International Journal of Earth Sciences

, Volume 101, Issue 1, pp 159–176 | Cite as

Carbonate diagenesis and feldspar alteration in fracture-related bleaching zones (Buntsandstein, central Germany): possible link to CO2-influenced fluid–mineral reactions

  • Jens Wendler
  • Jens Köster
  • Jens Götze
  • Norbert Kasch
  • Norbert Zisser
  • Jonas Kley
  • Dieter Pudlo
  • Georg Nover
  • Reinhard Gaupp
Original Paper

Abstract

Fracture-related bleaching of Lower Triassic Buntsandstein red beds of central Germany was related to significant carbonate diagenesis and feldspar alteration caused by CO2-rich fluids. Using cathodoluminescence microscopy and spectroscopy combined with electron microprobe analysis and stable carbon isotope study, two major fluid–mineral interactions were detected: (1) zoned, joint-filling calcites and zoned pore-filling calcite cements, the latter replacing an earlier dolomite, were formed during bleaching. During the calcite formation and dolomite–calcite transformation, iron was incorporated into the calcite cement crystal cores due to Fe availability from the coeval bleaching. The dedolomitisation was ultimately associated with a volume increase. The related permeability decrease implies a certain degree of sealing and increasing retention of CO2, and the volume increase offers a minor CO2 sink. Carbonate-rich sandstone, therefore, can provide advantages for underground CO2 storage especially when situated in the fringes of the reservoir. (2) Alkali-feldspar alteration due to the bleaching fluids is reflected in cathodoluminescence spectra predominantly by the modulation of a brown luminescence emission peak (~620 nm). This peak represents a newly discovered effect related to alkali-feldspar alteration not solely associated with bleaching. Its modulation by the bleaching is interpreted to be due to Na depletion or a lattice defect in the Si–O bonds of the SiO4-tetrahedron. Alteration reflected by this luminescence feature has a destructive effect on the feldspars implying the possibility of diminished rock integrity due to bleaching and, hence, CO2-rich fluids. Two further CL spectral changes related to bleaching occur, (a) decreased intensity between around 570 nm assigned to Mn-depletion, and (b) increased amplitude and wavelength shift of the red (~680 nm) band. Converging evidence from carbonate and feldspar diagenesis, stable carbon isotope data and analysis of fracture directions suggests that CO2 fluids contributed to a significant extent to the bleaching phenomena and alteration in the studied Buntsandstein strata.

Keywords

Buntsandstein Bleaching Cathodoluminescence spectroscopy Carbonate diagenesis Feldspar alteration Carbon capture and storage 

References

  1. Beitler B, Chan MA, Parry WT (2003) Bleaching of Jurassic Navajo Sandstone on Colorado Plateau Laramide highs: evidence of exhumed hydrocarbon supergiants? Geology 31:1041–1044CrossRefGoogle Scholar
  2. Beitler B, Parry WT, Chan MA (2005) Fingerprints of fluid flow: chemical diagenetic history of the Jurassic Navajo Sandstone, southern Utah, USA. J Sediment Res 75:547–561CrossRefGoogle Scholar
  3. Bosse H (1931) Tektonische Untersuchungen an niederhessischen Grabenzonen südlich des Unterwerrasattels. Abh preuß geol L-Anst NF 128:1–37Google Scholar
  4. Budai JM, Lohmann KC, Owen RM (1984) Burial dedolomite in the Mississippian Madison limestone. J Sediment Petrol 54:276–288Google Scholar
  5. Chan MA, Parry WT, Bowman JR (2000) Diagenetic hematite and manganese oxides and fault-related fluid flow in Jurassic sandstones southeastern Utah. Am Assoc Pet Geol Bull 84:1281–1310Google Scholar
  6. Faust GT (1949) Dedolomitization, and its relation to a possible derivation of a magnesium-rich hydrothermal solution. Am Mineral 34:789–823Google Scholar
  7. Finch AA, Klein J (1999) The causes and petrological significance of cathodoluminescence emissions from alkali feldspars. Contrib Mineral Petrol 135:234–243CrossRefGoogle Scholar
  8. Finch AA, Walker DL (1991) Cathodoluminescence and microporosity in alkali-feldspars from Bla Mane So perthosite, South Greenland. Mineral Mag 55:583–589CrossRefGoogle Scholar
  9. Fuex AN, Baker DR (1973) Stable carbon isotopes in selected granitic mafic and ultramafic rocks. Geochim Cosmochim Acta 37:2509–2521CrossRefGoogle Scholar
  10. Galimov EM (1968) Isotopic composition of carbon in gases of the crust. Int Geol Rev 11:1092–1104CrossRefGoogle Scholar
  11. Gaupp R, Matter A, Platt J, Ramseyer K, Walzebuck J (1993) Diagenesis and fluid evolution of deeply buried Permian (Rotliegende) gas-reservoirs, Northwest Germany. Bull Am Assoc Pet Geol 77:1111–1128Google Scholar
  12. Gilfillan SMV, Sherwood Lollar B, Holland G, Blagburn D, Stevens S, Schoell M, Cassidy M, Zhou Z, Lacrampe-Couloume G, Ballentine CJ (2009) Solubility trapping in formation water as dominant CO2 sink in natural gas fields. Nature 458:614–618CrossRefGoogle Scholar
  13. Haszeldine RS, Quinn O, England G, Wilkinson M, Shipton ZK, Evans JP, Heath J, Crossey L, Ballentine CJ, Graham CM (2005) Natural geochemical analogues for carbon dioxide storage in deep geological porous reservoirs, a United Kingdom perspective. Oil Gas Sci Technol Revue IFP 60:33–49CrossRefGoogle Scholar
  14. Hug N (2004) Sedimentgenese und Paläogeographie des höheren Zechstein bis zur Basis des Buntsandstein in der Hessischen Senke. Geologische Abhandlungen Hessen 113:238Google Scholar
  15. Irwin H, Curtis C, Coleman M (1977) Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269:209–213CrossRefGoogle Scholar
  16. Johnson JW, Nitao JJ, Steefel CI, Knauss KG (2001) Reactive transport modelling of geologic CO2 sequestration in saline aquifers: the influence of intra-aquifer shales and the relative effectiveness of structural, solubility, and mineral trapping during prograde and retrograde sequestration Proceedings of the 1st national conference on carbon sequestration. Washington, DCGoogle Scholar
  17. Keith ML (1946) Brucite deposits in the Rutherglen district, Ontario. Bull Geol Soc Am 57:967–984CrossRefGoogle Scholar
  18. Kenny R (1992) Origin of disconformity dedolomite in the Martin Formation (Late Devonian, northern Arizona). Sed Geol 78:137–146CrossRefGoogle Scholar
  19. Kley J, Voigt T (2008) Late Cretaceous intraplate thrusting in central Europe: effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology 36:839–842CrossRefGoogle Scholar
  20. Knauss KG, Johnson JW, Steefel CI, Nitao JJ (2001) Evaluation of the impact of CO2, aqueous fluid, and reservoir rock interactions on the geologic sequestration of CO2, with special emphasis on economic implications. Proceedings of the National Conference on CO2 Sequestration. Energy Technology Laboratory USA, Washington, DC, pp 26–37Google Scholar
  21. Koritnig S (1954) Die Vorgänge bei der Kontaktbildung im Buntsandstein durch die Basalte der Blauen Kuppe und des Alpstein, Nordhessen. Heidelberger Beiträge zur Mineralogie und Petrographie 4:89–98CrossRefGoogle Scholar
  22. Koritnig S (1955) Die Blaue Kuppe bei Eschwege mit ihren Kontakterscheinungen. Heidelberger Beiträge zur Mineralogie und Petrographie 4:504–521CrossRefGoogle Scholar
  23. Krbetschek MR, Götze J, Irmer G, Rieser U, Trautmann T (2002) The red luminescence emission of feldspar and its wavelength dependence on K, Na, Ca–composition. Mineral Petrol 76:167–177CrossRefGoogle Scholar
  24. Land LS, Prezbindowski DR (1981) The origin and evolution of saline formation water, lower Cretaceous carbonates, South-Central Texas, USA. J Hydrol 54:51–74CrossRefGoogle Scholar
  25. Leichmann J, Broska I, Zachovalova K (2003) Low-grade metamorphic alteration of feldspar minerals: a CL study. Terra Nova 15:104–108CrossRefGoogle Scholar
  26. Lotze F (1937) Zur Methodik der Forschung über saxonische Tektonik. Geotektonische Forschungen 1:6–27Google Scholar
  27. Martini HJ (1937) Großschollen und Gräben zwischen Habichtswald und Rheinischem Schiefergebirge. Geotektonische Forschungen 1:69–123Google Scholar
  28. Motzka-Noering R (1987) Erläuterungen zur Geologischen Karte von Hessen 1:25000 Blatt Nr. 4925 Sontra. Hessisches Landesamt f. Bodenforschung, WiesbadenGoogle Scholar
  29. Moulton GF (1922) Some features of red bed bleaching. Am Assoc Pet Geol Bull 10:304–311Google Scholar
  30. Nollet S, Koerner T, Kramm U, Hilgers C (2009) Precipitation of fracture fillings and cements in the Buntsandstein (NW Germany). Geofluids 9:373–385CrossRefGoogle Scholar
  31. Petmecky S, Meier L, Reiser H, Littke R (1999) High thermal maturity in the Lower Saxony Basin: intrusion or deep burial? Tectonophysics 304:317–344CrossRefGoogle Scholar
  32. Pierre C, Ortlieb L, Person A (1984) Supratidal evaporitic dolomite at Ojo de Liebre Lagoon; Mineralogical and isotopic arguments for primary crystallisation. J Sediment Petrol 54:1049–1061Google Scholar
  33. Revil A, Cathles LM (1999) Permeability of shaly sands. Water Resour Res 35:651–662CrossRefGoogle Scholar
  34. Richter DK, Goette T, Habermann D (2002) Cathodoluminescence of authigenic albite. Sed Geol 150:367–374CrossRefGoogle Scholar
  35. Richter DK, Goette T, Goetze J, Neuser RD (2003) Progress in application of cathodoluminescence (CL) in sedimentary petrology. Mineral Petrol 79:127–166CrossRefGoogle Scholar
  36. Schröder E (1925) Tektonische Studien an niederhessischen Gräben. Abh preuß geol L-Anst NF 95:57–82Google Scholar
  37. Seidel G (1938) Die Dislokationszonen zwischen Bonenburg und Volkmarsen. Geotektonische Forschungen 3:1–32Google Scholar
  38. Senglaub Y, Brix MR, Adriasola AC, Littke R (2005) New information on the thermal history of the southwestern Lower Saxony Basin, northern Germany, based on fission track analysis. Int J Earth Sci 94:876–896CrossRefGoogle Scholar
  39. Siegel GH, Marrone MJ (1981) Photoluminescence in as-drawn and irradiated silica optical fibers: an assessment of the role of nonbridging oxygen defect centres. J Non-Cryst Solids 45:235–247CrossRefGoogle Scholar
  40. Slaby E, Götze J, Wörner G, Simon K, Wrzalik R, Smigielski M (2008) K-feldspar phenocrysts in microgranular magmatic enclaves: a cathodoluminescence and geochemical study of crystal growth as a marker of magma mingling dynamics. Lithos 105:85–97CrossRefGoogle Scholar
  41. Voigt T, von Eynatten H, Franzke HJ (2004) Late Cretaceous unconformities in the Subhercynian Cretaceous Basin (Germany). Acta Geol Pol 54:673–694Google Scholar
  42. Watson MN, Zwingmann N, Lemon NM, Tingate PR (2003) Onshore Otway basin carbon dioxide accumulations: CO2-induced diagenesis in natural analogues for underground storage of greenhouse gas. APPEA J 43:637–652Google Scholar
  43. Wedepohl KH (1985) Origin of the Tertiary basaltic volcanism in the northern Hessian Depression. Contrib Mineral Petrol 89:122–143CrossRefGoogle Scholar
  44. Worden RH (2006) Dawsonite cement in the Triassic Lam Formation, Shabwa Basin, Yemen: a natural analogue for a potential mineral product of subsurface CO2 storage for greenhouse gas reduction. Mar Pet Geol 23:61–77CrossRefGoogle Scholar
  45. Ziegler PA (1987) Late Cretaceous and Cenozoic intra-plate compressional deformations in the Alpine foreland. Tectonophysics 137:389–420CrossRefGoogle Scholar
  46. Ziegler PA (1990) Geological atlas of Western and Central Europe. Shell Internationale Petroleum Maatschappij B.V, Den HaagGoogle Scholar
  47. Zwingmann N, Mito S, Sorai M, Ohsumi T (2005) Preinjection characterisation and evaluation of CO2 sequestration potential in the Haizume Formation, Niigata Basin, Japan. Oil Gas Sci Technol Revue IFP 60:249–258CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jens Wendler
    • 1
    • 4
  • Jens Köster
    • 1
  • Jens Götze
    • 2
  • Norbert Kasch
    • 1
  • Norbert Zisser
    • 3
  • Jonas Kley
    • 1
  • Dieter Pudlo
    • 1
  • Georg Nover
    • 3
  • Reinhard Gaupp
    • 1
  1. 1.Institute of GeosciencesFriedrich-Schiller-University JenaJenaGermany
  2. 2.Institute of MineralogyTU Bergakademie FreibergFreibergGermany
  3. 3.Steinmann-Institute, Section HPHT/PetrophysicsRheinische Friedrich-Wilhelms-University BonnBonnGermany
  4. 4.Department of Paleobiology, Smithsonian InstitutionNational Museum of Natural HistoryWashingtonUSA

Personalised recommendations