International Journal of Earth Sciences

, Volume 101, Issue 1, pp 339–349 | Cite as

Time calibration of sedimentary sections based on insolation cycles using combined cross-correlation: dating the gone Badenian stratotype (Middle Miocene, Paratethys, Vienna Basin, Austria) as an example

  • Johann Hohenegger
  • Michael Wagreich
Original Paper


Cross-correlation between insolation intensities and a combination of sedimentary characters is introduced to obtain precise time calibration of sedimentary cycles. The first step is to transfer the section scale into ages using power spectra comparing the main periods with orbital cycles, while in the second step the standardized values of sedimentary signals are cross-correlated with the standardized insolation curve. As an example for the applicability of the method, we investigated calcium carbonate, organic carbon in a 9-m sampled section from the historical Badenian stratotype at Baden/Sooss (Lower Austria). Comparing courses of geochemical parameters between the historical stratotype and a nearby drilled 102-m scientific core resulted in continuation of the core section into the stratotype. Cross-correlation between magnetic susceptibility (MS) combined with the negatively correlated calcium carbonate content of the drilled section on the one side and summer solar insolation at 65° northern latitude on the other resulted in an extremely significant correlation between −14.221 and −13.982 Ma. This is younger than the before estimated time frame (−14.379 to −14.142 Ma) based on cross-correlation between MS and the orbital 100-kyr eccentricity and 41-kyr obliquity cycles. The direct continuation of the drilled section by the stratotype covering a time span of 17.7 kyr consequently dates the Badenian stratotype between −13.982 and −13.964 Ma. Therefore, the upper limit of the stratotype, assigned to the Early Badenian, puts it close to the Langhian/Seravallian boundary at −13.82 Ma, demonstrating the need for revising the Badenian stratigraphic subdivision based on orbital cycles, especially the middle Badenian Wielician substage.


Cross-correlation Insolation Geochemical parameters Badenian Miocene 



This work was supported by the Projects P13743-BIO, P13740-GEO, and P16793-B06 of the Austrian Science Fund (FWF). We thank Maksuda Khatun, Maria Meszar, and Silke Wagner for providing carbonate and organic carbon measurements, Anna Selge for making geomagnetic measurements, and Nils Anderson for analyzing stable isotopes. We also thank Katalin Bàldi, Stjepan Ćorić, Peter Pervesler, Fred Rögl, and Christian Rupp as coworkers in these projects. Especially, Fred Rögl was helpful in critically reading the manuscript and the reviewer Fabricio Lirer for his useful comments and critics. Additional thanks are due to Karl Rauscher and Herbert Summesberger for making available detailed sample sets of the gone Badenian stratotype.


  1. Abdul Aziz H, Di Stefano A, Foresi LM, Hilgen FJ, Iaccarino SM, Kuiper KF, Lirer F, Salvatorini G, Turco E (2008) Integrated stratigraphy and 40Ar/39Ar chronology of early Middle Miocene sediments from DSDP Leg 42A, Site 372 (Western Mediterranean). Palaeogeogr Palaeoclimatol Palaeoecol 257:123–138CrossRefGoogle Scholar
  2. Abels HA, Hilgen FJ, Krijgsman W, Kruk W, Raffi I, Turco E, Zachriasse WJ (2005) Long-period orbital control on middle Miocene global cooling: integrated stratigraphy and astronomical tuning of the blue clay formation on Malta. Paleoceanogr 20:PA4012. doi: 10.1020/2004PA001129
  3. Babel M (2005) Event stratigraphy of the Badenian selenite evaporites (Middle Miocene) of the northern Carpathian Foredeep. Acta Geol Polonica 55:9–29Google Scholar
  4. Batschelet E (1981) Circular statistics in biology. Academic Press, LondonGoogle Scholar
  5. Bojar A-V, Hiden H, Fenninger A, Neubauer F (2004) Middle Miocene seasonal temperature changes in the Styrian basin, Austria, as recorded by the isotopic composition of pectinid and brachiopod shells. Palaeogeogr Palaeocimatol Palaeoecol 203:95–105CrossRefGoogle Scholar
  6. Cicha I, Papp A, Senes J, Steininger FF (1975) Badenian. In: Steininger FF, Nevesskaya LA (eds) Stratotypes of Mediterranean Neogene stages 2. VEDA, Bratislava, pp 43–49Google Scholar
  7. Ćorić S, Hohenegger J (2008) Quantitative analyses of calcareous nannoplankton assemblages from the Baden-Sooss section (Middle Miocene of Vienna Basin, Austria). Geol Carpathica 59:447–460Google Scholar
  8. Davis JC (2002) Statistics and data analysis in geology, 3rd edn. Wiley, New YorkGoogle Scholar
  9. Hammer Ø, Harper DAT (2006) Paleontological data analysis. Blackwell, Malden, MAGoogle Scholar
  10. Handler R, Ebner F, Neubauer F, Herman S, Bojar A-V (2006) 40Ar/39Ar dating of Miocene tuffs from Styrian part of the Pannonian Basin: an attempt to refine the basin stratigraphy. Geol Carpathica 57:483–494Google Scholar
  11. Harzhauser M, Piller WE (2007) Benchmark data of a changing sea.—Palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeogr Palaeoclimatol Palaeoecol 253:8–31CrossRefGoogle Scholar
  12. Hohenegger J, Andersen N, Báldi K, Ćorić S, Pervesler P, Rupp C, Wagreich M (2008) Paleoenvironment of the Early Badenian (Middle Miocene) in the southern Vienna Basin (Austria)—multivariate analysis of the Baden-Sooss section. Geol Carpathica 59:461–487Google Scholar
  13. Hohenegger J, Ćorić S, Khatun M, Pervesler P, Rögl F, Rupp C, Selge A, Uchmann A, Wagreich M (2009a) Cyclostratigraphic dating in the Lower Badenian (Middle Miocene) of the Vienna Basin (Austria): the Baden-Sooss core. Int J Earth Sci 98:915–930. doi: 10.1007/s00531-007-0287-7 CrossRefGoogle Scholar
  14. Hohenegger J, Pervesler P, Uchman A, Wagreich M (2009b) Upper bathyal trace fossils document palaeoclimate changes. Terra Nova 21:229–236CrossRefGoogle Scholar
  15. Hohenegger J, Rögl F, Ćorić S, Pervesler P, Lirer F, Roetzel R, Scholger R, Stingl K (2009c) The Styrian Basin: a key to the Middle Miocene (Badenian/Langhian) Central Paratethys transgressions. Austrian J Earth Sci 102:102–132Google Scholar
  16. Holbourn A, Kuhnt W, Schulz M, Erlenkeuser H (2005) Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature 438:183–487CrossRefGoogle Scholar
  17. Holbourn A, Kuhnt W, Schulz M, Flores J-A, Andersen N (2007) Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion. Earth Planet Sci Lett 261:534–550CrossRefGoogle Scholar
  18. Keferstein C (1828) Beobachtungen und Ansichten über die geognostischen Verhältnisse der nördlichen Klak-Alpenkette in Oesterreich und Baiern. Teutschland Geognostisch-Geol Dargestellt 5:1–425Google Scholar
  19. Kocsis L, Vennemann VW, Hegner E, Fontignie D, Tütken T (2009) Constraints on Miocene oceanography and climate in the Western and Central Paratethys: O-, Sr-, and Nd-isotope compositions of marine fish and mammal remains. Palaeogeogr Palaeoclimatol Palaeoecol 271:117–129CrossRefGoogle Scholar
  20. Kováč M, Baráth I, Harzhauser M, Hlavatý I, Hudáčková N (2004) Miocene depositional system and sequence stratigraphy of the Vienna Basin. Cour Forsch-Inst Senckenberg 246:187–212Google Scholar
  21. Kováč M, Andreyeva-Grigorovich A, Bajraktarevic Z, Brzobohaty R, Filipescu S, Fodor L, Harzhauser M, Nagymarosy A, Oszczypko N, Pavelic D, Rögl F, Saftic B, Sliva L, Studencka B (2007) Badenian evolution of the Central Paratethys Sea: paleogeography, climate and eustatic sea-level changes. Geol Carpathica 58:579–606Google Scholar
  22. Kuiper KF, Deino A, Hilgen FJ, Krijgsman W, Renne PR, Wijbrans JRM (2008) Synchromizing rock glocks of earth history. Science 320:500–504CrossRefGoogle Scholar
  23. Laskar J, Robulet P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long-term numerical solution for the insolation quantities of the earth. Astron Astrophys 428:261–285CrossRefGoogle Scholar
  24. Linde A, Berchtold W (1976) Statistische Auswertung von Prozentzahlen. Birkhäuser, BaselGoogle Scholar
  25. Lirer F, Harzhauser M, Pelosi N, Piller WE, Schmid HP, Sprovieri M (2009) Astronomically forced teleconnection between Paratethyan and Mediterranean sediments during the Middle and Late Miocene. Palaeogeogr Palaeoclimatol Palaeoecol 275:1–13CrossRefGoogle Scholar
  26. Lourens L, Hilgen F, Shackleton NJ, Laskar J, Wilson D (2004) The Neogene period. In: Gradstein FM, Ogg JG, Smith AG (eds) A geologic time scale 2004. Cambridge Univ Press, Cambridge, pp 409–440Google Scholar
  27. Papp A, Steininger F (1978) Holostratotypus des Badenien. Holostratotypus: Baden-Sooss (südlich von Wien), Niederösterreich, Österreich. Badener Tegel—Keferstein, 1828 (Unterbaden; M4b; Obere Lagenidenzone). In: Papp A, Cicha I, Senes J, Steininger F (eds) M4 Badenien (Moravien, Wielicien, Kosovien). Chronostratigraphie und Neostratotypen Miozän der Zentralen Paratethys 6. VEDA SAV, Bratislava, pp 138–145Google Scholar
  28. Papp A, Grill R, Janoschek R, Kapounek J, Kollmann K, Turnovsky K (1968) Zur Nomenklatur des Neogens in Österreich. Verh Geol Bundesanst 1968:9–27Google Scholar
  29. Peryt TM (2006) The beginning, development and termination of the Middle Miocene Badenian salinity crisis in Central Paratethys. Sediment Geol 188–189:379–396CrossRefGoogle Scholar
  30. Piller WE, Harzhauser M, Mandic O (2007) Miocene Central Paratethys stratigraphy—current status and future directions. Stratigraphy 4:151–168Google Scholar
  31. Popov SV, Rögl F, Rozanov AY, Steininger FF, Shcherba IG, Kovác M (eds) (2004) Lithological paleogeographic maps of Paratethys. 10 Maps Late Eocene to Pliocene. Cour Forsch-Inst Senckenberg 250:1–46Google Scholar
  32. Rögl F, Spezzaferri S, Coric S (2002) Micropaleontology and biostratigraphy of the Karpatian-Badenian transition (Early-Middle Miocene boundary) in Austria (Central Paratethys). Cour Forsch-Inst Senckenberg 237:47–67Google Scholar
  33. Rögl F, Coric S, Harzhauser M, Jimenez-Moreno G, Kroh A, Schultz O, Wessely G, Zorn I (2008) The Middle Miocene Badenian stratotype at Baden-Sooss (Lower Austria). Geol Carpathica 59:367–374Google Scholar
  34. Selge A (2005) Cyclostratigraphy by means of mineral magnetic parameters in the middle Badenian (Middle Miocene) core Sooß/Baden (Vienna Basin, Austria). Dipl Thesis Univ LeobenGoogle Scholar
  35. Shevenell AE, Kennett JP, Lea DW (2004) Middle Miocene southern ocean cooling and antarctic cryosphere expansion. Science 305:1766–1770CrossRefGoogle Scholar
  36. Sprovieri M, Sacchi M, Rohling EJ (2003) Climatically influenced interactions. Paleoceanography 18:1034. doi: 10.1029/2001PA000750 CrossRefGoogle Scholar
  37. Strauss P, Harzhauser M, Hinsch R, Wagreich M (2006) Sequence stratigraphy in a classic pull-apart basin (Neogene, Vienna Basin). A 3D seismic based integrated approach. Geol Carpathica 57:185–197Google Scholar
  38. Wagreich M, Pervesler P, Khatun M, Wimmer-Frey I, Scholger R (2008) Probing the underground at the Badenian type locality: geology and sedimentology of the Baden-Sooss section (Middle Miocene, Vienna Basin, Austria). Geol Carpathica 59:375–394Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of PalaeontologyUniversity of ViennaViennaAustria
  2. 2.Department of Geodynamics and Sedimentology, Center for Earth SciencesUniversity of ViennaViennaAustria

Personalised recommendations