Advertisement

International Journal of Earth Sciences

, Volume 101, Issue 2, pp 429–452 | Cite as

Imprints of hydrocarbon-bearing basinal fluids on a karst system: mineralogical and fluid inclusion studies from the Buda Hills, Hungary

  • Zsófia PorosEmail author
  • Andrea Mindszenty
  • Ferenc Molnár
  • Jacques Pironon
  • Orsolya Győri
  • Paola Ronchi
  • Zoltán Szekeres
Original Paper

Abstract

Calcite veins and related sulphate–sulphide mineralisation are common in the Buda Hills. Also, abundant hypogenic caves are found along fractures filled with these minerals pointing to the fact that young cave-forming fluids migrated along the same fractures as the older mineralising fluids did. The studied vein-filling paragenesis consists of calcite, barite, fluorite and sulphides. The strike of fractures is consistent—NNW–SSE—concluding a latest Early Miocene maximum age for the formation of fracture-filling minerals. Calcite crystals contain coeval primary, hydrocarbon-bearing- and aqueous inclusions indicating that also hydrocarbons have migrated together with the mineralising fluids. Hydrocarbon inclusions are described here for the first time from the Buda Hills. Mixed inclusions, i.e., petroleum with ‘water-tail’, were also detected, indicating that transcrystalline water migration took place. The coexistence of aqueous and petroleum inclusions permitted to establish the entrapment temperature (80°C) and pressure (85 bar) of the fluid and thus also the thickness of sediments, having been eroded since latest Early Miocene times, was calculated (800 m). Low salinity of the fluids (<1.7 NaCl eq. wt%) implies that hydrocarbon-bearing fluids were diluted by regional karst water. FT-IR investigations revealed that CO2 and CH4 are associated with hydrocarbons. Groundwater also contains small amounts of HC and related gases on the basin side even today. Based on the location of the paleo- and recent hydrocarbon indications, identical migration pathways were reconstructed for both systems. Hydrocarbon-bearing fluids are supposed to have migrated north-westward from the basin east to the Buda Hills from the Miocene on.

Keywords

Calcite Petroleum inclusion Hydrocarbon migration Miocene Buda Thermal Karst Pannonian Basin 

Notes

Acknowledgments

Financial support for the project was provided by ENI S.p.A. We appreciate the thoughtful discussions with Anita Erőss and Judit Mádl-Szőnyi about the hydrogeology and with László Fodor about the structural geology of the area. We are grateful to Csanád Sajgó for the discussion about the organic geochemical part of the work. We thank the help of Kornél Torkos at the initial stage of gas chromatographic measurements. Márta Berkesi and Tibor Guzmics are acknowledged for their help in Raman analysis. We are thankful to Ádám Vadas and Benedek Gál for their help in the modification of the geological map and cross-section. We appreciate the work of the anonymous reviewer.

References

  1. Alföldi L (1979) Thermal waters of Budapest (in Hungarian). VITUKI Közl 20:1–102Google Scholar
  2. Alföldi L, Bélteky L, Böcker T, Horváth J, Korim K, Liebe P, Rémi R (1968) Thermal waters of Budapest (in Hungarian). VITUKI, BudapestGoogle Scholar
  3. Anderson GM (1991) Organic maturation and ore precipitation in Southeast Missouri. Econ Geol 86:909–926CrossRefGoogle Scholar
  4. Bada G, Horváth F, Dövényi P, Szafián P, Windhoffer G, Cloetingh S (2007) Present-day stress field and tectonic inversion in the Pannonian basin. Glob Planet Change 58:65–180CrossRefGoogle Scholar
  5. Báldi T, Nagymarosy A (1976) Silicification of Hárshegy Sandstone and its hydrothermal origin (in Hungarian). Földt Közlöny 106:257–275Google Scholar
  6. Benkovics L, Obert D, Bergerat F, Mansyc JL, Dubois M (1999) Brittle tectonics and major dextral strike-slip zone in the Buda karst (Budapest, Hungary). Geodin Acta (Paris) 12:201–211CrossRefGoogle Scholar
  7. Braun G (1889) Minerals of the Buda Hills focusing on calcite (in Hungarian). Pallas Részv társ Ny, BudapestGoogle Scholar
  8. Brukner-Wein A, Hetényi M, Vető I (1990) Organic geochemistry of an anoxic cycle: a case history from the Oligocene section, Hungary. Org Geochem 15:123–130CrossRefGoogle Scholar
  9. Brummer E (1936) Minerals from the quarries of Mátyás-hegy (in Hungarian). Földt Értesítő 1:52–58Google Scholar
  10. Burruss RC (1981) Hydrocarbon fluid inclusions in studies of sedimentary diagenesis. In: Hollister LS, Crawford ML (eds) Short course in fluid inclusions: applications to petrology. Min Assoc Can, Calgary, pp 138–156Google Scholar
  11. Craig H (1965) The measurements of oxygen isotope paleotemperatures. In: Tongiorgi E (ed) Stable isotopes in oceanographic studies and paleotemperatures. Spoleto, Cons Naz Rech, Lab Geol Nucl, Pisa, pp 161–182Google Scholar
  12. Csíky G (1956) Results of the hydrocarbon exploration in the surroundings of Budapest (in Hungarian). Földt Közlöny 86:373–389Google Scholar
  13. Davis GR, Smith LB (2006) Structurally controlled hydrothermal dolomite reservoir facies: an overview. AAPG Bull 90:1641–1690CrossRefGoogle Scholar
  14. Dövényi P, Horváth F (1988) A review of temperature, thermal conductivity, and heat flow data from the Pannonian Basin. In: Royden LH, Horváth F (ed) The pannonian basin—a study in basin evolution. AAPG Memoir 45, Tulsa, Okl, pp 195–233Google Scholar
  15. Dövényi P, Horváth F, Liebe P, Gálfi J, Erki I (1983) Geothermal conditions of Hungary. Geophys Trans 29:3–114Google Scholar
  16. Dublyanszky JV (1991) Hydrothermal paleokarst of the Buda Hills. First results of the fluid inclusion studies (in Hungarian). Karszt és Barlang 1–2:9–25Google Scholar
  17. Erőss A, Mádl-Szőnyi J, Csoma ÉA (2008) Characteristics of discharge at Rose and Gellért Hills, Budapest, Hungary. Centr Eur Geol 51:267–281CrossRefGoogle Scholar
  18. Fodor L, Magyari Á, Fogarasi A, Palotás K (1994) Tertiary tectonics and late Palaeogene sedimentation in the Buda Hills, Hungary. A new interpretation of the Buda Line. Földt Közlöny 124:129–305Google Scholar
  19. Forti P, Galdenzi S, Sarbu SM (2002) The hypogenic caves: a powerful tool for the study of seeps and their environmental effects. Cont Shelf Res 22:2373–2386CrossRefGoogle Scholar
  20. Gál B, Poros Zs, Molnár F (2008) Hydrothermal events in the Hárshegy Sandstone Formation and their relationships to regional geological processes, Buda Hills, Hungary (in Hungarian with English abstract). Földt Közlöny 138:49–60Google Scholar
  21. Gatter I (1984) Fluid inclusion studies of vein-filling minerals in carbonates and the hydrothermal precipitations of the caves (in Hungarian). Karszt és Barlang 1:9–18Google Scholar
  22. Goldscheider N, Mádl-Szőnyi J, Erőss A, Schill E (2010) Review: thermal water resources in carbonate rock aquifers. Hydrogeol J 18:1303–1318CrossRefGoogle Scholar
  23. Grimmer JOW, Pironon J, Teinturier S, Mutterer J (2003) Recognition and differentiation of gas condensates and other oil types using microthermometry of petroleum inclusions. Abstract. J Geochem Explor 78–79:367–371CrossRefGoogle Scholar
  24. Guillaume D, Teinturier S, Dubessy J, Pironon J (2003) Calibration of methane analysis by Raman spectroscopy in H2O–NaCl–CH4 fluid inclusions. Chem Geol 194:41–49CrossRefGoogle Scholar
  25. Haas J, Kovács S, Krystyn L, Lein R (1995) Significance of Late Permian—Triassic facies zones in terrain reconstruction in the Alpine-North Pannonian domain. Tectonophys 242:19–40CrossRefGoogle Scholar
  26. Hedenquist JW, Henley RW (1985) The importance of CO2 on freezing point measurements of fluid inclusions: evidence from active geothermal systems and implications for epithermal ore deposition. Econ Geol 80:1379–1406CrossRefGoogle Scholar
  27. Hetényi M, Sajgó Cs, Vető I, Brukner-Wein A, Szántó Zs (2004) Organic matter in a low productivity anoxic intraplatform basin in the Triassic Tethys. Org Geochem 35:1201–1219CrossRefGoogle Scholar
  28. Klimchouk AB (2007) Hypogene speleogenesis: hydrogeological and morphogenetic perspective. Special Paper no. 1, National Cave and Karst Research Institute, Carlsbad, NMGoogle Scholar
  29. Korpás L et al (1993) The composite palaeokarst systems of the Buda Hills. Res Rep Geol Inst Hung, BudapestGoogle Scholar
  30. Kovács J, Müller P (1980) Evolution and evidence of the thermal water activity in the Buda Hills (in Hungarian). Karszt és Barlang 2:93–98Google Scholar
  31. Kovács-Pálffy P, Földvári M (2004) Mineralogy of the travertines in NE Transdanubia (Hungary). Földt Közlöny 134:563–587Google Scholar
  32. Landström O, Tullborg EL (1995) Interactions of trace elements with fracture filling minerals from the Äspö Hars Rock laboratory. SKB Techn Rep TR 95–13. Swed Nucl Fuel and Waste Management Co. (SKB), StockholmGoogle Scholar
  33. Leél-Őssy Sz (2004) Genesis and values of hydrothermal caves in the Buda Hills (in Hungarian). In: Hazslinszky T (ed) Genesis and formations of hydrothermal caves. Proceedings on International Conference on the occasion of the 100th anniversary of the discovery of the Pál-völgy Cave, Budapest, Hung Speleol Soc, pp 45–53Google Scholar
  34. Leél-Őssy Sz, Surányi G (2003) Peculiar hydrothermal caves in Budapest, Hungary. Acta Geol Hung 46:407–436CrossRefGoogle Scholar
  35. Lemmlein GG (1952) Migration of liquid fluid inclusions in a crystal towards a source of heat. Dokl Akad Nauk SSSR 85:325–328Google Scholar
  36. Lenkey L, Dövényi P, Horváth F, Cloetingh SAPL (2002) Geothermics of the Pannonian basin and its bearing on the neotectonics. EGU Stephan Mueller Spec Publ Ser 3:29–40CrossRefGoogle Scholar
  37. Lóránth Cs (2000) Copper in the Buda Hills (in Hungarian). AuXit 2:28–29Google Scholar
  38. Márton E, Fodor L (2003) Tertiary paleomagnetic results and structural analyses from the Transdanubian Range (Hungary): rotational disintegration of the ALCAPA unit. Tectonophys 363:201–224CrossRefGoogle Scholar
  39. McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857CrossRefGoogle Scholar
  40. Milota K, Kovács A, Galicz Zs (1995) Petroleum potential of the North Hungarian Oligocene sediments. Petrol Geosci 1:81–87CrossRefGoogle Scholar
  41. Molnár F, Gatter I (1994) Comparative mineralogic-genetic studies of sedimentary and hydrothermal barite crystals from Hungary. Földt Közlöny 124:43–57Google Scholar
  42. Müller P, Magyar I (2008) The Pannonian deposits of the Buda Mountains (in Hungarian with English abstract). Földt Közlöny 138:345–356Google Scholar
  43. Munz IA (2001) Petroleum inclusions in sedimentary basins: systematics, analytical methods and applications. Lithos 55:195–212CrossRefGoogle Scholar
  44. Nádor A (1991) Paleokarstic features of the Buda Hills and their evolution (in Hungarian). Ph.D. Dissertation, Eötvös L. University, BudapestGoogle Scholar
  45. Nádor A (1992) Paleokarstic features in Triassic-Eocene carbonates. Zent Blatt Geol Palentol 1:1317–1329Google Scholar
  46. Nagy B, Pelikán P (1976) Metacinnabar and cinnabar from the Róka Hill (in Hungarian). Ann Rep Geol Inst Hung of 1973, pp 51–55Google Scholar
  47. Nedkvitne T, Karlsen DA, Bjørlykke K, Larter S (1993) Relationship between reservoir diagenetic evolution and petroleum emplacement in the Ula field, North Sea. Mar Petrol Geol 10:255–270CrossRefGoogle Scholar
  48. Oxtoby NH (2002) Comments on: assessing the maturity of oil trapped in fluid inclusions using molecular geochemistry data and visually-determined fluorescence colours. Critical comment. Appl Geochem 17:1371–1374CrossRefGoogle Scholar
  49. Pironon J, Thiéry R, Teinturier S, Walgenwitz F (2000) Water in petroleum inclusions: evidence from Raman and FT-IR measurements, PVT consequences. J Geochem Explor 69–70:663–668CrossRefGoogle Scholar
  50. Royden LH, Horváth F (1988) The Pannonian basin—a study in basin evolution. AAPG Memoir 45, Tulsa, OklGoogle Scholar
  51. Schafarzik F (1921) Retrospection of the evolution of thermal springs in Buda (in Hungarian). Hidrol Közlöny 1:9–14Google Scholar
  52. Scheuer Gy, Schweitzer F (1988) Travertines of the Gerecse and Buda Mountains (in Hungarian). Földr Tanulm 20, Akadémai Kiadó, BudapestGoogle Scholar
  53. Schréter Z (1912) The evolution of thermal springs in Buda (in Hungarian). Magy Balneol Értesítő 1:2–4Google Scholar
  54. Surdam RC, Jiao ZS, MacGowan DB (1993) Redox reactions involving hydrocarbons and mineral oxidants, a mechanism for significant porosity enhancement in sandstones. AAPG Bull 77:1509–1518Google Scholar
  55. Takács-Bolner K, Kraus S (1989) Results of research of thermal water caves (in Hungarian). Karszt és Barlang 1–2:61–66Google Scholar
  56. Tari G (1994) Alpine Tectonics of the Pannonian Basin. Ph.D. Dissertation, Rice University, TXGoogle Scholar
  57. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, OxfordGoogle Scholar
  58. Thiéry R, Pironon J, Walgenwitz F, Montel F (2000) PIT (Petroleum Inclusion Thermodynamic): a new modelling tool for the characterization of hydrocarbon fluid inclusions from volumetric and microthermometric measurements. J Geochem Explor 69–70:701–704CrossRefGoogle Scholar
  59. Thiéry R, Pironon J, Walgenwitz F, Montel F (2002) Individual characterization of petroleum inclusions (composition and P-T trapping conditions) by microthermometry and confocal scanning laser microscopy: inferences from applied thermodynamics of oils. Mar Petrol Geol 19:847–859CrossRefGoogle Scholar
  60. Tóth J, Almási I (2001) Interpretation of observed fluid potential patterns in a deep sedimentary basin under tectonic compression: Hungarian Great Plain, Pannonian Basin. Geofluids 1:11–36CrossRefGoogle Scholar
  61. Tullborg EL, Drake H, Sandström B (2008) Palaeohydrogeology: a methodology based on fracture mineral studies. Appl Geochem 23:1881–1897CrossRefGoogle Scholar
  62. Vető I (1999) Triassic sourced oil shows near Budapest. Ann Rep Geol Inst Hung of 1992–1993 vol 2, pp 111–115Google Scholar
  63. Wein Gy (1977) Tectonics of the Buda Hills (in Hungarian). Spec Publ Geol Inst Hung, BudapestGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Zsófia Poros
    • 1
    • 2
    • 6
    Email author
  • Andrea Mindszenty
    • 1
  • Ferenc Molnár
    • 2
  • Jacques Pironon
    • 3
  • Orsolya Győri
    • 1
    • 2
  • Paola Ronchi
    • 4
  • Zoltán Szekeres
    • 5
  1. 1.Department of Physical and Applied GeologyEötvös Loránd UniversityBudapestHungary
  2. 2.Department of MineralogyEötvös Loránd UniversityBudapestHungary
  3. 3.Université de Lorraine, CNRS, G2R LaboratoryVandoeuvre-lès-NancyFrance
  4. 4.ENI Exploration and Production DivisionSan Donato MilaneseItaly
  5. 5.Separation Science Research and Education LaboratoryEötvös Loránd UniversityBudapestHungary
  6. 6.Geological, Geophysical and Space Science Research Group of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations