International Journal of Earth Sciences

, Volume 100, Issue 2–3, pp 527–541 | Cite as

Provenance and reconnaissance study of detrital zircons of the Palaeozoic Cape Supergroup in South Africa: revealing the interaction of the Kalahari and Río de la Plata cratons

  • Pieter H. Fourie
  • Udo ZimmermannEmail author
  • Nicolas J. Beukes
  • Thanusha Naidoo
  • Katsuro Kobayashi
  • Jan Kosler
  • Eizo Nakamura
  • Jenny Tait
  • Johannes N. Theron
Original Paper


In order to facilitate the understanding of the geological evolution of the Kalahari Craton and its relation to South America, the provenance of the first large-scale cratonic cover sequence of the craton, namely the Ordovician to Carboniferous Cape Supergroup was studied through geochemical analyses of the siliciclastics, and age determinations of detrital zircon. The Cape Supergroup comprises mainly quartz-arenites and a Hirnantian tillite in the basal Table Mountain Group, subgreywackes and mudrocks in the overlying Bokkeveld Group, while siltstones, interbedded shales and quartz-arenites are typical for the Witteberg Group at the top of the Cape Supergroup. Palaeocurrent analyses indicate transport of sediment mainly from northerly directions, off the interior of the Kalahari Craton with subordinate transport from a westerly source in the southwestern part of the basin near Cape Town. Geochemical provenance data suggest mainly sources from passive to active continental margin settings. The reconnaissance study of detrital zircons reveals a major contribution of Mesoproterozoic sources throughout the basin, reflecting the dominance of the Namaqua-Natal Metamorphic Belt, situated immediately north of the preserved strata of Cape Supergroup, as a source with Archaean-aged zircons being extremely rare. We interpret the Namaqua-Natal Metamorphic Belt to have been a large morphological divide at the time of deposition of the Cape Supergroup that prevented input of detrital zircons from the interior early Archaean Kaapvaal cratonic block of the Kalahari Craton. Neoproterozoic and Cambrian zircons are abundant and reflect the basement geology of the outcrops of Cape strata. Exposures close to Cape Town must have received sediment from a cratonic fragment that was situated off the Kalahari Craton to the west and that has subsequently drifted away. This cratonic fragment predominantly supplied Meso- to Neoproterozoic, and Cambrian-aged zircon grains in addition to minor Silurian to Lower Devonian zircons and very rare Archaean (2.5 Ga) and late Palaeoproterozoic (1.8-2.0 Ga) ones. No Siluro-Devonian source has yet been identified on the Kalahari Craton, but there are indications for such a source in southern Patagonia. Palaeozoic successions in eastern Argentina carry a similar detrital zircon population to that found here, including evidence of a Silurian to Lower Devonian magmatic event. The Kalahari and Río de la Plata Cratons were thus in all likelihood in close proximity until at least the Carboniferous.


Palaeozoic Cape Supergroup Río de la Plata and Kalahari Craton Detrital zircon age dating Provenance Gondwana 



PHF thanks the National Research Foundation of South Africa and the Geological Society of South Africa for financial assistance. UZ and JT thank the Marie Curie FP6 EXT Action for financial support of the isotope laboratory studies. UZ acknowledge Marathon and Statoil for their financial support of geochemical and isotope geochemical analyses. We like to thank the reviewers Robert J. Pankhurst and Leo A. Hartmann for their thorough reviews, which improved our manuscript. We also like to thank S. Siegesmund and M. Basei for their kind invitation to this special volume and the editors for their effective handling.

Supplementary material

531_2010_619_MOESM1_ESM.pdf (462 kb)
Supplementary material 1 (PDF 462 kb)


  1. Bahlburg H (1990) The Ordovician basin in the Puna of NW Argentina and N Chile: geodynamic evolution from back-arc to foreland basin. Geotekton Forsch 75:1–107Google Scholar
  2. Basei MAS, Frimmel HE, Nutman AP, Preciozzi F (2008) West Gondwana amalgamation based on detrital zircon ages from Neoproterozoic Ribeira and Dom Feliciano belts of South America and comparison with coeval sequences from SW Africa. Geol Soc London Spec Publ 294:239–254CrossRefGoogle Scholar
  3. Bertolino SRL, Zimmermann U, Sattler F (2007) Mineralogy and geochemistry of bottom sediments from water reservoirs in the vicinity of Córdoba, Argentina: environmental and health constraints. Appl Clay Sci 36:206–220CrossRefGoogle Scholar
  4. Boucot AJ, Theron JN (2004) First occurrence of Proboscidina (Early Devonian Brachiopoda) and the Ontogeny of Pleurothyrella Africana. Extraid du Bulletin T. CXXVIII de l’Acad Serbe des Science et des Arts. Sci Nat 42:115–129Google Scholar
  5. Cawood PA (2005) Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth Sci Rev 69:249–279CrossRefGoogle Scholar
  6. Cornell DH, Thomas RJ, Gibson R, Moen HFG, Moore JM, Reid DL (2006) Namaqua-Natal Province. In: Johnson MR, Anhauesser CR, Thomas RJ (eds) The geology of South Africa, Geological Society of South Africa and Council of Geoscience, Pretoria, pp 325–379Google Scholar
  7. Dalziel IWD (2000) Laurentia-Kalahari collision and the assembly of Rodinia. J Geol 108:499–513CrossRefGoogle Scholar
  8. Desjardins PR, Buatois LA, Limarino CO, Cisterna GA (2009) Latest Carboniferous–earliest Permian transgressive deposits in the Paganzo Basin of western Argentina: lithofacies and sequence stratigraphy of a coastal-plain to bay succession. J S Am Earth Sci 28:40–53CrossRefGoogle Scholar
  9. Dunstan LP, Gramch JW, Barnes IL, Purdy WC (1980) The absolute abundance and the atomic weight of a reference sample of thallium. J Res Natl Bur Stand 85:1–10Google Scholar
  10. Eglington BE (2006) Evolution of the Namaqua-Natal Belt, southern Africa—a geochronological and isotope geochemical review. J Afr Earth Sci 46:93–111CrossRefGoogle Scholar
  11. Floyd PA, Leveridge BE (1987) Tectonic environment of the Devonian Gramscatho basin, south Cornwell: framework mode and geochemical evidence from turbidite sandstones. J Geol Soc Lond 144:531–542CrossRefGoogle Scholar
  12. Foden J, Elburg MA, Dougherty-Page J, Burtt A (2006) The timing and duration of the Delamerian Orogeny: correlation with the Ross Orogen and implications for Gondwana assembly. J Geol 114:189–210CrossRefGoogle Scholar
  13. Fourie PH (2009) Provenance and palaeotectonic setting of the Devonian Bokkeveld Group, Cape Supergroup, South Africa. University of Johannesburg, unpublished MSc thesis, pp 1–187Google Scholar
  14. Fralick P (2003) Geochemistry of clastic sedimentary rocks: ratio techniques. In: Lentz DR (ed) Geochemistry of sediments and sedimentary rocks: evolutionary considerations to mineral-deposit-forming environments. Geol Assoc Can 4:85–100Google Scholar
  15. Frimmel HE, Zartman RE, Spaeth A (2001) The Richtersveld igneous complex, South Africa; U-Pb zircon and geochemical evidence for the beginning of Neoproterozoic continental breakup. J Geol 109:493–508CrossRefGoogle Scholar
  16. Gregori DA, López VL, Grecco LE (2004) A late proterozoic–early paleozoic magmatic cycle in Sierra de la Ventana, Argentina. J S Am Earth Sci 19:155–171CrossRefGoogle Scholar
  17. Horn I, Rudnick RL, McDonough WF (2000) Precise elemental and isotope ratio measurement by simultaneous solution nebulisation and laser ablation-ICP-MS: application to U-Pb geochronology. Chem Geol 164:281–301CrossRefGoogle Scholar
  18. Jackson SE, Pearson N, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69CrossRefGoogle Scholar
  19. Jacobs J, Bauer W, Fanning SM (2003) Late Neoproterozoic/Early Palaeozoic events in central Dronning Maud Land and significance for the southern extension of the East African Orogen into East Antarctica. Precam Res 126:27–53CrossRefGoogle Scholar
  20. Kosler J, Sylvester P (2003) Present trends and the future of zircon in geochronology: laser ablation ICPMS. Rev Min Geochem 53:243–275CrossRefGoogle Scholar
  21. Kosler J, Fonneland H, Sylvester P, Tubrett M, Pedersen RB (2002) U-Pb dating of detrital zircons for sediment provenance studies—a comparison of laser ablation ICPMS and SIMS techniques. Chem Geol 182:605–618CrossRefGoogle Scholar
  22. Lacassie JP, Hervé F, Roser B (2006) Sedimentary provenance study of the post-Early Permian to pre-Early Cretaceous metasedimentary Duque de York Complex, Chile. Rev Geol de Chile 33:199–219Google Scholar
  23. Ludwig KR (1999) IsoplotEx v. 2.6. Berkeley Geochronological Center Special Publication no. 1aGoogle Scholar
  24. Marshall CGA (2006) The Natal Group. In: Johnson MR, Anhauesser CR, Thomas RJ (eds) The geology of South Africa. Geological Society of South Africa and Council of Geoscience, Pretoria, pp 433–441Google Scholar
  25. McLennan SM, Taylor SR, McCulloch MT, Maynard JB (1990) Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochim Cosmochim Acta 54:2015–2050CrossRefGoogle Scholar
  26. McLennan SM, Taylor, SR, Hemming SR (2006) Composition, differentiation, and evolution of continental crust: constrains from sedimentary rocks and heat flow. In: Brown M, Rushmer T (eds) Evolution and differentiation of the continental crust. Cambridge University Press, pp 92–134Google Scholar
  27. Naidoo T (2008) Provenance of the Neoproterozoic to Early Paleozoic Kango Inlier, Oudtshoorn, South Africa. University of Johannesburg, unpublished MSc thesis, pp 1–261Google Scholar
  28. Oyhantçabal P, Siegesmund S, Wemmer K, Presnyakov S, Layer P (2009) Geochronological constraints on the evolution of the southern Dom Feliciano Belt (Uruguay). J Geol Soc Lond 166:1075–1084CrossRefGoogle Scholar
  29. Oyhantçabal P, Siegesmund S, Wemmer K (2010) The Río de la Plata Craton: a review of units, boundaries, ages and isotopic signature. In: Siegesmund S, Basei M, Oyhantçabal P (eds) Multiaccretional tectonics at the Rio de la Plata Margins. Int J Earth Sci. doi: 10.1007/s00531-010-0580-8
  30. Pankhurst RJ, Rapela CW, Loske W, Marquez M, Fanning CM (2003) Chronological study of the pre-Permian basement rocks of southern Patagonia. J S Am Earth Sci 16:27–44CrossRefGoogle Scholar
  31. Pankhurst RJ, Rapela CW, Fanning CM, Márquez M (2006) Gondwanide continental collision and the origin of Patagonia. Earth Sci Rev 76:235–257CrossRefGoogle Scholar
  32. Rapela CW, Pankhurst RJ, Fanning CM, Grecco LE (2003) Basement evolution of the Sierra del la Ventana Fold Belt: new evidence for Cambrian continental rifting along the southern margin of Gondwana. J Geol Soc Lond 160:613–628CrossRefGoogle Scholar
  33. Rapela CW, Pankhurst RJ, Casquet C, Fanning CM, Baldo EG, González-Casado JM, Galindo J, Dahlquist J (2007) The Río de la Plata craton and the assembly of SW Gondwana. Earth Sci Rev 83:49–82CrossRefGoogle Scholar
  34. Reid DL (1982) Age relationships within the Vioolsdrif batholith, lower Orange River region. II. Two stage emplacement history and the extent of Kibaran overprinting. Trans Geol Soc S Afr 85:105–110Google Scholar
  35. Reid DL, Welke HJ, Erlank AJ, Moyes A (1987) The Orange River Group: a major Proterozoic calc-alkaline volcanic belt in the western Namaqua Province, southern Africa. In: Pharaoh TC, Beckinsale RD, Rickard D (eds) Geochemistry and mineralization of proterozoic volcanic suites. Geol Soc Spec Publ Lond 33:327–346Google Scholar
  36. Rozendaal A, Scheepers R, Gresse PG, Le Roux JP (1999) Neoproterozoic to Early Cambrian crustal evolution of the Pan-African Saldania Belts, South Africa. S Afr J Geol 100:1–10Google Scholar
  37. Rust IC (1973) The evolution of the Palaeozoic Cape basin, southern margin of Africa. In: Nairn AEM, Stehli FG (eds) The ocean basins and margins, I. The South Atlantic. Plenum, New York, pp 247–276Google Scholar
  38. Scheepers R, Armstrong R (2002) New U-Pb SHRIMP zircon ages of the Cape Granite Suite: implications for the magmatic evolution of the Saldania Belt. S Afr J Geol 105:241–256CrossRefGoogle Scholar
  39. Slama J, Kosler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood M, Morris GA, Nasdala L, Norbert N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249:1–35CrossRefGoogle Scholar
  40. Tankard AJ, Jackson MPA, Eriksson KA, Hobday DK, Hunter DR, Minter WEL (1982) Crustal evolution of southern Africa, 3.8 billion years of earth history. Springer, New York, pp 1–588Google Scholar
  41. Tankard A, Welsink H, Aukes P, Newton R, Stettler E (2009) Tectonic evolution of the Cape and Karoo basins of South Africa; Mar Petrol Geol 26:1379–1412Google Scholar
  42. Thamm AG, Johnson MR (2006) The cape supergroup. In: Johnson MR, Anhaeusser CR, Thomas RJ (eds) The Geology of South Africa. Geological Society of South Africa and Council of Geoscience, Pretoria, pp 443–460Google Scholar
  43. Theron JN (1970) A stratigraphical study of the Bokkeveld Group (series). In: Proceedings 2nd IUGS symposium stratigraphy palaeontology, Gondwana system, Cape Town, pp 197–204Google Scholar
  44. Theron JH (1972) The stratigraphy and sedimentation of the Bokkeveld Group. PhD thesis, University of Stellenbosch, pp 1–175Google Scholar
  45. Uriz NJ, Cingolani CA, Chemale F Jr, Macambira MB, Armstrong R (2010) Isotopic studies on detrital zircons of Silurian-Devonian siliciclastic sequences from Argentinean North Patagonia and sierras de la Ventana regions: comparative provenance. Int J Earth Sci. doi: 10.1007/s00531-010-0597-z
  46. Usui T, Kobayashi K, Nakamura E (2002) U-Pb isotope systematics of micro-zircon inclusions. Implications for the age and origin of eclogite xenolith from the Colorado Plateau. Proc Jpn Acad 78(Ser B):51–56Google Scholar
  47. Van Staden A, Naidoo T, Zimmermann U, Germs GJB (2006) Provenance analysis of selected clastic rocks in Neoproterozoic to lower Paleozoic successions of southern Africa from the Gariep Belt and the Kango Inlier. S Afr J Geol 109:215–232CrossRefGoogle Scholar
  48. Van Staden A, Zimmermann, U, Gutzmer J, Germs G, Chemale F Jr (2010a) Detrital zircon dating and sedimentology of two Neoproterozoic diamictites from the Gariep belt (Namibia) and consequences for correlation; NGF Vinterkonferansen 11:56–57 (Oslo)Google Scholar
  49. Van Staden A, Zimmermann U, Gutzmer J, Chemale Jr F, Germs GJB (2010b) First regional correlation of Lower Paleozoic successions from Argentina and South Africa using glacial diamictite deposits and its consequences for the regional geology. J Geol Soc London 167:217–220CrossRefGoogle Scholar
  50. Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand Newslett 19:1–23CrossRefGoogle Scholar
  51. Wiedenbeck M et al (2004) Further characterisation of the 91500 Zircon Crystal. Geostand Geoanal Res 28:9–39CrossRefGoogle Scholar
  52. Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343CrossRefGoogle Scholar
  53. Young GM, Minter EL, Theron JN (2000) Geochemistry and palaeogeography of upper Ordovician glaciogenic sedimentary rocks in the Table Mountain Group, South Africa. Palaeogeogr Palaeoclimatol Palaeoecol 214:323–345Google Scholar
  54. Zimmermann U, Bahlburg H (2003) Provenance analysis and tectonic setting of the Ordovician deposits in the southern Puna basin, NW Argentina. Sedimentology 50:1079–1104CrossRefGoogle Scholar
  55. Zimmermann U, Spalletti LA (2009) Provenance of the Lower Palaeozoic balcarce formation (Tandilia System, Buenos Aires Province, Argentina): implications for palaeogeographic reconstructions of SW Gondwana. Sed Geol 219:7–23CrossRefGoogle Scholar
  56. Zimmermann U, Chemale F Jr, Dussin IA, Justino D, Germs GJB (2008a) Detrital zircon record of the Nama Group: implications for the Neoproterozoic to Lower Palaeozoic Palaeogeography of southern Africa; VI South American Symposium of Isotope Geochemistry, Bariloche, Abstract volume, 7 pGoogle Scholar
  57. Zimmermann U, Tait J, Miyazaki T, Naidoo T (2008b) Probable Neoproterozoic retro-arc basins on the southern Kalahari craton: The search for an active margin bordering southern Gondwana. In: 33th international geological congress, Oslo (Norway; 6.-14.8.2008), abstract volumeGoogle Scholar
  58. Zimmermann U, Niemeyer H, Meffre S (2009) Revealing the continental margin of Gondwana: the Ordovician arc of the Cordón de Lila (northern Chile). Int J Earth Sci. doi: 10.1007/s00531-009-0483-8
  59. Zimmermann U, Tait J, Crowley Q, Pashley V, Straathof G (2010) The Witputs diamictite in southern Namibia and associated rocks—constraints for a global glaciation? Int J Earth Sci (this volume)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Pieter H. Fourie
    • 1
  • Udo Zimmermann
    • 1
    • 2
    Email author
  • Nicolas J. Beukes
    • 1
  • Thanusha Naidoo
    • 1
    • 2
  • Katsuro Kobayashi
    • 3
  • Jan Kosler
    • 4
  • Eizo Nakamura
    • 3
  • Jenny Tait
    • 5
  • Johannes N. Theron
    • 6
  1. 1.Palaeoproterozoic Research Group, Department of GeologyUniversity of JohannesburgJohannesburgSouth Africa
  2. 2.Department of Petroleum EngineeringUniversity of StavangerStavangerNorway
  3. 3.Pheasent Memorial Laboratory for Geochemistry and Cosmochemistry, ISEIOkayama UniversityMisasaJapan
  4. 4.Centre for Geobiology and Department of Earth ScienceUniversity of BergenBergenNorway
  5. 5.School of GeosciencesThe University of EdinburghEdinburghScotland, UK
  6. 6.Department of Earth SciencesUniversity of StellenboschStellenboschSouth Africa

Personalised recommendations