International Journal of Earth Sciences

, Volume 101, Issue 3, pp 613–624 | Cite as

Unraveling magnetic fabrics

  • Ann M. HirtEmail author
  • Bjarne S. G. Almqvist
Original Paper


The anisotropy of magnetic susceptibility has been proven to be an excellent indicator for mineral fabrics and therefore deformation in a rock or sediment. Low-field anisotropy is relatively rapid to measure so that a sufficient number of samples can be measured to obtain a good statistical representation of the magnetic fabric. The physical properties of individual minerals that contribute to the observed magnetic fabric include bulk susceptibility and intrinsic anisotropy of the mineral phase, its volume concentration, and its degree of alignment. Several techniques have been developed to separate magnetic subfabrics arising from magnetization types, i.e., ferrimagnetism, antiferromagnetism, paramagnetism, and diamagnetism. Susceptibility anisotropy can be measured in low or high fields and at different temperatures in order to isolate a particular subfabric. Measuring the anisotropy of a remanent magnetization can also isolate ferrimagnetic fabrics. A series of case studies are presented that exemplify the value of isolating magnetic subfabrics in a geological context. It is particularly useful in rocks that carry a paramagnetic and diamagnetic subfabric of similar magnitude, such that they negate one another. Further examples are provided for purely paramagnetic subfabrics and cases where a ferrimagnetic subfabric is also identified.


Magnetic anisotropy Diamagnetic anisotropy Paramagnetic anisotropy Ferromagnetic anisotropy Magnetic subfabrics 



We thank E. Férre, F. Martín-Hernández and M. Chadima for their helpful reviews. The work was supported by the Swiss National Science Foundation, project 2-77070-07.


  1. Almqvist BSG (2010) Physical anisotropies in deformed carbonate rocks. PhD Thesis, ETH, ZurichGoogle Scholar
  2. Almqvist BSG, Hirt AM, Schmidt V, Dietrich D (2009) Magnetic fabrics of the Morcles Nappe complex. Tectonophysics 466(1–2):89–100. doi: 10.1016/j.tecto.2008.07.014 CrossRefGoogle Scholar
  3. Almqvist BSG, Herwegh M, Schmidt V, Pettke T, Hirt AM (2010) Magnetic susceptibility as a tool to study deformed calcite with variable impurity content. Geochem Geophys Geosys 11: Q01Z09. doi: 10.1029/2009gc002900
  4. Almqvist BSG, Hirt AM, Herwegh M, Leiss B (2011) Magnetic anisotropy reveals Neogene tectonic overprint in highly strained carbonate mylonites from the Morcle Nappe, Switzerland. J Struct Geol 33:1010. doi: 10.1016/j.jsg.2011.02.002 Google Scholar
  5. Balsley JR, Buddington AF (1960) Magnetic susceptibility and fabric of some Adirondack granites and orthogneisses. Am J Sci 258-A:6–20Google Scholar
  6. Biedermann A (2008) Determination of the magnetic anisotropy factor, p77, for mica and chlorite. BSc Thesis, ETH, ZurichGoogle Scholar
  7. Borradaile G (1987) Anisotropy of magnetic susceptibility: rock composition versus strain. Tectonophysics 138:327–329CrossRefGoogle Scholar
  8. Borradaile GJ (1988) Magnetic susceptibility, petrofabrics, and strain: a review. Tectonophysics 156:1–20CrossRefGoogle Scholar
  9. Borradaile GJ, Henry B (1997) Tectonic application of magnetic susceptibility and its anisotropy. Earth Sci Rev 42:49–93CrossRefGoogle Scholar
  10. Borradaile GJ, Jackson M (2004) Anisotropy of magnetic susceptibility (AMS): magntic petrofabrics of deformed rocks. In: Martín-Hernandez F, Lünburg C, Auboug C, Jackson M (eds) Magnetic fabric: methods and applications, vol 238. Geological Society, London, pp 299–360Google Scholar
  11. Borradaile G, Mothersill J, Tarling D, Alford C (1986) Sources of magnetic susceptibility in a slate. Earth Planet Sci Lett 76:336–340CrossRefGoogle Scholar
  12. Borradaile G, Keeler W, Alford C, Sarvas P (1987) Anisotropy of magnetic susceptibility of some metamorphic minerals. Phys Earth Planet Inter 48:161–166CrossRefGoogle Scholar
  13. Borradaile GJ, Fralick PW, Lagroix F (1999) Acquisition of anhysteretic remanence and tensor subtraction from ams isolates true paleocurrent grain alignments. In: Tarling DH, Turner P (eds) Diagenesis in sediments, vol 151. Geological Society, London, pp 139–145Google Scholar
  14. de Wall H, Bestmann M, Ullemeyer K (2000) Anisotropy of diamagnetic susceptibility in Thassos marble: a comparison between measured and modeled data. J Struct Geol 22(11–12):1761–1771CrossRefGoogle Scholar
  15. Debacker TN, Robion P, Sintubin M (2004) The anisotropy of magnetic suscpetibility (AMS) in low-grade, cleaved pelitic rocks: Influence of cleavage/bedding angle and type and relative orientation of magnetic carriers. In: Martín-Hernandez F, Lünburg C, Auboug C, Jackson M (eds) Magnetic fabric: methods and applications, vol 238. Geological Society, London, pp 77–108Google Scholar
  16. Debacker TN, Hirt AM, Sintubin M, Robion P (2009) Differences between magnetic and mineral fabrics in low-grade, cleaved siliciclastic pelites: a case study from the Anglo-Brabant deformation belt (Belgium). Tectonophysics 466(1–2):32–46. doi: 10.1016/j.tecto.2008.09.039 CrossRefGoogle Scholar
  17. Férre E (2002) Theoretical models of intermediate and inverse AMS fabrics. Geophys Res Lett 29 (7):1127. doi: 10.1029/2001GL014367 Google Scholar
  18. French AN, Van der Voo R (1979) The magnetization of the Rose Hill formation at the classical site of Graham’s fold test. J Geophys Res 84:7688–7696CrossRefGoogle Scholar
  19. Fuller MD (1960) Anisotropy of susceptibility and the natural remanent magnetization of some Welsh slates. Nature 186:790–792CrossRefGoogle Scholar
  20. Fuller MD (1963) Magnetic anisotropy and palaeomagnetism. J Geophys Res 68:293–309CrossRefGoogle Scholar
  21. Fuller MD (1964) On the magnetic fabric of certain rocks. J Geol 72:368–376CrossRefGoogle Scholar
  22. Graham JW (1949) The stability and significance of magnetism in sedimentary rocks. J Geophys Res 54:131–167CrossRefGoogle Scholar
  23. Graham JW (1954) Magnetic susceptibility anisotropy, an unexploited petrofabric element. Bull Geol Soc Am 65:1257–1258Google Scholar
  24. Graham JW (1966) Significance of magnetic anisotropy in Appalachian sedimentary rocks. In: Steinhart JS, Smith TJ (eds) The earth beneath the continents. Geophysical monograph 10. AGU, Washington, pp 627–648Google Scholar
  25. Henry B (1989) Magnetic fabric and orientation tensor of minerals in rocks. Tectonophysics 165:21–28CrossRefGoogle Scholar
  26. Henry B (1992) Modelling the relationship between magnetic fabric and strain in polymineralic rocks. Phys Earth Planet Inter 70:214–218CrossRefGoogle Scholar
  27. Hirt AM (2007) Magnetic remanence, anisotropy. In: Gubbins D, Herrero-Bervera E (eds) Encyclopedia or geomagnetism and paleomagnetism. Springer, Dordrecht, pp 535–539CrossRefGoogle Scholar
  28. Hirt AM, Gehring AU (1991) Thermal alteration of the magnetic mineralogy in ferruginous rocks. J Geophys Res 96(B6):9947–9953CrossRefGoogle Scholar
  29. Hirt AM, Lowrie W, Clendenen WS, Kligfield R (1993) Correlation of strain and the anisotropy of magnetic susceptibility in the Onaping formation: evidence for a near-circular origin of the Sudbury basin. Tectonophysics 225:231–254CrossRefGoogle Scholar
  30. Hirt AM, Evans KF, Engelder T (1995) Correlation between magnetic anisotropy and fabric for Devonian shales on the Appalachian plateau. Tectonophysics 247:121–132CrossRefGoogle Scholar
  31. Hirt AM, Julivert M, Soldevila J (2000) Magnetic fabric and deformation in the Navia-Alto Sil slate belt, Northwestern Spain. Tectonophysics 320:1–16CrossRefGoogle Scholar
  32. Hirt AM, Lowrie W, Lüneburg C, Lebit H, Engelder T (2004) Magnetic and mineral fabric development in the Ordovician Martinsburg formation in the Central Appalachian fold and thrust belt, Pennsylvania. In: Martín-Hernandez F, Lünburg C, Auboug C, Jackson M (eds) Magnetic fabric: methods and applications, vol 238. Geological Society, London, pp 109–126Google Scholar
  33. Hrouda F (1979) The strain interpretation of magnetic anisotropy in rocks of the Nízky Jeseník mountains (Czechoslovakia). Sbor Geol Ved 16:27–62Google Scholar
  34. Hrouda F (1986) The effect of quartz on the magnetic anisotropy of quartzite. Stud Geophys Geod 30:39–45CrossRefGoogle Scholar
  35. Hrouda F (1987) Mathematical model relationship between the paramagnetic anisotropy and strain in slates. Tectonophysics 142:323–327CrossRefGoogle Scholar
  36. Hrouda F (2004) Problems in interpreting AMS parameters in diamagnetic rocks. In: Martín-Hernandez F, Lünburg C, Auboug C, Jackson M (eds) Magnetic fabric: methods and applications, vol 238. Geological Society, London, pp 49–60Google Scholar
  37. Hrouda F (2009) Determination of field-independent and field-dependent components of anisotropy of susceptibility through standard ams measurement in variable low fields I: theory. Tectonophysics 466(1–2):114–122. doi: 10.1016/j.tecto.2008.05.026 CrossRefGoogle Scholar
  38. Hrouda F, Janák F (1976) The changes in the shape of the magnetic susceptibility ellipsoid during progressive metamorphism and deformation. Tectonophysics 34:135–148CrossRefGoogle Scholar
  39. Hrouda F, Jelínek V (1990) Resolution of ferromagnetic and paramagnetic anisotropies, using combined low-field and high-field measurements. Geophys J Int 103:75–84CrossRefGoogle Scholar
  40. Hrouda F, Henry B, Borradaile G (2000) Limitations of tensor subtraction in isolating diamagnetic fabrics by magnetic anisotropy. Tectonophysics 322(3–4):303–310CrossRefGoogle Scholar
  41. Hrouda F, Faryad SW, Chlupacova M, Jerabek P, Kratinova Z (2009a) Determination of field-independent and field-dependent components of anisotropy of susceptibility through standard ams measurement in variable low fields II: an example from the ultramafic body and host granulitic rocks at Bory in the Moldanubian zone of western Moravia, Czech Republic. Tectonophysics 466(1–2):123–134. doi: 10.1016/j.tecto.2008.10.014
  42. Hrouda F, Faryad SW, Jerabek P, Chlupacova M, Vitous P (2009b) Primary magnetic fabric in an ultramafic body (Moldanubian zone, European Variscides) survives exhumation-related granulite-amphibolite facies metamorphism. Lithos 111(1–2):95–111. doi: 10.1016/j.lithos.2008.10.004 CrossRefGoogle Scholar
  43. Ihmlé PF, Hirt AM, Lowrie W, Dietrich D (1989) Inverse magnetic fabric in deformed limestones of the Morcles Nappe, Switzerland. Geophys Res Lett 16:1383–1386CrossRefGoogle Scholar
  44. Jackson M (1991) Anisotropy of magnetic remanence: a brief review of mineralogical sources, physical origins, and geological applications, and comparison with susceptibility anisotropy. Pure Appl Geophys 136:1–28CrossRefGoogle Scholar
  45. Jelinek V (1977) The statistical theory of measuring anisotropy of magnetic susceptibility of rocks and its application. Geofyzika Brno, BrnoGoogle Scholar
  46. Jelinek V (1981) Characterization of the magnetic fabric of rocks. Tectonophysics 79:T63–T67CrossRefGoogle Scholar
  47. Jelínek V (1984) On a mixed quadratic invariant of the magnetic susceptibility tensor. J Geophys 56:58–60Google Scholar
  48. Kligfield R, Lowrie W, Dalziel IWD (1977) Magnetic susceptibility anisotropy as a strain indicator in the Sudbury basin, Ontario. Tectonophysics 40:287–308CrossRefGoogle Scholar
  49. Kligfield R, Owens WH, Lowrie W (1981) Magnetic susceptibility anisotropy, strain, and progressive deformation in Permian sediments from the Maritime Alps (France). Earth Planet Sci Lett 55:181–189CrossRefGoogle Scholar
  50. Kligfield R, Lowrie W, Pfiffner OA (1982) Magnetic properties of deformed oolitic limestones from the Swiss Alps: the correlation of magnetic anisotropy and strain. Eclog Geol Helv 75:127–157Google Scholar
  51. Kligfield R, Lowrie W, Hirt A, Siddans AWB (1983) Effect of progressive deformation on remanent magnetization of Permian redbeds from the Maritime Alps (France). Tectonophysics 97:59–85CrossRefGoogle Scholar
  52. Kneen SJ (1976) The relationship between the magnetic and strain fabrics of some haematite-bearing Welsh slates. Earth Planet Sci Lett 31:413–416CrossRefGoogle Scholar
  53. Lowrie W (1989) Magnetic analysis of rock fabric. In: James DE (ed) The encyclopaedia of solid earth geophysics. Van Nostrand Reinhold, New York, pp 698–706Google Scholar
  54. Martín-Hernandez F, Férre EC (2007) Separation of paramagnetic and ferrimagnetic anisotropies a review. J Geophys Res 112(B3):B03105CrossRefGoogle Scholar
  55. Martín-Hernández F, Hirt AM (2001) Separation of ferrimagnetic and paramagnetic anisotropies using a high-field torsion magnetometer. Tectonophysics 337:209–222CrossRefGoogle Scholar
  56. Martín-Hernández F, Hirt AM (2003) The anisotropy of magnetic susceptibility in biotite, muscovite and chlorite single crystals. Tectonophysics 367:13–28CrossRefGoogle Scholar
  57. Martín-Hernández F, Hirt AM (2004) A method for the separation of paramagnetic, ferrimagnetic and haematite magnetic subfabrics using high-field torque magnetometry. Geophys J Int 157:117–127CrossRefGoogle Scholar
  58. Martín-Hernández F, Kunze K, Julivert M, Hirt AM (2005) Mathematical simulations of anisotropy of magnetic susceptibility on composite fabrics. J Geophys Res 110(B06102). doi: 10.1029/2004/JB003505
  59. Nagata T (1961) Rock magnetism, 2nd edn. Maruzen, TokyoGoogle Scholar
  60. Nye JF (1957) Physical properties of crystals. Oxford University Press, LondonGoogle Scholar
  61. Owens WH, Bamford D (1976) Magnetic, seismic and other anisotropic properties of rock fabric. Phil Trans R Soc Lond A283:55–68CrossRefGoogle Scholar
  62. Owens WH, Rutter EH (1978) The development of magnetic susceptibility anisotropy through crystallographic preferred orientation in a calcite rock. Phys Earth Planet Inter 16:215–222CrossRefGoogle Scholar
  63. Pares JM, van der Pluijm BA (2002) Phyllosilicate fabric characterization by low-temperature anisotropy of magnetic susceptibility (LT-AMS). Geophys Res Lett 29(24):art. no.−2215Google Scholar
  64. Potter DK (2004) A comparison of anisotropy of magnetic remanence methods–a user’s guide for applicaiton to paleomagnetism and magnetic fabric studies. In: Martín-Hernandez F, Lünburg C, Auboug C, Jackson M (eds) Magnetic fabric: methods and applications, vol 238. Geological Society, London, pp 21–36Google Scholar
  65. Richter C, Van der Pluijm BA (1994) Separation of paramagnetic and ferrimagnetic susceptibilities using low temperature magnetic susceptibilities and comparison with high field methods. Phys Earth Planet Inter 82:113–123CrossRefGoogle Scholar
  66. Rochette P (1987) Magnetic susceptibility of the rock matrix related to magnetic fabric studies. J Struct Geol 9:1015–1020CrossRefGoogle Scholar
  67. Rochette P, Fillion G (1988) Identification of multicomponent anisotropies in rocks using various field and temperature values in a cryogenic magnetometer. Phys Earth Planet Inter 51:379–386CrossRefGoogle Scholar
  68. Rochette P, Fillion G, Mollard P, Vergne R (1983) Utilisation d’un magnétomètre à effet Josephson pour l’analyse de l’anisotropie magnétique des roches. C R Acad Sc Paris 296:557–559Google Scholar
  69. Rochette P, Aubourg C, Perrin M (1999) Is this magnetic fabric normal? A review and case study in volcanic formations. Tectonophysics 307:219–234CrossRefGoogle Scholar
  70. Schmidt V, Günther D, Hirt AM (2006) Magnetic anisotropy of calcite at room-temperature. Tectonophysics 418:63–73CrossRefGoogle Scholar
  71. Schmidt V, Hirt AM, Hametner K, Günther D (2007a) Magnetic anisotropy of carbonate minerals at room temperature and 77 K. Am Miner 92(10):1673–1684CrossRefGoogle Scholar
  72. Schmidt V, Hirt AM, Rosselli P, Martín Hernández F (2007b) Separation of diamagnetic and paramagnetic anisotropy by high-field, low-temperature torque measurements. Geophys J Int 168(1):40–47. doi: 10.1111/j.1365-1246X.2006.03202.x, 02007
  73. Schmidt V, Hirt AM, Leiss B, Burlini L, Walter J (2009) Quantitative correlation of strain, texture and magnetic anisotropy of compacted calcite-muscovite aggregates. J Struc Geol 31:1062–1073. doi: 10.1016/j.jsg.2008.11.012 CrossRefGoogle Scholar
  74. Stamatakos J, Kodama K (1991) The effects of grain-scale deformation on the Bloomsburg formation pole. J Geophys Res 96(B11):17919–17933CrossRefGoogle Scholar
  75. Tarling DH, Hrouda F (1993) The magnetic anisotropy of rocks. Chapman and Hall, LondonGoogle Scholar
  76. Wenk HR (1991) Standard project for pole-figure determination by neutron-diffraction. J Appl Cryst 24:920–927CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute of GeophysicsZurichSwitzerland

Personalised recommendations