International Journal of Earth Sciences

, Volume 101, Issue 1, pp 239–252 | Cite as

Exact timing of granulite metamorphism in the Namche-Barwa, eastern Himalayan syntaxis: new constrains from SIMS U–Pb zircon age

  • Wen Su
  • Ming Zhang
  • Xiaohan Liu
  • Jinfu Lin
  • Kai Ye
  • Xin Liu
Short Note

Abstract

Zircon grains separated from 2 granulites from the eastern Himalaya were investigated by Raman spectroscopy, cathodoluminescence imaging, and secondary ion mass spectrometry. These grains have a thin homogeneous rim and an oscillatory inner zone domain with or without a relict inherited core. Garnet, kyanite, and rutile inclusions were identified within only the rim domain of zircon grains, indicating that the rim had formed during peak granulite-facies metamorphism. U–Pb zircon data record three distinct age populations: 1,805 Ma (for the inherited core), ca. 500 Ma (oscillatory inner zone), as well as 24–25 Ma and ca. 18 Ma (for the metamorphic rim). These new precision ages suggest that the peak metamorphic age for the HP granulite is at ca. 24–25 Ma, and subsequent amphibolite-facies retrograde metamorphism occurred at ca. 18 Ma.

Keywords

Granulite SIMS U–Pb zircon age High-pressure metamorphism Himalaya 

References

  1. Ahmad T, Harris N, Bickle M, Chapman H, Bunbury J, Prince C (2000) Isotopic constraints on the structural relationships between the lesser Himalayan series and high Himalayan crystalline series, Garhwal Himalaya. GSA Bull 112:467–477CrossRefGoogle Scholar
  2. Ali JR, Aitchinson JC (2005) Greater India. Earth Sci Rev 72:169–188CrossRefGoogle Scholar
  3. Argles TW, Prince CI, Foster GL, Vance D (1999) New garnets for old? Cautionary tales from young mountain belts. Earth Planet Sci Lett 172:301–309CrossRefGoogle Scholar
  4. Bianchini G, Beccaluva L, Siena F, Tiepolo M (2009) Subduction and crust recycling; petrological evidence and U–Pb dating in mantle xenoliths from the Betic area (Spain). Geochim Cosmochim Acta 73(13S):A119Google Scholar
  5. Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem Geol 200:155–170CrossRefGoogle Scholar
  6. Booth AL, Zeitler PK, Kidd WSF, Wooden J, Liu Y, Idleman B, Hren M, Chamberlain CP (2004) U–Pb zircon constraints on the tectonic evolution of southeastern Tibet, Namche Barwa area. Am J Sci 304:889–929CrossRefGoogle Scholar
  7. Booth AL, Chamberlain CP, Kidd WSF, Zeitler PK (2009) Constraints on the metamorphic evolution of the eastern Himalayan syntaxis from geochronologic and petrologic studies of Namche Barwa. Geol Soc Am Bull 121:385–407CrossRefGoogle Scholar
  8. Brookfield ME (1993) The Himalayan passive margin from Precambrian to Cretaceous. Sed Geol 84:1–35CrossRefGoogle Scholar
  9. Burg JP, Chen GM (1984) Tectonics and structural formation of southern Tibet, China. Nature 311:219–223CrossRefGoogle Scholar
  10. Burg JP, Davy P, Nievergelt P, Oberli F, Seward D, Diao Z, Meier M (1997) Exhumation during crustal folding in the Namche Barwa syntaxis. Terra Nova 9:53–56CrossRefGoogle Scholar
  11. Burg JP, Nievergelt P, Oberli F, Seward D, Davy P, Maurin JC, Diao Z, Meier M (1998) The Namche-Barwa syntaxis: evidence for exhumation related to compressional crustal folding. J Asian Earth Sci 16:239–252CrossRefGoogle Scholar
  12. Catlos EJ, Harrison TM, Manning CE, Grove M, Rai SM, Hubbard MS, Upreti BN (2002) Records of the evolution of the Himalayan orogen from in situ Th–Pb ion microprobe dating of monazite: Eastern Nepal and western Garhwal. J Asian Earth Sci 20:459–479CrossRefGoogle Scholar
  13. Copeland P, Harrison TM, Yun P, Kidd WSF, Roden M, Zhang Y (1995) Thermal evolution of the Gangdese Batholith, southern Tibet: a history of episodic unroofing. Tectonics 14:223–236CrossRefGoogle Scholar
  14. Cottle JM, Searle MP, Horstwood MSA, Waters DJ (2009) Timing of midcrustal metamorphism, melting, and deformation in the Mount Everest Region of southern Tibet revealed by U(–Th)–Pb geochronology. J Geol 117:643–664CrossRefGoogle Scholar
  15. de Sigoyer J, Chavagnac V, Blichert-Toft J, Villa IM, Luais B, Guillot S, Cosca M, Mascle G (2000) Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: multichronology of the Tso Morari eclogites. Geology 28:487–490CrossRefGoogle Scholar
  16. DeCelles PG, Gehrels GE, Quade J, Ojha TP (1998) Eocene-early Miocene foreland basin development and the history of Himalayan thrusting, western and central Nepal. Tectonics 17:741–765CrossRefGoogle Scholar
  17. DeCelles PG, Gehrels GE, Quade J, LaReau B, Spurlin M (2000) Tectonic implications of U–Pb zircon ages of the Himalayan orogenic belt in Nepal. Science 288:497–499CrossRefGoogle Scholar
  18. DeCelles PG, Gehrels GE, Najman Y, Martin AJ, Carter A, Garzanti E (2004) Detrital geochronology and geochemistry of Cretaceous—Early Miocene strata of Nepal: implication for timing and diachroneity of initial Himalayan orogenesis. Earth Planet Sci Lett 227:313–330CrossRefGoogle Scholar
  19. Dewey JF, Bird JM (1970) Mountain belts and new global tectonics. J Geophys Res 75:2625–2685CrossRefGoogle Scholar
  20. Dewey JF, Burke K (1973) Tibetan, Variscan and Precambrian basement reactivation: products of continental collision. J Geol 81:683–692CrossRefGoogle Scholar
  21. Ding L, Zhong DL (1999) Metamorphic characteristics and geotectonic implications of the high-pressure granulites from Namjagbarwa, eastern Tibet. Sci China (Ser D) 42:491–505CrossRefGoogle Scholar
  22. Ding L, Zhong DL, Yin A, Kapp P, Harrison TM (2001) Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth Planet Sci Lett 192:423–438CrossRefGoogle Scholar
  23. Frank W, Grasemann B, Guntli P, Miller C (1995) Geological map of the Kishwar–Chamba–Kulu region (NW Himalayas India). Jahrbuch der Geologischen Bundesanstalt 138:299–308Google Scholar
  24. Gansser A (1964) The geology of the Himalayas. Wiley Interscience, New York, pp 1–289Google Scholar
  25. Gehrels GE, DeCelles PG, Martin A, Ojha TP, Pinhassi G, Upreti BN (2003) Initiation of the Himalayan orogen as an early Paleozoic thin-shinned thrust belt. GSA Today 13:4–9CrossRefGoogle Scholar
  26. Geng Q, Pang G, Zheng L, Chen Z, Fisher RD, Sun Z, Ou C, Dong H, Wang X, Li S, Lou X, Fu H (2006) The eastern Himalayan syntaxis: major tectonic domains, ophiolitic mélanges, and geological evolution. J Asian Earth Sci 27:265–285CrossRefGoogle Scholar
  27. Godin L, Parrish RR, Brown RL, Hodges KV (2001) Crustal thickening leading to exhumation of the Himalayan metamorphic core of central Nepal: Insight from U–Pb geochronology and 40Ar/39Ar thermochronology. Tectonics 20:729–747CrossRefGoogle Scholar
  28. Guillot S, Replumaz A, Hattori KH, Strzerzynski P (2007) Initial geometry of western Himalaya and ultra high pressure metamorphic evolution. J Asian Earth Sci 30:557–564CrossRefGoogle Scholar
  29. Guillot S, Maheo G, de Sigoyer J, Hattori KH, Pecher A (2008) Tethan and Indian subduction viewed from the Himalayan high- to ultrahigh-pressure metamorphic rocks. Tectonophysics 451:225–241CrossRefGoogle Scholar
  30. Harrison TM, Yin A, Grove M, Lovera OM, Ryerson FJ, Xinhua Z (2000) The Zedong window: a record of superposed tertiary convergence in southeastern Tibet. J Geophys Res 105:19211–19230CrossRefGoogle Scholar
  31. Heim A, Gansser A (1939) Central Himalaya geological observations of Swiss, pp 1–246Google Scholar
  32. Indares AD (2003) Metamorphic textures and P–T evolution of high-P granulites from the Lelukuau terrane, NE Grenville Province. J Metamorph Geol 21:35–48CrossRefGoogle Scholar
  33. Kaneko Y, Katayama I, Yamamoto H et al (2003) Timing of Himalayan ultrahigh pressure metamorphism: sinking rate and subduction angle of the Indian continental crust beneath Asia. J Metamorph Geol 21:589–599CrossRefGoogle Scholar
  34. Lange U, Bröcker M, Armstrong R, Trapp E, Mezger K (2005) Sm–Nd and U–Pb dating of highpressure granulites from the Zote and Rychleby Mts. (Bohemian Massif, Poland and Czech Republic). J Metamorph Geol 23:133–145CrossRefGoogle Scholar
  35. Lawrence RD, Khan SH, Dejong KA, Farah A, Yeats RS (1981) Thrust and strike slip fault interaction along the Chaman transform zone, Pakistan. In: McClay KR, Price NJ (ed) Thrust and nappe tectonics. Geol Soc Lond Spec Publ, vol 9, pp 363–370Google Scholar
  36. Leech ML, Singh S, Jain AK, Klemperer SL, Manickavasagam RM (2005) The onset of India-Asia continental collision: early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planet Sci Lett 234:83–97CrossRefGoogle Scholar
  37. LeFort P (1975) Himalayas—collided range—present knowledge of continental arc. Am J Sci A275:1–44Google Scholar
  38. LeFort P (1996) Metamorphism and magmatism during the Himalayan collision. In: Coward MP, Ries AC (ed) Collision tectonics. Geol Soc Lond Spec Publ, vol 19, pp 159–172Google Scholar
  39. Leloup PH, Kienast JR (1993) High-temperature metamorphism in a major strike-slip shear zone: the Ailao Shan-Red River, People’s Republic of China. Earth Planet Sci Lett 118:213–234CrossRefGoogle Scholar
  40. Leloup PH, Lacassin R, Tapponnier P, Scharer U, Zhong D, Liu X, Zhang L, Ji S, Trinh PT (1995) The Ailao Shan-Red River shear zone (Yunnan, China), tertiary transform boundary of Indochina. Tectonophysics 251:3–84CrossRefGoogle Scholar
  41. Leloup PH, Mahéo G, Arnaud N, Kali E, Boutonnet E, Liu DY, Liu XH, Li HB (2010) The South Tibet detachment shear zone in the Dinggye area time constraints on extrusion models of the Himalayas. Earth Planet Sci Lett 292:1–16CrossRefGoogle Scholar
  42. Li XH, Liu Y, Li QL, Guo CH, Chamberlain KR (2009) Precise determination of Phanerozoic zircon Pb/Pb age by multi-collector SIMS without external standardization. Geochem Geophys Geosyst 10(4):1–21CrossRefGoogle Scholar
  43. Li QL, Li XH, Liu Y, Tang GQ, Yang JH, Zhu WG (2010) Precise U–Pb and Pb–Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique. J Anal At Spectrom 25:1107–1113Google Scholar
  44. Liu Y, Zhong D (1997) Petrology of high-pressure granulites from the eastern Himalayan syntaxis. J Metamorph Geol 15:451–466CrossRefGoogle Scholar
  45. Liu Y, Zhong D (1998) Tectonic framework of the eastern Himalayan syntaxis. Prog Nat Sci 8:366–370Google Scholar
  46. Liu Y, Berner Z, Massonne HJ, Zhong D (2006) Carbonatite-like dykes from the eastern Himalayan syntaxis: geochemical, isotopic, and petrogenetic evidence for melting of metasedimentary carbonate rocks within the orogenic crust. J Asian Earth Sci 26:105–120CrossRefGoogle Scholar
  47. Liu Y, Yang Z, Wang M (2007) History of zircon growth in a high-pressure granulite within the eastern Himalayan syntaxis, and tectonic implications. Int Geol Rev 49:861–872CrossRefGoogle Scholar
  48. Liu YS, Hu ZC, Gao S et al (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257:34–43CrossRefGoogle Scholar
  49. Liu YS, Gao S, Hu Z, Gao C, Zong K, Wang D (2010) Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J Petrol 51:537–571CrossRefGoogle Scholar
  50. Ludwig KR (2001) Users manual for Isoplot/Ex rev. 3.23. Berkeley Geochronology Centre Special Publication, vol 1a, p 56Google Scholar
  51. Martin AJ, DeCelles PG, Gehrels GE, Patchett PJ, Isachsen C (2005) Isotopic and structural constraints on the location of the Main Central thrust in the Annapurna Range, central Nepal Himalaya. Geol Soc Am Bull 117:926–944CrossRefGoogle Scholar
  52. Möller A, O’Brien PJ, Kennedy A, Kröner A (2003) Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh temperature granulites of Rogaland (SW Norway). In: Vance D, Muller W, Villa I (eds) Geochronology: linking the isotopic record with petrology and textures. Geol Soc Lond Spec Publ, vol 220, pp 65–81Google Scholar
  53. Mukherjee BK, Sachan HK, Ogasawara Y, Muko A, Yoshioka N (2003) Carbonatebearing UHPM rocks from the Tso-Morari region, Ladakh, India: petrological implications. Int Geol Rev 45:49–69CrossRefGoogle Scholar
  54. Ni JF, Guzman-Speziale M, Bevis M, Holt WE, Wallace TC, Seager WR (1989) Accretionary tectonics of Burma and the three-dimensional geometry of the Burma subduction zone. Geology 17:68–71CrossRefGoogle Scholar
  55. O’Brien PJ, Rötzler J (2003) High-pressure granulites: formation, recovery of peak conditions, and implications for tectonics. J Metamorph Geol 21:3–20CrossRefGoogle Scholar
  56. O’Brien PJ, Zotov N, Law R, Khan MA, Jan MQ (2001) Coesite in Himalayan eclogite and implications for models of India–Asia collision. Geology 29:435–438CrossRefGoogle Scholar
  57. Parrish RR, Hodges KV (1996) Isotopic constraints on the age and provenance of the lesser and greater Himalayan sequences, Nepalese Himalaya. GSA Bull 108:904–911CrossRefGoogle Scholar
  58. Parrish RR, Gough SJ, Searle MP, Waters DJ (2006) Plate velocity exhumation of ultrahigh-pressure eclogites in the Pakistan Himalaya. Geology 34:989–992CrossRefGoogle Scholar
  59. Richards A, Argles T, Harris N, Parrish R, Ahmad T, Darbyshire F, Draganites E (2005) Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth Planet Sci Lett 236:773–796Google Scholar
  60. Richards A, Parrish R, Harris N, Argles T, Zhang L (2006) Correlation of lithotectonic units across the eastern Himalaya, Bhutan. Geology 34:341–344Google Scholar
  61. Rolland Y, Mahéo G, Guillot S, Pecher A (2001) Tectono-metamorphic evolution of the Karakorum metamorphic complex (Dassu-Askole area, NE Pakistan): exhumation of mid-crustal HT-MP gneisses in a convergent context. J Metamorph Geol 19:717–737CrossRefGoogle Scholar
  62. Rolland Y, Carrio-Schaffhauser E, Sheppard SMF, Pêcher A, Esclauze L (2006) Metamorphic zoning and geodynamic evolution of an inverted crustal section (Karakorum margin, N Pakistan), evidence for two metamorphic events. Int J Earth Sci 95:288–305CrossRefGoogle Scholar
  63. Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chem Geol 184:123–138CrossRefGoogle Scholar
  64. Rubatto D, Hermann J (2003) Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): implications for Zr and Hf budget in subduction zones. Geochim Cosmochim Acta 67:2173–2187CrossRefGoogle Scholar
  65. Rubatto D, Hermann J (2007) Zircon behaviour in deeply subducted rocks. Elements 3:31–35CrossRefGoogle Scholar
  66. Schelling DD (1999) Frontal structural geometries and detachment tectonics of the northeastern Karachi arc, southern Kirthar Range, Pakistan. Geol Soc Am Spec Pap 328:287–302Google Scholar
  67. Searle MP (1996) Cooling history, erosion, exhumation, and kinematics of the Himalaya-Karakoram-Tibet orogenic belt. In: Yin A, Harrison TM (eds) The tectonic evolution of Asia. Cambridge University Press, New York, pp 110–137Google Scholar
  68. Shen K, Zhang ZM, Yan L, Wang JL (2008) Composition and evolution of fluids in the continental orogen: a study of fluid inclusions in high-pressure granulites from the Namche Barwa area, Tibet of southwest China. Acta Petrol Sin 24:1488–1500 (in Chinese with English abstract)Google Scholar
  69. Singh S, Barley ME, Brown SJ, Jain AK, Manickavasagam RM (2002) SHRIMP U–Pb in zircon geochronology of the Chor granitoid: evidence for Neoproterozoic magmatism in the Lesser Himalayan granite belt of NW India. Precambr Res 118:285–292CrossRefGoogle Scholar
  70. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221CrossRefGoogle Scholar
  71. Su W, Ye K, Chen Y, Zhang M, Liu X (2010) PTt evolution of granulite from the Namche-Barwa, eastern Himalayan: new constrains on reaction textures, fluid characteristic. Acta Mineral PetrogrGoogle Scholar
  72. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Special Publications. Geological Society, London, pp 313–345Google Scholar
  73. Tomkins HS, Williams IS, Ellis DJ (2005) In situ U–Pb dating of zircon formed from retrograde garnet breakdown during decompression in Rogaland, SW Norway. J Metamorph Geol 23:201–215CrossRefGoogle Scholar
  74. Whitehouse MJ, Platt JP (2003) Dating high-grade metamorphism—constraints from rare-earth elements in zircon and garnet. Contrib Mineral Petrol 145:61–74CrossRefGoogle Scholar
  75. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187Google Scholar
  76. Whittington A, Foster G, Harris N, Vance D, Ayres M (1999) Lithostratigraphic correlations in the western Himalaya: an isotopic approach. Geology 27:585–588CrossRefGoogle Scholar
  77. Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, Vonquadt A, Roddick JC, Speigel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace-element and REE analyses. Geostand Newsl 19:1–23CrossRefGoogle Scholar
  78. Xu WC, Zhang HF, Parrish R, Harris N, Guo L, Yuan HL (2010) Timing of granulite-facies metamorphism in the eastern Himalayan syntaxis and its tectonic implications. Tectonophysics 485:231–244CrossRefGoogle Scholar
  79. Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci Rev 76:1–131CrossRefGoogle Scholar
  80. Yin A, Harrison TM (2000) Geologic evolution of the Himalayan–Tibetan orogen. Annu Rev Earth Planet Sci 28:211–280CrossRefGoogle Scholar
  81. Yin A, Harrison TM, Ryerson FJ, Chen WJ, Kidd WSF, Copeland P (1994) Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet. J Geophys Res 99:18175–18201CrossRefGoogle Scholar
  82. Yin A, Harrison TM, Murphy MA, Grove M, Nie S, Ryerson FJ, Xiaofeng W, Zengle C (1999) Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision. Geol Soc Am Bull 111:1644–1664CrossRefGoogle Scholar
  83. Zeitler PK, Meltzer AS, Koons PO, Craw D, Hallet B, Chamberlain CP, Kidd WSF, Park SK, Seeber L, Bishop M, Shroder J (2001) Erosion, Himalayan geodynamics, and the geomorphology of metamorphism. GSA Today 11:4–8CrossRefGoogle Scholar
  84. Zhang LS, Schärer U (1999) Age and origin of magmatism along the Cenozoic Red River shear belt, China. Contrib Mineral Petrol 134:67–85CrossRefGoogle Scholar
  85. Zhang J, Ji J, Zhong D, Ding L, He S (2004) Structural pattern of eastern Himalayan syntaxis in Namjagbarwa and its formation process. Sci China (Ser D) 47:138–150CrossRefGoogle Scholar
  86. Zhang ZM, Wang JL, Zhao GC, Shi C (2008) Geochronology and Precambrian tectonic evolution of the Namche Barwa complex from the eastern Himalayan syntaxis, Tibet. Acta Petrologica Sinica 24:1477–1487 (in Chinese with English abstract)Google Scholar
  87. Zhang ZM, Wang JL, Dong X, Zhao GC, Yu F, Wang W, Liu F (2009) Petrology and geochronology of the Charnockite from the southern Gangdese Belt, Tibet: evidence for the Andean-type orogen. Acta Petrologica Sinica 25:1707–1720Google Scholar
  88. Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X, Liou JG (2010a) Two-stages of granulite-facies metamorphism in the eastern Himalayan syntaxis, south Tibet: evidence for the subduction of the Neo-Tethys and Indian continent beneath Asia. J Metamorph Geol 28:719–733CrossRefGoogle Scholar
  89. Zhang ZM, Zhao GC, Wang JL, Dong X, Santosh M (2010b) Late Cretaceous Adakite-like charnockite from the Gangdese batholith: evidence for the Neo-Tethyan mid-ocean ridge subduction in southeastern Tibet? Gondwana Res 17:615–631CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Wen Su
    • 1
  • Ming Zhang
    • 2
  • Xiaohan Liu
    • 3
  • Jinfu Lin
    • 4
  • Kai Ye
    • 1
  • Xin Liu
    • 1
  1. 1.State Key Laboratory of Lithospheric Evolution, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  2. 2.Department of Earth SciencesUniversity of CambridgeCambridgeUK
  3. 3.Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  4. 4.Engineering Research Center of Exploration for Hidden Non-Ferrous and Precious Metal Ore Deposits, Ministry of EducationGuilin University of TechnologyGuilinChina

Personalised recommendations