the Variscan to the Alpine cycles. Geol Soc London Mem 32:57–82CrossRefGoogle Scholar
  73. Strnad L, Mihajlevič M (2005) Sedimentary provenance of Mid-Devonian clastic sediments in the Teplá–Barrandian Unit (Bohemian Massif): U–Pb and Pb–Pb geochronology of detrital zircons by laser ablation ICP-MS. Mineral Petrol 84:47–68CrossRefGoogle Scholar
  74. Suchý V, Dobeš P, Filip J, Stejskal M, Zeman A (2002) Conditions for veining in the Barrandian Basin (Lower Paleozoic), Czech Republic: evidence from fluid inclusion and apatite fission track analysis. Tectonophysics 348:25–50CrossRefGoogle Scholar
  75. Tarling DH, Hrouda F (1993) The magnetic anisotropy of rocks. Chapman and Hall, LondonGoogle Scholar
  76. Timmermann H, Štědrá V, Gerdes A, Noble SR, Parrish RR, Dörr W (2004) The problem of dating high-pressure metamorphism: a U–Pb isotope and geochemical study on eclogites and related rocks of the Mariánské Lázně Complex, Czech Republic. J Petrol 45:1311–1338CrossRefGoogle Scholar
  77. Timmermann H, Dörr W, Krenn E, Finger F, Zulauf G (2006) Conventional and in situ geochronology of the Teplá crystalline unit, Bohemian Massif: implications for the processes involving monazite formation. Int J Earth Sci 95:629–647CrossRefGoogle Scholar
  78. Tobisch OT, Paterson SR (1988) Analysis and interpretation of composite foliations in areas of progressive deformation. J Struct Geol 10:745–754CrossRefGoogle Scholar
  79. Venera Z, Schulmann K, Kröner A (2000) Intrusion within a transtensional tectonic domain: the Čistá granodiorite (Bohemian Massif)—structure and rheological modelling. J Struct Geol 22:1437–1454CrossRefGoogle Scholar
  80. Verner K, Žák J, Hrouda F, Holub FV (2006) Magma emplacement during exhumation of the lower- to mid-crustal orogenic root: the Jihlava syenitoid pluton, Moldanubian Unit, Bohemian Massif. J Struct Geol 28:1553–1567CrossRefGoogle Scholar
  81. Vernon RH (2004) A practical guide to rock microstructure. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  82. Wenzel T, Mertz DF, Oberhänsli R, Becker T, Renne PR (1997) Age, geodynamic setting, and mantle enrichment processes of a K-rich intrusion from the Meissen massif (northern Bohemian massif) and implications for related occurrences from the mid-European Hercynian. Geol Rundsch 86:556–570CrossRefGoogle Scholar
  83. Williams PF (1985) Multiply deformed terrains—problems of correlation. J Struct Geol 7:269–280CrossRefGoogle Scholar
  84. Winchester JA, PACE TMR Network Team (2002) Paleozoic amalgamation of Central Europe: new results from recent geological and geophysical investigations. Tectonophysics 360:5–22CrossRefGoogle Scholar
  85. Winchester JA, Pharaoh TC, Verniers J, Ioane D, Seghedi A (2006) Palaeozoic accretion of Gondwana-derived terranes to the East European Craton: recognition of detached terrane fragments dispersed after collision with promontories. Geol Soc London Mem 32:323–332CrossRefGoogle Scholar
  86. Žák J, Schulmann K, Hrouda F (2005a) Multiple magmatic fabrics in the Sázava pluton (Bohemian Massif, Czech Republic): a result of superposition of wrench-dominated regional transpression on final emplacement. J Struct Geol 27:805–822CrossRefGoogle Scholar
  87. Žák J, Holub FV, Verner K (2005b) Tectonic evolution of a continental magmatic arc from transpression in the upper crust to exhumation of mid-crustal orogenic root recorded by episodically emplaced plutons: the Central Bohemian Plutonic Complex (Bohemian Massif). Int J Earth Sci 94:385–400CrossRefGoogle Scholar
  88. Žák J, Dragoun F, Verner K, Chlupáčová M, Holub FV, Kachlík V (2009) Forearc deformation and strain partitioning during growth of a continental magmatic arc: the northwestern margin of the Central Bohemian Plutonic Complex, Bohemian Massif. Tectonophysics 469:93–111CrossRefGoogle Scholar
  89. Žák J, Kratinová Z, Trubač J, Janoušek V, Sláma J, Mrlina J (2011a) Structure, emplacement, and tectonic setting of Late Devonian granitoid plutons in the Teplá–Barrandian unit, Bohemian Massif. Int J Earth Sci 100:1477–1495CrossRefGoogle Scholar
  90. Žák J, Verner K, Finger F, Faryad SW, Chlupáčová M, Veselovský F (2011b) The generation of voluminous S-type granites in the Moldanubian unit, Bohemian Massif, by rapid isothermal exhumation of the metapelitic middle crust. Lithos 121:25–40CrossRefGoogle Scholar
  91. Žák J, Verner K, Holub FV, Kabele P, Chlupáčová M, Halodová P (2012) Magmatic to solid state fabrics in syntectonic granitoids recording early Carboniferous orogenic collapse in the Bohemian Massif. J Struct Geol 36:27–42Google Scholar
  92. Zulauf G (1994) Ductile normal faulting along the West Bohemian Shear Zone (Moldanubian/Teplá–Barrandian boundary): evidence for late Variscan extensional collapse in the Variscan Internides. Geol Rundsch 83:276–292Google Scholar
  93. Zulauf G (1997) From very low-grade to eclogite-facies metamorphism: tilted crustal sections as a consequence of Cadomian and Variscan orogeny in the Teplá–Barrandian unit (Bohemian Massif). Geotekt Forsch 89:1–302Google Scholar
  94. Zulauf G (2001) Structural style, deformation mechanisms and paleostress along an exposed crustal section: constraints on the rheology of quartzofeldspathic rocks at supra- and infrastructural levels (Teplá–Barrandian unit, Bohemian Massif). Tectonophysics 332:211–237CrossRefGoogle Scholar
  95. Zulauf G, Dörr W, Fiala J, Vejnar Z (1997) Late Cadomian crustal tilting and Cambrian transtension in the Teplá–Barrandian unit (Bohemian Massif, Central European Variscides). Geol Rundsch 86:571–587CrossRefGoogle Scholar
  96. Zulauf G, Schitter F, Riegler G, Finger F, Fiala J, Vejnar Z (1999) Age constraints on the Cadomian evolution of the Teplá–Barrandian unit (Bohemian Massif) through electron microprobe dating of metamorphic monazite. Z Dtsch Geol Ges 150:627–640Google Scholar
  97. Zulauf G, Dörr W, Fiala J, Kotková J, Maluski H, Valverde-Vaquero P (2002a) Evidence for high-temperature diffusional creep preserved by rapid cooling of lower crust (North Bohemian shear zone, Czech Republic). Terra Nova 14:343–354CrossRefGoogle Scholar
  98. Zulauf G, Bues C, Dörr W, Vejnar Z (2002b) 10 km minimum throw along the West Bohemian shear zone: evidence for dramatic crustal thickening and high topography in the Bohemian Massif (European Variscides). Int J Earth Sci 91:850–864CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Jaroslava Hajná
    • 1
  • Jiří Žák
    • 1
  • Václav Kachlík
    • 1
  • Martin Chadima
    • 2
    • 3
  1. 1.Institute of Geology and Paleontology, Faculty of ScienceCharles UniversityPragueCzech Republic
  2. 2.AGICO Inc.BrnoCzech Republic
  3. 3.Institute of GeologyAcademy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations