International Journal of Earth Sciences

, Volume 101, Issue 6, pp 1487–1501

New radiolarian biostratigraphic age constraints on Middle Triassic basalts and radiolarites from the Inner Hellenides (Northern Pindos and Othris Mountains, Northern Greece) and their implications for the geodynamic evolution of the early Mesozoic Neotethys

  • Péter Ozsvárt
  • Lajos Dosztály
  • Georgios Migiros
  • Vassilis Tselepidis
  • Sándor Kovács
Original Paper

Abstract

The Avdella Mélange in the northern Pindos Mountains and its equivalent formation, the Loggitsion Unit in the Othris Mountains expose early Mesozoic (Mid-Late Triassic) oceanic fragments beneath the Western Greek Ophiolite Belt of the Inner Hellenides, Northern Greece. The mélange consists of locally interfingering blocks and slices of ribbon radiolarite, radiolarian chert and pillow basalt and is usually overthrust by Jurassic ophiolites. New Middle and Upper Triassic radiolarian biostratigraphic data are presented from radiolarites and basalt-radiolarite sequences within mélange blocks. Pillow basalts associated with the radiolarites provide clues to the opening of the Neotethyan ocean basin. The radiolarians indicate a Middle Triassic age (latest Anisian, probably early Illyrian), which is documented for the first time in the northern Pindos Mountains. The new radiolarian biostratigraphic data suggest that rift-type basalt volcanism already began in pre-Ladinian time (late Scythian?—Anisian). These basalts were then overlain by Upper Anisian to Carnian (?Norian) radiolarites.

Keywords

Triassic Hellenides Greece Radiolarians Basalts Radiolarites 

References

  1. Bortolotti V, Chiari M, Marcucci M, Photiades A, Principi G (2001) Triassic radiolarian assemblages from the cherts associated with pillow lavas in Argolis Peninsula (Greece). Ofioliti 26:75Google Scholar
  2. Bortolotti V, Chiari M, Kodra A, Marcucci M, Marroni M, Mustafa F, Prela M, Pandolfi L, Principi G, Saccani E (2006) Triassic MORB magmatism in the Southern Mirdita Zone (Albania). Ofioliti 31:1–9Google Scholar
  3. Bortolotti V, Chiari M, Marcucci M, Photiades A, Principi G, Saccani E (2008) New geochemical and age data on the ophiolites from the Othris area (Greece): implication for the Triassic evolution ov the Vardar ocean. Ofioliti 33:135–171Google Scholar
  4. Brack P, Rieber H, Nicora A (2003) A proposal for the GSSP at the base of the Curionii Zone in the Bagolino section (Southern Alps, Northern Italy). Albertiana 28:13–25Google Scholar
  5. Brack P, Rieber H, Nicora A, Mundil R (2005) The Global boundary Stratotype Section and Point(GSSP) of the Ladinian Stage (Middle Triassic) at Bagolino (Southern Alps, Northern Italy) and its implications for the Triassic time scale. Episodes 28:233–244Google Scholar
  6. Capedri S, Venturelli G, Bocchi G, Dostal J, Garuti G, Rossi A (1980) The geochemistry and petrogenesis of an ophiolite sequence from Pindos, Greece. Contr Mineral Petrol 74:189–200CrossRefGoogle Scholar
  7. Chiari M, Marcucci M, Cortese G, Ondrejickova A, Kodra A (1996) Triassic radiolarian assemblages in the Rubik area, and Cukali zone, Albania. Ofioliti 21:77–84Google Scholar
  8. Chiari M, Marcucci M, Prela M (1994) Mirdita Ophiolites Project: 2 Radiolarian assemblages in the cherts at Fushe Arrez and Shebaj (Mirdita area, Albania). Ofioliti 19:313–318Google Scholar
  9. Danelian T, Lekkas S, Alexopoulos A (2000) Découverte de radiolarites triasiques dans un complexe ophiolitique à l’extrême–sud du Péloponnèse (Agelona, Lakonie, Grèce). Comp Ren Acad Sci (Paris) 330:639–644Google Scholar
  10. Danelian T, Robertson AHF (2001) Neotethyan evolution of eastern Greece (Pagondas Mélange, Evia Island) inferred from radiolarian biostratigraphy and the geochemistry of associated extrusive rocks. Geol Mag 138:345–363CrossRefGoogle Scholar
  11. De Wever P (1982) Radiolaries du Trias et du Lias de la Tethys (Systématique, Stratigraphie). Soc Géol Nord 7:1–599Google Scholar
  12. De Wever P (1984) Triassic radiolarians from the Darnó area (Hungary). Acta Geol Hung 27:295–306Google Scholar
  13. De Wever P, Dumitrica P, Caulet JP, Nigrini CA, Caridroit M (2001) Radiolarians in the sedimentary record. Gordon & Breach; Marston, AmsterdamGoogle Scholar
  14. De Wever P, Sanfilippo A, Riedel WR, Gruber B (1979) Triassic radiolarians from Greece, Sicily and Turkey. Micropaleontology 25:75–110CrossRefGoogle Scholar
  15. Dosztály L, Józsa S (1992) Geochronological evaluation of Mesozoic formations of Darnó Hill at Recsk on the basis of Radiolarians and K-Ar age data. Acta Geol Hung 35:371–393Google Scholar
  16. Dumitrică P, Kozur H, Mostler H (1980) Contribution to the radiolarian fauna of the Middle Triassic of the Southern Alps. Geol Pal Mitt Innsbruck 10:1–46Google Scholar
  17. Ferrière J (1976) Sur la signification des séries du massif de l’Othris (Grèce continentale): la zone isopique maliaque. Ann Soc Geol Nord 96:121–134Google Scholar
  18. Ferrière J (1982) Paléogéographie et tectoniques superposées dans les Hellenides internes: le massifs de l’Othrys et du Pelion (Grèce continentale). Publ Soc Géol Nord 8:1–493Google Scholar
  19. Gawlick HJ, Frisch W, Hoxha L, Dumitrică P, Krystyn L, Lein R, Missoni S, Schlagintweit F (2008) Mirdita Zone ophiolites and associated sediments in Albania reveal Neotethys Ocean origin. Int J Earth Sci 97:865–881CrossRefGoogle Scholar
  20. Goričan S, Buser S (1990) Middle Triassic radiolarians from Slovenia (Yugoslavia). Geologija 31–32:133–197Google Scholar
  21. Goričan S, Halamić J, Grgasovic T, Kolar-Jurkovsek T (2005) Stratigraphic evolution of Triassic arc-backarc system in northwestern Croatia. Bull Soc Geol France 176:3–22CrossRefGoogle Scholar
  22. Halamić J, Goričan S (1995) Triassic Radiolarites from Mts. Kalnik and Medvednica (Northwestern Croatia). Geol Croat 48:129–146Google Scholar
  23. Haas J, Kovács S, Krystyn L, Lein R (1995) Significance of Late Permian—Triassic facies zones in terrane reconstructions in the Alpine-North Pannonian domain. Tectonophysics 242:19–40CrossRefGoogle Scholar
  24. Halamić J, Marchig V, Goričan S (2001) Geochemistry of Triassic radiolarian cherts in north-western Croatia. Geol Carpath 52:327–342Google Scholar
  25. Hein J, Obradović J (1988) Siliceous Deposits of the Tethys and Pacific Regions. Springer-Verlag, New YorkGoogle Scholar
  26. Jones G, De Wever P, Robertson AHF (1992) Significance of radiolarian age data to the Mesozoic tectonic and sedimentary evolution of the northern Pindos Mountains, Greece. Geol Mag 129:358–400CrossRefGoogle Scholar
  27. Jones G, Robertson AHF (1991) Tectono-stratigraphy and evolution of the Mesozoic Pindos Ophiolite and related units, northwestern Greece. J Geol Soc London 148:267–288CrossRefGoogle Scholar
  28. Kaufmann G (1976) Perm und Trias im östlichen Mittelgriechenland und auf einigen Aegeischen Inseln. Zeitschr Deutsch Geol Ges 127:387–398Google Scholar
  29. Kellici I, De Wever P, Kodra A (1994) Radiolaires mésozoïques du massif ophiolitique de Mirdita, Albanie. Paléontologie et stratigraphie. Revue Micropal 37:209–222Google Scholar
  30. Kemp AES, McCaig A (1984) Origins and significance of rocks in an imbricate thrust zone beneath the Pindos ophiolite, northwestern Greece. In: Robertson AHF and Dixon JE (eds) The Geological Evolution of the Eastern Mediterranean. Geol Soc London, Spec Publ 17:569–580Google Scholar
  31. Kiss G, Molnár F, Palinkaš LA, Kovács S, Hrvatović H (in press) Correlation of Triassic advanced rifting related Neotethyan submarine basaltic volcanism of the Darnó Unit (NE Hungary) with some Dinaridic and Hellenidic occurrences on the basis of volcanological, fluid-rock interaction and geochemical characteristics. (this volume)Google Scholar
  32. Kovács S (1984) North Hungarian Triassic facies types: A review. Acta Geol Hung 27(3–4):251–264Google Scholar
  33. Kovács S, Haas J, Ozsvárt P, Palinkaš L, Kiss G, Molnár F, Józsa S, Kövér Sz (in press) Re-evaluation of the Mesozoic complexes of Darnó Hill (NE Hungary) and comparisons with Neotethyan accretionary complexes of the Dinarides and Hellenides—preliminary data. Cent Eur Geol (Acta Geol Hung)Google Scholar
  34. Kovács S, Szederkényi T, Haas J, Buda G, Császár G, Nagymarosi A (2000) tectonostratigraphic terranes in the pre-Neogene basement of the Hungarian part of the Pannonian Area. Acta Geol Hung 43:225–328Google Scholar
  35. Kozur H (1991) The Evolution of the Meliata-Hallstatt Ocean and Its Significance for the Early Evolution of the Eastern Alps and Western Carpathians. Palaeogeogr Palaeoclimatol Palaeoecol 87:109–135CrossRefGoogle Scholar
  36. Kozur H. (2003) Recovery of the Radiolarians after the Permian-Triassic biotic crisis and integrated Radiolarian zonation of the Middle Triassic. 10th meeting of the Int Ass of Radiolarian Paleontologist, Lausanne:73–74Google Scholar
  37. Kozur H, Moix P, Ozsvárt P (2007) Characteristic Nasselaria of the lower Tuvalian Spongotortilispinus moixi Zone of the Huğlu Unit in the Mersin Mélange. Bull Géol Soc Vaudoise Sci Nat 90:151–173Google Scholar
  38. Kozur H, Moix P, Ozsvárt P (2009) Additional new Spumellaria (Radiolaria) from the Spongotortilispinus moixi Zone of the Huğlu Unit in the Mersin Mélange (southeastern Turkey), with some remarks on the age of this fauna. Jahrb Geol Bund, Vienna 149:25–59Google Scholar
  39. Kozur H, Mostler H (1981) Beitraege zur Erforschung der mesozoischen Radiolarien; Teil IV; Thalassosphaeracea Haeckel, 1862, Hexastylacea Haeckel, 1882 emend. Petrusevskaja, 1979, Sponguracea Haeckel, 1862 emend. und weitere triassische Lithocycliacea, Trematodiscacea, Actinommacea und Nassellaria. Geol Pal Mitt Innsbruck S1:1–208Google Scholar
  40. Kozur H, Mostler H (1994) Anisian to Middle Carnian radiolarian zonation and description of some stratigraphically important radiolarians. Geol Pal Mitt Innsbruck S3:39–246Google Scholar
  41. Kozur H, Mostler H (1996) Longobardian (Late Ladinian) Muelleritortiidae (Radiolaria) from the Republic of Bosnia-Hercegovina. Geol Pal Mitt Innsbruck S4:83–103Google Scholar
  42. Kozur H, Réti Z (1986) The first paleontological evidence of Triassic ophiolites in Hungary. N Jahrb Geol Pal Mh 5:284–292Google Scholar
  43. Lein R (1987) Evolution of the Northern Calcareous Alps during Triassic Times. In: Flügel HW, Faupl P (eds) Geodynamics of the Eastern Alps. Deuticke, Wien, pp 85–102Google Scholar
  44. Maury RC, Béchennec F, Cotten J, Caroff M, Cordey F, Marcoux J (2003) Middle Permian plume-related magmatism of the Hawasina Nappes and the Arabian Platform: implications on the evolution of the Neotethyan margin in Oman. Tectonics 22:1073–1086CrossRefGoogle Scholar
  45. Mello J, Polak M, Ondrejickova A (1995) Mesozoic radiolarites of central and inner part of the West Carpathians. Spec Publ Geol Soc Greece 4:232–236Google Scholar
  46. Marcucci M, Kodra A, Pirdeni A, Th Gjata (1994) Radiolarian assemblages in the Triassic and Jurassic cherts of Albania. Ofioliti 191:105–114Google Scholar
  47. Migiros G, Tselepidis V (1990) Der erste Nachweis von Hallstatter Kalken in der Nord- Pindos-Decke (Nordwest-Griechenland). N J Geol Pal Mh 4:248–256Google Scholar
  48. Moix P, Kozur HW, Stampfli GM, Mostler H (2007) New palaeontological, biostratigraphical and palaeogeographical results from the Triassic of the Mersin mélange, SE Turkey. In: Lucas SG, Spielmann JA (eds) The Global Triassic. New Mexico Mus of Nat Hist and Sci Bull 41:282–311Google Scholar
  49. Obradović J, Goričan Š (1988) Siliceous Deposits in Yugoslavia: Occurrences, Types and Ages. In: Hein JR, Obradović J (eds) Siliceous Deposits of the Tethys and Pacific Regions. Springer-Verlag, New York, pp 51–64Google Scholar
  50. Ozsvárt P, Dosztály L (2007) Middle Triassic radiolarian fauna from Balaton Highland: quantitative biochronology and biodiversity. 10th Hungarian Symposium on Paleontology: Program, Abstracts and Field Guide:30Google Scholar
  51. Ozsvárt P, Dosztály L, Migiros G, Kovács S (2006) Triassic and Jurassic radiolarians from the northern and southern edge of Vardar Zone: geodynamic implications for mesozoic paleogeography. InterRad 11 and Triassic Stratigraphy Symposium, Wellington, New Zealand:110Google Scholar
  52. Pe-Piper G (1998) The nature of Triassic extension related magmatism in Greece: evidence from Nd and Pb isotope geochemistry. Geol Mag 135:331–348CrossRefGoogle Scholar
  53. Rassios A, Smith AG (2000) Constraints on the formation and emplacement of western Greek ophiolites (Vourinos, Pindos, and Othris) inferred from deformation structures in peridotites. In: Dilek Y, Moores EM, Elthon DA, Nicolas A (eds) Ophiolites and Oceanic Crust: New Insights from Field Studies and Oceanic Drilling Program. GSA, Spec Publ 349:473–483CrossRefGoogle Scholar
  54. Réti Zs (1985) Triassic ophiolite fragments in an evaporitic melange, Northern Hungary. Ofioliti 10:411–422Google Scholar
  55. Richter D (1976) Das Flysch-Stadium der Helleniden—Ein überblick. Zeitschr Geol Gesellsch 127:467–483Google Scholar
  56. Robertson AHF (2007) Overview of tectonic settings related to the rifting and opening of Mesozoic ocean basins in the Eastern Tethys: Oman, Himalayas and Eastern Mediterranean regions. Imaging, Mapping and Modelling Continental Lithosphere Extension and Breakup. Geol Soc London, Spec Pub 282:325–388Google Scholar
  57. Saccani E, Padoa E, Photiades A (2003) Triassic mid-ocean ridge basalts from the Argolis Peninsula (Greece): new constraints for the early oceanization phases of the Neo-Tethyan Pindos basin. Geol Soc London, Spec Pub 218:109–127CrossRefGoogle Scholar
  58. Skourtsis-Coroneou V, Tselepidis V, Kovács S, Dosztály L (1995) Triassic pelagic sedimentary evolution in some geotectonic unit sin Greece and Hungary: a comparison. Geol Soc Greece, Sp Publ 4:275–281Google Scholar
  59. Vishnevskaya VS, Djeric N, Zakariadze GS (2009) New data on Mesozoic Radiolaria of Serbia and Bosnia, and implications for the age and evolution of oceanic volcanic rocks in the Central and Northern Balkans. Lithos 108:72–105CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Péter Ozsvárt
    • 1
  • Lajos Dosztály
    • 4
  • Georgios Migiros
    • 2
  • Vassilis Tselepidis
    • 3
  • Sándor Kovács
    • 5
  1. 1.Hungarian Academy of Sciences–Hungarian Natural History MuseumResearch Group for PaleontologyBudapestHungary
  2. 2.Laboratory of Mineralogy-GeologyAgricultural UniversityAthensGreece
  3. 3.Institute of Geology and Mineral ExplorationAthensGreece
  4. 4.Hungarian Geological InstituteBudapestHungary
  5. 5.Geological, Geophysical and Space Science Research GroupHungarian Academy of Sciences–Eötvös Loránd UniversityBudapestHungary

Personalised recommendations