International Journal of Earth Sciences

, Volume 101, Issue 6, pp 1503–1521 | Cite as

Correlation of Triassic advanced rifting-related Neotethyan submarine basaltic volcanism of the Darnó Unit (NE-Hungary) with some Dinaridic and Hellenidic occurrences on the basis of volcanological, fluid–rock interaction, and geochemical characteristics

  • Gabriella Kiss
  • Ferenc Molnár
  • Ladislav A. Palinkaš
  • Sándor Kovács
  • Hazim Horvatović
Original Paper


Comparative volcanological, mineralogical, petrological, and geochemical studies of blocks of Triassic submarine basalt occurrences hosted by the Jurassic mélange have been carried out. The studied localities are located in displaced parts of the Dinarides in NE-Hungary (Darnó Unit), in the Dinarides (Kalnik Mts., Croatia and Vareš-Smreka, Bosnia and Herzegovina), and in the Hellenides (Stragopetra, Greece). The common characteristic of the studied occurrences is the well observable result of the lava–water-saturated sediment mingling, i.e., the presence of the so-called carbonate peperitic facies. Mixing of the basaltic lava with pelagic lime mud (representing the unconsolidated stage of the red, micritic limestone), as well as fluid inclusion and chlorite thermometry data support that the carbonate peperite was formed above CCD and at the Bosnian locality, a shallower water, about 1.4 km depth is proven. The igneous rocks show mainly within-plate basalt geochemical characteristics; MORB signatures are not common. Low temperature (<200°C) hydrothermal alteration is characteristic to the pillow basalt blocks with peperitic facies. The similarities in the volcanological, geochemical, and textural characteristics observed at the different localities support a strong genetic connection among them. The results of this study suggest to the advanced rifting stage origin of the Triassic basaltic suits and their distinction from the true oceanic basalt pillow units of the Dinarides can be based on the occurrences of the peperite facies.


Triassic peperite Rift Accretionary mélange Intraplate volcanism 





















Pseudomorph after earlier mafic mineral







This work was supported by the Hungarian-Croatian Science and Technology Agreement Project no. 07/CRO to F. Molnár and L. A. Palinkaš and the OTKA (HNSF) no. T 49633 and the HAESF Senior Fellowship to F. Molnár. A. Robertson is kindly thanked for field discussions about the Avdella Mélange in the Pindos Mts. and for his reviewing comments. The authors are grateful toward S. Borojević for discussion about fluid inclusion data from Hruškovec. Constructive suggestions and comments from K. Németh reviewer highly improved the original version of this paper.


  1. Bakker RJ (2003) Package FLUIDS 1. New computer programs for the analysis of fluid inclusion data and for modelling bulk fluid properties. Chem Geol 194:3–23CrossRefGoogle Scholar
  2. Balla Z (1987) A Bükk-hegység mezozoós tektonikája és kapcsolata a Nyugati-Kárpátokkal és a Dinaridákkal (Tectonics of the Bükkian (North Hungary) Mesozoic and relations to the West Carpathians and Dinarides), Ált Földt Sz, 22:13–54 (in Hungarian)Google Scholar
  3. Balla Z, Baksa Cs, Földessy J, Havas L, Szabó I (1980) The tectonic setting of the ophiolites in the Bükk mountains (North Hungary). Geol Carpath 31(4):465–493Google Scholar
  4. Borojević S, Palinkaš LA, Bermanec V (2000) Fluid inclusions in Pillow Lavas of Hruškovec, Mt. Kalnik, 2. In: Proceedings of the Croatian Geological Congress, pp 123–125Google Scholar
  5. Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114Google Scholar
  6. Buda Gy, Kiss J (1980) Comparison some chromite and titaniferous magnetite, ilmenite ore bearing ultrabasic-basic complexes. UNESCO Int Symp Athens 1:21–45Google Scholar
  7. Cann JR (1974) A model for ocean crustal structure developed. Geophysic J Royal Astron Soc 39:169–187CrossRefGoogle Scholar
  8. Cathelineau M, Izquierdo G (1988) Temperature—composition relationships of authigenic micaceous minerals in the Los Azufres geothermal system. Contrib Mineral Petrol 100(4):418–428CrossRefGoogle Scholar
  9. Csontos L, Vörös A (2004) Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeogr Palaeoclimat Palaeoecol 210:1–56CrossRefGoogle Scholar
  10. Dercourt J, Zonenshain LP, Ricou LE, Kazmin VG, Le Pichon X, Knipper AL, Grandjacquet C, Sbortshikov IM, Geyssant J, Lepvrier C, Pechersky DH, Boulin J, Sibuet JC, Savostin LA, Sorokhtin O, Westphal M, Bazhenov ML, Lauer JP, Biju-Duval B (1986) Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias. Tectonophysics 123:241–315CrossRefGoogle Scholar
  11. Dimitrijević MN, Dimitrijević MD, Karamata S, Sudar M, Gerzina N, Kovács S, Dosztály L, Gulácsi Z, Less Gy, Pelikán P (2003) Olistostrome/mélanges—an overview of the problems and preliminary comparison of such formations in Yugoslavia and NE Hungary. Slovak Geol Mag 9(1):3–21Google Scholar
  12. Dosztály L, Józsa S (1992) Geochronological evaluation of Mesosoic formations of Darnó Hill at Recsk on the basis of radiolarians and K-Ar age data. Acta Geol Hung 35(4):371–393Google Scholar
  13. Downes H, Pantó Gy, Árkai P, Thirlwall MF (1990) Petrology and geochemistry of Mesozoic igneous rocks, Bükk Mountains, Hungary. Lithos 24(3):201–215CrossRefGoogle Scholar
  14. Duffield WA (1979) Significance of contrasting vesicularity in basalt from DSDP sites 407, 408, and 409 on the west flank of the Reykjanes Ridge, DSDP Initial Reports, doi: 10.2973/dsdp.proc.49.125.1979
  15. Garrison RE (1972) Inter- and intrapillow limestones of the Olympic Peninsula, Washnigton. J Geol 80(3):310–322CrossRefGoogle Scholar
  16. Gawlick HJ, Kovács S, Haas J, Missioni S, Suzuki H, Ozsvárt P, Kiss G (2010) Middle Triassic and middle jurassic radiolarians from the Darnó ophiolitic mélange (NE Hungary) as northern-most part of the coherent north-south trending Neotethyan ophiolite belt. Centr Eur Geol (in press)Google Scholar
  17. Goto Y, McPhie J (1998) Endogenous growth of a Miocene submarine dacite cryptodome, Rebun Island, Hokkaido, Japan. J Volc Geotherm Res 84(3–4):273–286CrossRefGoogle Scholar
  18. Goto Y, McPhie J (2004) Morphology and propagation styles of Miocene submarine basanite lavas at Stanley, northwestern Tasmania, Australia. J Volt Geotherm Res 130(3–4):307–328CrossRefGoogle Scholar
  19. Goto Y, Tsuchiya N (2004) Morphology and growth style of a Miocene submarine dacite lava dome at Atsumi, northeast Japan. J Volc Geotherm Res 134(4):255–275CrossRefGoogle Scholar
  20. Haas J, Kovács S (2001) The Dinaric-Alpine connection—as seen from Hungary. Acta Geol Hung 44(2–3):345–362Google Scholar
  21. Haas J, Görög Á, Kovács S, Ozsvárt P, Matyók I, Pelikán P (2006) Displaced Jurassic foreslope and basin deposits of Dinaric origin in Northeast Hungary. Acta Geol Hung 49(2):125–163CrossRefGoogle Scholar
  22. Harangi Sz, Szabó Cs, Józsa S, Szoldán Zs, Árva-Sós E, Balla M, Kubovics I (1996) Mesozoic igneous suites in Hungary: implications for genesis and tectonic settings in the Northwestern part of tethys. Int Geol Rev 38:336–360CrossRefGoogle Scholar
  23. Hart RA (1972) A model for chemical exchange in the basalt-seawater system of oceanic layer II. Can J Earth Sci 10:799–816CrossRefGoogle Scholar
  24. Hopson CA, Mattinson JM, Pessagno EA, Luyendyk BP (2008) California coast range ophiolite: composite middle and late jurassic oceanic lithosphere. In: Wright JE, Shervais JW (ed.) Ophiolites, arcs and batholits: a tribute to Cliff Hopson. The Geol Soc of Am Spec Paper 438:1–102Google Scholar
  25. Janousek V, Farrow CM, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing geochemical data toolkit (GCDkit). J Petrol 47(6):1255–1259CrossRefGoogle Scholar
  26. Jones JG (1969) Pillow lavas as depth indicators. Am J Sci 267:181–195CrossRefGoogle Scholar
  27. Jones G, Robertson AHF (1991) Tectono-stratigraphy and evolution of the Pindos ophiolite and associated units. J Geol Soc London 148:267–268CrossRefGoogle Scholar
  28. Józsa S (1999) A darnó-hegyi óceánaljzati magmás kőzetek petrológiai-geokémiai vizsgálata, PhD dissertation (Petrological and geochemical analysis of the submarine igneous rocks of the Darnó Hill), Eötvös Loránd University (in Hungarian with English abstract)Google Scholar
  29. Karamata S (2000) Mineralization related to the Triassic rifting in the Borovica-Vareš-Čevljanovići-Kalinovik zone (Bosnia). Acta Geol Hung 43(1):15–23Google Scholar
  30. Karamata S (2006) The geological development of the Balkan Peninsula related to the approach, collision and compression of Gondwana and Eurasian units. In: Robertson AHF, Mountrakis D (ed) Tectonic development of the Eastern Mediterranean Region, Geol Soc London, Spec Publ, 260:155–178Google Scholar
  31. Karamata S, Knežević V, Cvetković V (2000) Petrology of the Triassic basaltoid rocks of Vareš (Central Bosnia). Acta Geol Hung 43(1):1–14Google Scholar
  32. Kiss G (2008) A Darnó Egység mezozoos szubmarin vulkanizmusa és hidrotermás folyamatai, valamint ezek dinári kapcsolatai, master thesis (Mezozoic submarine volcanism of the Darnó Unit and its relationship to some Dinaridic and Hellenidic occurrences), Eötvös Loránd University, Budapest, p 186 (in Hungarian, with English abstract)Google Scholar
  33. Kiss G, Molnár F, Palinkaš LA (2008) Volcanic facies and hydrothermal processes in Triassic pillow basalts from the Darnó Unit, NE Hungary. Geol Croat 61(2–3):385–394Google Scholar
  34. Kovács S, Haas J, Szebényi G, Gulácsi Z, Pelikán P, B.-Árgyelán G, Józsa S, Görög Á, Ozsvárt P, Gecse Zs, Szabó I (2008) Permo-Mesozoic formations of the Recsk-Darnó Hill area: stratigraphy and structure of the pre-tertiary basement of the paleogene Recsk orefield. In: Földessy J, Hartai É (ed) Recsk and Lahóca geology of the paleogene ore complex, geosciences, Publications of the University of Miskolc, Series A, Mining 73:33–56Google Scholar
  35. Kovács S, Haas J, Ozsvárt P, Palinkaš LA, Kiss G, Molnár F, Józsa S, Kövér Sz (2010) Reassessment of the Mesozoic complexes of Darnó Hill (NE Hungary) and comparisons with Neotethyan accretionary compleyes of the Dinarides and Hellenides—preliminary data. Centr Eur Geol (in press)Google Scholar
  36. Kubovics I (1984) On the petrogenesis of the North Hungarian basic-ultrabasic magmatic rocks. Acta Geol Hung 27(1–2):163–189Google Scholar
  37. Less Gy, Mello J, Elečko M, Kovács S, Pelikán P, Pentelényi L, Peregi Zs, Pristaš J, Radócz Gy, Szentpétery I, Vass D, Vozár J, Vozárová A (2004) Geological map of the Gemer-Bükk area 1:100000, Hungarian Gelogical Institute, HungaryGoogle Scholar
  38. MacDonald JH, Harper GD, Miller RB, Mlinarevic AN, Miller BV (2008) Geochemistry and geology of the Iron mountain unit, ingalls ophiolite complex, Washington: evidence for the polygenetic nature of the Ingalls complex, In: Wright JE, Shervais JW (ed) Ophiolites, Arcs and batholits: a tribute to Cliff Hopson. Geol Soc Am Spec Paper 438:161–174Google Scholar
  39. Meschede M (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem Geol 56:207–218CrossRefGoogle Scholar
  40. Migiros G, Tselepidis V (1990): Der erste Nachweis von Hallstatter Kalken in der North-Pindos-Decke (NW-Griechenland), N Jb Geol Paleont 1990/4:248–256 (in German)Google Scholar
  41. Moore JG (1970) Water content of basalt erupted on the ocean floor. Contributions mineral petrol 28:272–279CrossRefGoogle Scholar
  42. Nehlig P (1991) Salinity of oceanic hydrothermal fluids: a fluid inclusion study. Earth Plan Sci Let 102:310–325CrossRefGoogle Scholar
  43. Németh K (1999) A vízalatti vulkanizmus jelenségei és üledékkződési folyamatai, kapcsolatai a szárazföldi vulkáni folyamatokkal: áttekintés (Subaqueous volcanism and their depositional processes, their relationship to subaerial volcanism: review). Földt Közl 129(3):419–443Google Scholar
  44. Palinkaš AL, Bermanec V, Vrkljan M, Međimorec S (1998) Pillow lavas of Hruškovec, North Croatia, Rifting magmatism or dismembered ophiolitic sequence—IGCP-369, Subp. 2, Final Session, Prague, pp 84–85Google Scholar
  45. Palinkaš AL, Kolar-Jurkovšek T, Borojević S, Bermanec V (2000) Triassic rifting magmatism within Zagorje-Mid-Transdanubian zone, examplified by pillow lavas of Hruškovec, Mt.Kalnik, N.Croatia, PANCARDI 2000 meeting. Geološke vijesti 37:98–99Google Scholar
  46. Palinkaš AL, Bermanec V, Borojević Šoštarić S, Kolar Jurkovšek T, Strmić Palinkaš S, Molnár F, Kniewald G (2008) Volcanic facies analysis of a subaqueous basalt lava-flow complex at Hruškovec, NW Croatia-evidence of advanced rifting in the Tethyan domain. J Volc Geotherm Res 178:644–656CrossRefGoogle Scholar
  47. Pamić J (1984) Triassic magmatism of the Dinarides in Yugoslavia. Tectonophysics 109(3–4):273–277Google Scholar
  48. Pamić J (1997) The northwesternmost outcrops of the Dinaridic ophiolites: A case study of Mt. Kalnik (North Croatia). Acta Geol Hung 40(1):37–56Google Scholar
  49. Pamić J, Tomljenović B (1998) Basic geological data from the Croatian part of the Zagorje-Mid-Transdanubian zone. Acta Geol Hung 41(4):389–400Google Scholar
  50. Pamić J, Gušić I, Jelaska V (1998) Geodynamic evolution of the central Dinarides. Tectonophysics 297:251–268CrossRefGoogle Scholar
  51. Pamić J, Tomljenović B, Balen D (2002) Geodynamic and petrogenetic evolution of alpine ophiolites from the central and NW Dinarides: an overview. Lithos 65:113–142CrossRefGoogle Scholar
  52. Pearce JA (1983) Role of sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva Publishing, Cheshire, pp 230–249Google Scholar
  53. Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib Mineral Petrol 69:33–47CrossRefGoogle Scholar
  54. Potter RW, Clynne MA, Brown DL (1978) Freezing point depression of aqueous sodium chloride solutions. Econ Geol 73:284–285CrossRefGoogle Scholar
  55. Rassios A, Grivas E (1999) Geologic and metallogenic map of the pindos imbricated ophiolite and associated units (12 pc. of 1:20 000 sheets, about 1000 sq km). Institute of Geology and Mineral Exploration, AthensGoogle Scholar
  56. Rassios A, Moores E (2006) Heterogeneous mantle complex, crustal processes and obduction kinematics in a unified Pindos-Vourinos ophiolitic slab (northern Greece). In: Robertson AHF, Mountrakis D (eds) Tectonic development of the Eastern Mediterranean Region, Geological Society, London, Spec Publ 260:237–266Google Scholar
  57. Robertson AHF (2002) Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos 66(1–2):1–67CrossRefGoogle Scholar
  58. Robertson AHF, Karamata S, Šarić K (2009) Overview of ophiolites and related units in the Late Palaeozoic–Early Cenozoic magmatic and tectonic development of Tethys in the northern part of the Balkan region. Lithos 108:1–36CrossRefGoogle Scholar
  59. Schlager W (1967) Hallstätter und Dachsteinkalk–Fazies am Gosaukamme und der Vorstellung ortsgebundener Hallstätter Zonen in den Ostalpen. Verh Geol B-A 1(2):50–70Google Scholar
  60. Schmid MS, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101(1):139–183CrossRefGoogle Scholar
  61. Skilling IP, White JDL, McPhie J (2002) Peperite: a review of magma-sediment mingling. J Volc Geotherm Res 117:1–17CrossRefGoogle Scholar
  62. Smith AG (2006) Tethyan ophiolite emplacement, Africa to Europe motions and Atlantic spreading, In: Robertson AHF, Mountrakis D (ed) Tectonic development of the Eastern Mediterranean Region, Geol Soc London, Spec Publ 260:11–34Google Scholar
  63. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions and processes. In: Norry MJ (ed) Saunders AD. Magmatism in the ocean basins, Geol Soc Lond, pp 313–345Google Scholar
  64. Tjeerd Van Andel (1975) Mesoszoic/cenozioc calcite compensation depth and the global distribution of calcareous sediments. Earth Planet Sci Lett 26(2):187–194CrossRefGoogle Scholar
  65. Trubelja F, Burgath K-P, Marchig V (2004) Triassic magmatism in the area of the central Dinarides (Bosnia and Herzegovina): geochemical resolving of tectonic setting. Geol Croat 57(2):159–170Google Scholar
  66. White JDL, McPhie J, Skilling I (2000) Peperite: a useful genetic term. Bull Volc 62:65–66CrossRefGoogle Scholar
  67. Zane A, Weiss Z (1998) A procedure for classifying rock-forming chlorites based on microprobe data. Rend Fis Acc Lincei, serie 9 9:51–56Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Gabriella Kiss
    • 1
  • Ferenc Molnár
    • 1
  • Ladislav A. Palinkaš
    • 2
  • Sándor Kovács
    • 3
  • Hazim Horvatović
    • 4
  1. 1.Faculty of Science, Department of MineralogyEötvös Loránd UniversityBudapestHungary
  2. 2.Faculty of Science, Institute of Mineralogy and PetrologyUniversity of ZagrebZagrebCroatia
  3. 3.MTA-ELTE Geological, Geophysical and Space Science Research GroupBudapestHungary
  4. 4.Geological Survey of Bosnia and HerzegovinaIlidža, SarajevoBosnia and Herzegovina

Personalised recommendations