International Journal of Earth Sciences

, Volume 101, Issue 3, pp 803–817 | Cite as

AMS record of brittle dilation, viscous-stretching and gravity-driven magma ascent in area of magma-rich crustal extension (Vosges Mts., NE France)

  • Zuzana Kratinová
  • Karel Schulmann
  • Jean-Bernard Edel
  • Anne-Sophie Tabaud
Original Paper


Orogenic compression-related fabrics (~340–335 Ma) were reworked during regional extensional deformation (~328–325 Ma) in a large anatectic crustal domain of the Central Vosges (NE France). The extension was first accommodated by brittle dilation affecting vertically anisotropic high-grade rocks associated with emplacement of subvertical granitic sheets. The AMS fabric of granitoids is consistent with highly partitioned transtensional deformation marked by alternations of flat and steep foliations and development of orthogonal lineations. This deformation passes to top-to-the-southwest ductile shearing expressed in southerly migmatitic middle crust. The AMS fabric revealed moderately west-dipping foliations bearing subhorizontal NNW–SSE-trending lineations and predominantly plane strain to prolate shapes. This fabric pattern is interpreted as a viscous response of stretched partially molten crust during continuous ductile extension. Vertical ascent of voluminous granites and stoping of the upper crust occurs further south. This gravity ascent triggered by extension leads to development of south-dipping AMS foliations, south-plunging lineations and oblate fabrics in various crustal granites. Vertical shortening related to ascent of these (~325 Ma) granitoids and persistent N–S stretching is responsible for reworking and remelting of originally vertical compression-related fabric in roof supracrustal granites (~340 Ma) and development of highly prolate fabrics in these rocks. This work shows that the finite shape of AMS fabric ellipsoid is highly sensitive to both strain regime and superpositions of orthogonal deformation events.


Anisotropy of magnetic susceptibility Crustal extension Magmatic fabrics Carboniferous 



This research is a contribution of UMR 7516 Institut de Physique du Globe of CNRS and University of Strasbourg and was supported financially by the Grant Agency of the Academy of Sciences of the Czech Republic (GAAV) (grant no. KJB300120702 to Z. Kratinová) and Fundacao para a Ciencia e a Tecnologia (FCT) project (AMS progress, n. PTDC/CTE-GIX/098696/2008).


  1. Benn K (1994) Overprinting of magnetic fabrics in granites by small strains: numerical modelling. Tectonophysics 184:153–162CrossRefGoogle Scholar
  2. Berthé D, Choukroune P, Jegouzo P (1979) Orthogneiss, mylonite and non coaxial deformation of granites; the example of South Armorican shear zone. J Struct Geol 1:31–42CrossRefGoogle Scholar
  3. Blumenfeld P, Bouchez JL (1988) Shear criteria in granite and migmatite deformed in the magmatic and solid states. J Struct Geol 10:361–372CrossRefGoogle Scholar
  4. Bouchez JL (1997) Granite is never isotropic: an introduction to AMS studies of granitic rocks. In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer academic Publishers, Dordrecht, pp 95–112Google Scholar
  5. Bouchez JL, Gleizes G, Djouadi T, Rochette P (1990) Microstructure and magnetic susceptibility applied to emplacement kinematics of granites: the example of the Foix pluton (French Pyrenees). Tectonophysics 184:157–171CrossRefGoogle Scholar
  6. Boutin R, Montigny R, Thuizat R (1995) Chronologie K-Ar et 39Ar-40Ar du métamorphisme et du magmatisme des Vosges. Comparaison avec les massifs varisques avoisinants. Géologie de la France 1:3–25Google Scholar
  7. Burg JP, Van Den Driessche J, Brun JP (1994) Syn- to post-thickening extension in the Variscan Belt of Western Europe: Modes and structural consequences. Géologie de la France 3:33–51Google Scholar
  8. Cosgrove JW (1997) The influence of mechanical anisotropy on the behaviour of the lower crust. Tectonophysics 280:1–14CrossRefGoogle Scholar
  9. Cruden AR (1990) Flow and fabric development during the diapiric rise of magma. J Geol 98:681–698CrossRefGoogle Scholar
  10. Dewey JF (1988) Extensional collapse of orogens. Tectonics 7:1123–1139CrossRefGoogle Scholar
  11. Echtler P, Chauvet A (1991) Carboniferous convergence and subsequent crustal extension in the southern Schwarzwald (SW Germany). Geodin Acta 5:37–49Google Scholar
  12. Edel JB, Weber K (1995) Cadomian terranes, wrench faulting and thrusting in the central Europe Variscides: geophysical and geological evidence. Geol Rundsch 84:412–432CrossRefGoogle Scholar
  13. Eisbacher GH, Luschen E, Wickert F (1989) Crustal-scale thrusting and extension in the hercynian Schwarzwald and Vosges, central Europe. Tectonics 8:1–21CrossRefGoogle Scholar
  14. Eller JPV, Fluck P, Hameurt J (1970) Carte géologique des Vosges moyennes, partie centrale et partie orientale. Bull Serv Carte géol Als Lorr 23:29–50Google Scholar
  15. England PC, Thompson AB (1986) Some thermal and tectonic models for crustal melting in continental collision zones. In: Coward MP, Ries AC (eds) Collision tectonics. Geol Soc Spec Publ 19: 83–94Google Scholar
  16. Faure M (1995) Late orogenic carboniferous extensions in the Variscan French Massif Central. Tectonics 14:132–153CrossRefGoogle Scholar
  17. Fluck P (1980) Métamorphisme et magmatisme dans les Vosges Moyennes d’Alsace. Contribution a l’histoire de la chaine Varisque. Memoire de these, Strasboug, p 245Google Scholar
  18. Fluck P, Edel JB, Gagny C, Montigny R, Piqué A, Schneider JL, Whitechurch H (1987) Le socle Vosgien, segment de la chaine Varisque d’Europe. Géologie profonde de la France. Project Vosges, Strasbourg, Nancy, p. 84Google Scholar
  19. Gagny C (1968) Pétrogenese du granite des Crêtes. Vosges méridionales, Fac Sci Nantes, p 546Google Scholar
  20. Hameurt J (1967) Les terrains cristallins et cristallophylliens du versant occidental des Vosges moyennes. Mém Serv Carte géol Als Lorr 26:402Google Scholar
  21. Hess JC, Lippolt HJ, Kober B (1995) The age of the Kagenfels granite (Northern Vosges) and its bearing on the intrusion scheme of late Variscan granitoides. Geol Rundsch 84:568–577CrossRefGoogle Scholar
  22. Hirth G, Tullis J (1992) Dislocation creep regimes in quartz aggregates. J Struct Geol 14:145–159CrossRefGoogle Scholar
  23. Hrouda F (1993) Theoretical-models of magnetic-anisotropy to strain relationship revisited. Phys Earth Planet In 77:237–249CrossRefGoogle Scholar
  24. Hrouda F (1994) A technique for the measurement of thermal-changes of magnetic-susceptibility of weakly magnetic rocks by the Cs-2 apparatus and Kly-2 Kappabridge. Geophys J Int 118:604–612CrossRefGoogle Scholar
  25. Hrouda F, Jelínek V, Hrušková L (1990) A package of programs for statistical evaluation of magnetic data using IBM-PC computers. EOS Trans, AGU, San Francisco, p 1289Google Scholar
  26. Jackson MPA, Talbot CJ (1989) Anatomy of mushroom-shaped diapirs. J Struct Geol 11:21l–230Google Scholar
  27. Jelínek V (1978) Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Stud Geophys Geod 22:50–62CrossRefGoogle Scholar
  28. Jelínek V, Pokorný J (1997) Some new concepts in technology of transformer bridges for measuring susceptibility anisotropy of rocks. Phys Earth Planet In 22:179–181Google Scholar
  29. Kratinová Z, Závada P, Hrouda F, Schulmann K (2006) Non-scaled analogue modelling of AMS development during viscous flow: A simulation on diapir-like structures. Tectonophysics 418:51–61CrossRefGoogle Scholar
  30. Kratinová Z, Schulmann K, Edel JB, Ježek J, Schaltegger U (2007) Model of successive granite sheet emplacement in transtensional setting: integrated microstructural and AMS study. Tectonics 26. doi: 10.1029/2006TC002035
  31. Kratinová Z, Ježek J, Schulmann K, Hrouda F, Shail RK, Lexa (2010) Non-coaxial K-feldspar and AMS sub-fabrics in the Land’s End Granite, Cornwall: evidence of magmatic fabric decoupling during late deformation and matrix crystallization. J Geophys Res 115:B09104. doi: 10.1029/2009JB006714 CrossRefGoogle Scholar
  32. Krecher M, Behrmann JH, Muller-Sigmund H (2007) Sedimentology and tectonic setting of Devonian-Carboniferous turbidites and debris flow deposits in the Variscan Vosges Mountains (Markstein Group, NE-France). Z dt Ges Geowiss 158(4):1063–1087Google Scholar
  33. Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279Google Scholar
  34. Latouche L, Fabries J, Guiraud M (1992) Retrograde evolution in the Central Vosges Mountains (northeastern France): implications for the metamorphic history of high-grade rocks during the Variscan orogeny. Tectonophysics 205:387–407CrossRefGoogle Scholar
  35. Ledru P, Courrioux G, Dallain C, Lardeaux JM, Montel JM, Vanderhaeghe O, Vitel G (2001) The Velay dome (French Massif Central): melt generation and granite emplacement during orogenic evolution. Tectonophysics 342:207–237CrossRefGoogle Scholar
  36. Parma J, Zapletal K (1991) CS-1 apparatus for measuring the temperature dependence of low-field susceptibility of minerals and rocks (in cooperation with KLT-2 Kappabridge). Geofyzika Brno, Unpublished ReportGoogle Scholar
  37. Paterson SR, Vernon RH, Tobisch OT (1989) A review of criteria for identification of magmatic and tectonic foliations in granitoids. J Struct Geol 11:349–363CrossRefGoogle Scholar
  38. Paterson SR, Fowler TK, Schmidt KL, Yoshinobu AS, Yuan ES, Miller RB (1998) Interpreting magmatic fabric patterns in plutons. Lithos 44:53–82CrossRefGoogle Scholar
  39. Petrini K, Burg JP (1998) Relationship between deformation, plutonism and regional metamorphism in the Markstein area (southern Vosges). Géologie de la France 2:13–26Google Scholar
  40. Rey P, Burg JP, Lardeaux JM, Fluck P (1989) Evolution métamorphiques contrastée dans les Vosges orientales: témoins d’un charriage dans la chaine varisque. C R Acad Sci Paris 309:815–821Google Scholar
  41. Rey P, Burg JP, Caron JM (1992) Middle and Late Carboniferous extension in the Variscan Belt: structural and petrological evidences from the Vosges massif (Eastern France). Geodin Acta 5:17–36Google Scholar
  42. Rey P, Vanderhaeghe O, Teyssier C (2001) Gravitational collapse of the continental crust: definition, regimes and modes. Tectonophysics 342:435–449CrossRefGoogle Scholar
  43. Rochette P (1987) Magnetic susceptibility of the rock matrix related to magnetic fabric studies. J Struct Geol 9:1015–1020CrossRefGoogle Scholar
  44. Schaltegger U, Schneider JL, Maurin JC, Corfu F (1996) Precise U–Pb chronometry of 345–340 Ma old magmatism related to syn-convergence extension in the Southern Vosges (Central Variscan Belt). Earth Planet Sci Lett 144:403–419CrossRefGoogle Scholar
  45. Schaltegger U, Fanning CM, Gunther D, Maurin JC, Schulmann K, Gebauer D (1999) Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in situ U–Pb isotope, cathodoluminiscence and microchemical evidence. Contrib Mineral Petr 134:186–201CrossRefGoogle Scholar
  46. Schulmann K, Ježek J (2011) Some remarks on fabric overprints and constrictional AMS fabrics in igneous rocks. Int J Earth Sci. doi: 10.1007/s00531-011-0681-z
  47. Schulmann K, Schaltegger U, Ježek J, Thompson AB, Edel JB (2002) Rapid burial and exhumation during orogeny: thickening and synconvergent exhumation of thermally weakened and thinned crust (Variscan orogen in Western Europe). Am J Sci 302:856–879CrossRefGoogle Scholar
  48. Schulmann K, Kröner A, Hegner E, Wendt I, Konopásek J, Lexa O, Štípská P (2005) Geodynamics of eastern margin of the Variscan thickened orogenic root, model based on structural, petrological and new geochronological data. Am J Sci 305:407–448CrossRefGoogle Scholar
  49. Schulmann K, Edel JB, Hasalová P, Cosgrove JW, Ježek J, Lexa O (2009) Influence of melt induced mechanical anisotropy on the magnetic fabrics and rheology of deforming migmatites, Central Vosges, France. J Struct Geol 31(10):1223–1237. doi: 10.1016/j.jsg.2009.07.004 CrossRefGoogle Scholar
  50. Stipp M, Stunitz H, Heilbronner R, Schmid SM (2002) The eastern Tonale fault zone: a ‘natural laboratory’ for the crystal plastic deformation of quartz over a temperature range from 250 to 700°C. J Struct Geol 24:1861–1884CrossRefGoogle Scholar
  51. Štípská P, Schulmann K, Kroner A (2004) Vertical extrusion and middle crustal spreading of omphacite granulite: a model of syn-convergent exhumation (Bohemian Massif, Czech Republic). J Metamorph Geol 22:179–198CrossRefGoogle Scholar
  52. Talbot CJ (1979) Infrastructural migmatitic upwelling in East Greenland interpreted as thermal convective structures. Precambrian Res 8:77–93CrossRefGoogle Scholar
  53. Tarling DH, Hrouda F (1993) The magnetic anisotropy of rocks. Chapman and Hall, LondonGoogle Scholar
  54. Vanderhaeghe O (1999) Pervasive melt migration from migmatites to leucogranite in the Shuswap metamorphic core complex, Canada: control of regional deformation. Tectonophysics 312:35–55CrossRefGoogle Scholar
  55. Vanderhaeghe O, Teyssier C (2001) Partial melting and flow of orogeny. Tectonophysics 342:451–472CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Zuzana Kratinová
    • 1
  • Karel Schulmann
    • 2
  • Jean-Bernard Edel
    • 2
  • Anne-Sophie Tabaud
    • 3
  1. 1.Geophysical InstituteCzech Academy of SciencesPraha 4Czech Republic
  2. 2.Institut Physique du GlobeEOST, UMR 7517 Université Louis PasteurStrasbourg cedexFrance
  3. 3.Centre de Géochimie de la SurfaceEOST, UMR 7516 Université Louis PasteurStrasbourg cedexFrance

Personalised recommendations