International Journal of Earth Sciences

, Volume 101, Issue 1, pp 323–338 | Cite as

Climate impact of high northern vegetation: Late Miocene and present

Original Paper

Abstract

The Late Miocene belongs to the late phase of the Cenozoic. Climate at that time was still warmer and more humid as compared to today, especially in the high latitudes. Corresponding to the climate situation, palaeobotanical evidences support that vegetation in the high northern latitudes changed significantly from the Late Miocene until today. To quantify the climate impact of this vegetation change, we analyse how vegetation in the high northern latitudes contribute to climate evolution. For that, we perform climate modelling sensitivity experiments for the present and for the Late Miocene (Tortonian, 11–7 Ma). For our present-day sensitivity experiment, we introduce the Tortonian vegetation in the high northern latitudes. For our Tortonian sensitivity experiment, we introduce the modern vegetation on the same grid cells. In the Tortonian and in the present, the modern vegetation leads to a strong cooling of the northern extratropics (up to −4°C). Nevertheless, the meridional heat transports remain nearly unchanged in both cases. In general, the vegetation impact on climate is similar in the Tortonian and in the present. However, some exceptions occur. Due to the Tethys Ocean in the Tortonian, temperatures decline only weakly in eastern Europe and western Asia. In the Tortonian climate, temperatures on the Sahara realm rise (up to +1.5°C), while the temperatures do not change remarkably in the present-day climate. This different behaviour is caused by a stronger and more sensitive hydrological cycle on the Sahara region during the Tortonian.

Keywords

Cenozoic cooling Late Miocene Tortonian Climate modelling Sensitivity experiments 

Notes

Acknowledgments

We gratefully acknowledge the comments of our two anonymous reviewers, which helped to improve our manuscript. This work is a contribution to the NECLIME project and was supported by the DFG within the project FOR 1070, the federal state Hessen (Germany) within the LOEWE initiative. The model Planet Simulator was kindly provided by Prof. Fraedrich and his research team from the Meteorological Institute of the University of Hamburg, Germany.

References

  1. Axelrod DI, Bailey HP (1969) Paleotemperature analysis of terriary floras. Palaeogeogr Palaeoclimato Palaeoecol 6:163–195CrossRefGoogle Scholar
  2. Baghai NL, Jorstad RB (1995) Paleontology, paleoclimatology and paleoecology of the late middle Miocene musselshell creek flora, clearwater county idaho. A preliminary study of a new fossil flora. PALAIOS 10:424–436CrossRefGoogle Scholar
  3. Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718CrossRefGoogle Scholar
  4. Bonan GB, Chapin FS, Thompson SL (1995) Boreal forest and tundra ecosystems as components of the climate system. Clim Chang 29:145–167CrossRefGoogle Scholar
  5. Bruch AA, Gabrielyan IG (2002) Quantitative data of the Neogene climatic development in Armenia and Nakhichevan. Acta Univ Carol Geol 46:41–48Google Scholar
  6. Bruch AA, Utescher T, Olivares CA, Dolakova N, Ivanov D, Mosbrugger V (2004) Middle and Late Miocene spatial temperature patterns and gradients in Europe–Preliminary results based on palaeobotanical climate reconstructions. CFS 249:15–27Google Scholar
  7. Bruch AA, Utescher T, Mosbrugger V, Gabrielyan I, Ivanov DA (2006) Late Miocene climate in the circum-Alpine realm–a quantitative analysis of terrestrial palaeofloras. Palaeogeogr Palaeoclimato Palaeoecol 238:270–280CrossRefGoogle Scholar
  8. Cerling TE, Harris JM, Macfadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–158CrossRefGoogle Scholar
  9. Claussen M (1998) On multiple solutions of the atmosphere-vegetation system in present-day climate. Glob Chang Biol 4:549–559CrossRefGoogle Scholar
  10. Claussen M, Gayler V (1997) The greening of the Sahara during the mid-holocene: results of an interactive atmosphere-biome model. Glob Ecol Biogeogr Lett 6:369–377CrossRefGoogle Scholar
  11. Claussen M, Brovkin V, Ganopolski A, Kubatzki C, Petoukhov V (1998) Modelling global terrestrial vegetation-climate interaction. Philos Trans R Soc Lond B Biol Sci 353:53–63CrossRefGoogle Scholar
  12. Claussen M, Mysak LA, Weaver AJ, Crucifix M, Fichefet T, Loutre MF, Weber SL, Alcamo J, Alexeev VA, Berger A, Calov R, Ganopolski A, Goosse H, Lohmann G, Lunkeit F, Mokhov II, Petoukhov V, Stone P, Wang Z (2002) Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim Dynam 18(7):579–586CrossRefGoogle Scholar
  13. Donat M, Kaspar F (2006) Simulations of the last interglacial and the subsequent glacial inception with the Planet Simulator. CPD 2:1347–1369Google Scholar
  14. Dutton JF, Barron EJ (1997) Miocene to present vegetation changes: a possible piece of the Cenozoic puzzle. Geology 25(1):39–41CrossRefGoogle Scholar
  15. Fluteau F, Ramstein G, Besse J (1999) Simulating the evolution of the Asian and African monsoons during the past 30 Myr using an atmospheric general circulation model. J Geophys Res D Atmospheres 104:11,995–12,018Google Scholar
  16. Fraedrich K, Kirk E, Lunkeit F (1998) PUMA: Portable University Model of the atmosphere. DKRZ Technical Report 16Google Scholar
  17. Fraedrich K, Jansen H, Kirk E, Lunkeit F (2005a) The Planet Simulator: green planet and desert world. Meteorol Z 14:305–314CrossRefGoogle Scholar
  18. Fraedrich K, Jansen H, Kirk E, Luksch U, Lunkeit F (2005b) The Planet Simulator: towards a user friendly model. Meteorol Z 14:299–304CrossRefGoogle Scholar
  19. Grosfeld K, Lohmann G, Rimbu N, Fraedrich K, Lunkeit F (2007) Atmospheric multidecadal variations in the North Atlantic realm: proxy data, observations, and atmospheric circulation model studies. CP 3(1):39–50Google Scholar
  20. Harris N (2006) The elevation history of the Tibetan Plateau and its implications for the Asian monsoon. Palaeogeogr Palaeoclimato Palaeoecol 241:4–15CrossRefGoogle Scholar
  21. Harzhauser M, Piller WE (2007) Benchmark data of a changing sea–palaeogeography, palaeobiogeography and events in the central paratethys during the miocene. Palaeogeogr Palaeoclimatol Palaeoecol 253:8–31CrossRefGoogle Scholar
  22. Heer O (1868) Flora fossilis Arctica 1. Die fossile Flora der Polarländer enthaltend die in Nordgrönland, auf der Melville-Insel, im Banksland, am Mackenzie. Island und in Spitzbergen entdeckten fossilen Pflanzen, ZürichGoogle Scholar
  23. Hély C, Braconnot P, Watrin J, Zheng W (2009) Climate and vegetation: simulating the African humid period. Compt Rendus Geosci 341:671–688CrossRefGoogle Scholar
  24. Henrot AJ, Francois L, Favre E, Butzin M, Ouberdous M, Munhoven G (2010) Effects of CO2, continental distribution, topography and vegetation changes on the climate at the middle miocene: a model study. Clim Past 6(5):675–694Google Scholar
  25. Herold N, Seton M, Müller RD, You Y, Huber M (2008) Middle Miocene tectonic boundary conditions for use in climate models. Geochem Geophy Geosy 9:Q10009CrossRefGoogle Scholar
  26. Jacobs BF (2004) Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes. Philos Trans R Soc Lond B Biol Sci 359:1573–1583CrossRefGoogle Scholar
  27. Jacobs BF, Deino AL (1996) Test of climate–leaf physiognomy regression models, their application to two Miocene floras from Kenya, and 40Ar/39Ar dating of the Late Miocene Kapturo site. Palaeogeogr Palaeoclimato Palaeoecol 123:259–271CrossRefGoogle Scholar
  28. Junge MM, Blender R, Fraedrich K, Gayler V, Luksch U, Lunkeit F (2005) A world without Greenland: impacts on the Northern Hemisphere winter circulation in low- and high-resolution models. Clim Dyn 24:297–307CrossRefGoogle Scholar
  29. Kleiven HF, Jansen E, Fronval T, Smith TM (2002) Intensification of Northern Hemisphere glaciations in the circum Atlantic region (3.5–2.4 Ma)–ice-rafted detritus evidence. Palaeogeogr Palaeoclimato Palaeoecol 184:213–223CrossRefGoogle Scholar
  30. Kutzbach JE, Behling P (2004) Comparison of simulated changes of climate in Asia for two scenarios: early Miocene to present, and present to future enhanced greenhouse. Global Planet Change 41:157–165CrossRefGoogle Scholar
  31. Kutzbach JE, Liu Z (1997) Response of the African monsoon to orbital forcing and ocean feedbacks in the middle Holocene. Science 278:440–443CrossRefGoogle Scholar
  32. Liu X, Yin Z-Y (2002) Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeogr Palaeoclimato Palaeoecol 183:223–245CrossRefGoogle Scholar
  33. Lunkeit F, Borth H, Böttinger M, Frädrich K, Jansen H, Kirk E, Kleidon A, Luksch U, Paiewonsky P, Schubert S, Sielmann S, Wan H (2010) Planet simulator: reference manual version 16. Report. http://www.mi.uni-hamburg.de/fileadmin/files/forschung/theomet/planet_simulator/downloads/PS_ReferenceManual.pdf
  34. Micheels A (2003) Late Miocene climate modelling with ECHAM4/ML–The effects of the palaeovegetation on the Tortonian climate. Dissertation, University of TübingenGoogle Scholar
  35. Micheels A, Bruch AA, Uhl D, Utescher T, Mosbrugger V (2007) A Late Miocene climate model simulation with ECHAM4/ML and its quantitative validation with terrestrial proxy data. Palaeogeogr Palaeoclimato Palaeoecol 253:267–286Google Scholar
  36. Micheels A, Eronen J, Mosbrugger V (2009) The Late Miocene climate response to a modern Sahara desert. Global Planet Change 67:193–204CrossRefGoogle Scholar
  37. Mikolajewicz U, Crowley TJ (1997) Response of a coupled ocean/energy balance model to restricted flow through the Central American isthmus. Paleoceanography 12(3):429–441CrossRefGoogle Scholar
  38. Mikolajewicz U, Maier-Reimer E, Crowley TJ, Kim KJ (1993) Effect of Drake and Panamanian gateways on the circulation of an ocean model. Paleoceanography 8(4):409–426CrossRefGoogle Scholar
  39. Molnar P (2005) Mio-pliocene growth of the Tibetan plateau and evolution of East Asian climate. Palaeontol Electron 8:1–23Google Scholar
  40. Molnar P, England P, Martinod J (1993) Mantle dynamics, uplift of the Tibetan Plateau and the Indian monsoon. Rev Geophys 31(4):357–396CrossRefGoogle Scholar
  41. Moran K, Backman J, Brinkhuis H, Clemens SC (2006) The Cenozoic palaeoenvironment of the Arctic Ocean. Nature 441:601–605CrossRefGoogle Scholar
  42. Mosbrugger V, Utescher T, Dilcher DL (2005) Cenozoic continental climatic evolution of Central Europe. PNAS 102:14964–14969CrossRefGoogle Scholar
  43. Mudie PJ, Helgason J (1983) Palynological evidence for Miocene climatic cooling in eastern Iceland about 9.8 Myr ago. Nature 303:689–692CrossRefGoogle Scholar
  44. New M, Hulme M, Jones P (1999) Representing twentieth-century space–time climate variability. Part I: development of a 1961–90 mean monthly terrestrial climatology. J Climate 12:829–856CrossRefGoogle Scholar
  45. Pagani M, Arthur A, Freeman KH (1999) Miocene evolution of atmospheric carbon dioxide. Paleoceanography 14:273–292CrossRefGoogle Scholar
  46. Pagani M, Zachos JC, Freeman KH, Tipple B, Bohaty S (2005) Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309:600–603CrossRefGoogle Scholar
  47. Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–699CrossRefGoogle Scholar
  48. Pickford M (2000) Crocodiles from the Beglia Formation, Middle/Late Miocene boundary, Tunisia, and their significance for Saharan palaeoclimatology. Annls Paléont 86:59–67CrossRefGoogle Scholar
  49. Popov SV, Rögl F, Rozanov AY, Steininger FF, Shcherba IG, Kovac M (2004) Lithological-paleogeographic maps of Paratethys. 10 maps Late Eocene to Pliocene. CFS 250:1–46Google Scholar
  50. Prell WL, Kutzbach JE (1992) Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature 360:647–652CrossRefGoogle Scholar
  51. Prentice C, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134CrossRefGoogle Scholar
  52. Ramstein G, Fluteau F, Besse J, Joussaume S (1997) Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over past 30 million years. Nature 386:788–795CrossRefGoogle Scholar
  53. Rögl F (1998) Palaeogeographic considerations for Mediterranean and Paratethys Seaways (Oligocene to Miocene). Ann Naturhist Mus Wien 99 A:279–310Google Scholar
  54. Romanova V, Lohmann G, Grosfeld K, Butzin M (2006a) The relative role of oceanic heat transport and orography on glacial climate. Quaternary Sci Rev 25:832–845CrossRefGoogle Scholar
  55. Romanova V, Lohmann G, Grosfeld K (2006b) Effect of land albedo, CO2, orography, and oceanic heat transport on extreme climates. Clim Past 2:31–42CrossRefGoogle Scholar
  56. Royer DL, Wing SL, Beerling DJ, Jolley DW, Koch PL, Hickey LJ, Berner RA (2001) Paleobotanical evidence for near present-day levels of atmospheric CO2 during part of the Tertiary. Science 292:2310–2313CrossRefGoogle Scholar
  57. Ruddiman WF, Kutzbach JE, Prentice IC (1997) Testing the climatic effects of orography and CO2 with general circulation and biome models. In: Ruddiman WF (ed) Tectonic uplift and climate change. Plenum Press, New York, pp 203–235CrossRefGoogle Scholar
  58. Schneck R (unpublished) Global climate sensitivity to large-scale deforestation–model simulations for understanding processes. Dissertation at the University of Frankfurt, pp 327Google Scholar
  59. Schuster M, Duringer P, Ghienne J-F, Vignaud P, Mackaye HT, Likius A, Brunet M (2006) The age of the Sahara desert. Science 311:821CrossRefGoogle Scholar
  60. Schuster M, Duringer P, Ghienne J-F, Roquin C, Sepulchre P, Moussa A, Lebatard A-E, Mackaye HT, Likius A, Vignaud P, Brunet M (2009) Chad bas paleoenvironments of the Sahara since the Late Miocene. Compt Rendus Geosci 341:603–611CrossRefGoogle Scholar
  61. Scotese CR (2004) A continental drift flipbook. J Geol 112:729–741CrossRefGoogle Scholar
  62. Senut B, Pickford M, Ségalen L (2009) Neogene desertification of Africa. Compt Rendus Geosci 341:591–602CrossRefGoogle Scholar
  63. Sepulchre P, Ramstein G, Fluteau F, Schuster M, Tiercelin J-J, Brunet M (2006) Tectonic uplift and Eastern Africa aridification. Science 313:1419–1423CrossRefGoogle Scholar
  64. Spicer RA, Harris NBW, Widdow M, Herman AB, Guo S, Valdes PJ, Wolfe JA (2003) Constant elevation of southern Tibet over the past 15 million years. Nature 421:622–624CrossRefGoogle Scholar
  65. Steppuhn A, Micheels A, Geiger G, Mosbrugger V (2006) Reconstructing the Late Miocene climate and oceanic heat flux using the AGCM ECHAM4 coupled to a mixed layer ocean model with adjusted flux correction. Palaeogeogr Palaeoclimato Palaeoecol 238:399–423CrossRefGoogle Scholar
  66. Steppuhn A, Micheels A, Bruch AA, Uhl D, Utescher T, Mosbrugger V (2007) The sensitivity of ECAM4/ML to a double CO2 scenario for the Late Miocene and the comparison to terrestrial proxy data. Global Planet Change 57(3–4):189–212CrossRefGoogle Scholar
  67. Tiedemann R, Sarnthein M, Stein R (1989) Climatic changes in the western Sahara: Aeolo-Marine sediment record of the last 8 Million years (SITES 657–661). Proc ODP, Sci Results 108:241–277Google Scholar
  68. Wang J, Wang YJ, Liu ZC, Li JQ, Xi P (1999) Cenozoic environmental evolution of the Quaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of central Asia. Palaeogeogr Palaeoclimato Palaeoecol 152:37–47CrossRefGoogle Scholar
  69. Wang WM, Saito T, Nakagawa T (2001) Palynostratigraphy and climatic implications of Neogene deposits in the Himi area of Toyama prefecture, Central Japan. Rev Palaeobot Palyno 117:281–295CrossRefGoogle Scholar
  70. White JM, Ager TA, Adam DP, Leopold EB, Liu G, Jette H, Schweger CE (1997) An 18 million year record of vegetation and climate change in northwestern Canada and Alaska: tectonic and global climatic correlates. Palaeogeogr Palaeoclimato Palaeoecol 130:293–306CrossRefGoogle Scholar
  71. Willis KJ, McElwain JC (2002) The evolution of plants. Oxford University Press, OxfordGoogle Scholar
  72. Wolfe JA (1985) Distribution of major vegetational types during the Tertiary. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2 Natural variations Archean to Present. American Geophysical Union, Washington D.C., pp 357–375CrossRefGoogle Scholar
  73. Wolfe JA (1994) An analysis of Neogene climates in Beringia. Palaeogeogr Palaeoclimato Palaeoecol 108:207–216CrossRefGoogle Scholar
  74. Wunsch C (2005) The total meridional heat flux and its oceanic and atmospheric partition. J Climate 18:4374–4380CrossRefGoogle Scholar
  75. Xu J-X, Ferguson DK, Li C-S, Wang Y-F (2008) Late Miocene vegetation and climate of the Lühe region in Yunnan, southwestern China. Rev Palaeobot Palyno 148:36–59CrossRefGoogle Scholar
  76. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Rainer Schneck
    • 1
  • Arne Micheels
    • 1
    • 2
  • Volker Mosbrugger
    • 1
    • 2
  1. 1.Senckenberg Research Institute and Natural History MuseumFrankfurtGermany
  2. 2.Biodiversity and Climate Research Centre (LOEWE BiK-F)FrankfurtGermany

Personalised recommendations