International Journal of Earth Sciences

, Volume 100, Issue 8, pp 1827–1850 | Cite as

The Northern Giudicarie and the Meran-Mauls fault (Alps, Northern Italy) in the light of new paleomagnetic and geochronological data from boudinaged Eo-/Oligocene tonalites

  • Hannah Pomella
  • Urs Klötzli
  • Robert Scholger
  • Michael Stipp
  • Bernhard Fügenschuh
Original Paper

Abstract

This study concentrates on small intrusions along two important faults of the Giudicarie fault system, the Northern Giudicarie and the Meran-Mauls fault, summarised under the term tonalitic lamellae. Magnetic fabric analyses in combination with structural field data indicate dextral strike slip deformation along the NE–SW striking northern part of the Giudicarie fault system, the Meran-Mauls fault, overprinted by younger thrusting. The regional stressfield was oriented approximately NNW–SSE during Tertiary times. The distinctive change in deformation along the Meran-Mauls fault from dextral strike slip to top-SE thrusting may be caused by a rotation or bending of the fault after the intrusion of the tonalites and the formation of their horizontal magnetic foliation. Based on the assumption of a preliminary straight Periadriatic lineament bent by the NNW-wards advancement of the Southalpine indenter, the tonalitic lamellae may be interpreted as lenses sheared off from the Adamello batholith during indentation. New U/Pb data on zircon show that some of the lamellae are of Oligocene (Rupelian), others of Late Eocene (Priabonian) age. An amphibole-gabbro lens occurring on the Meran-Mauls fault provides a Middle Eocene (Bartonian) age. Among the major Periadriatic plutons, only the southern units of the Adamello batholith also intruded in the Eocene that suggests a strong correlation between the tonalitic lamellae and the Adamello batholith. The analyses of the remanent magnetisation and the Curie point determinations argue for magnetite as the main carrier of a viscous magnetisation blocked at relatively low temperatures. This indicates slow cooling of the investigated intrusions along the Giudicarie fault system down to approximately 300°C, which is in contrast to the fast cooling determined for the Adamello intrusion units currently at the surface. The new zircon fission track data also show later cooling of the tonalites along the Giudicarie fault system when compared with the Adamello batholith in the south and the Mauls lamellae in the north, indicating that this area contains magmatic bodies exhumed from a deeper structural level than in the Adamello and the Mauls region. This may be due to important top-SE thrusting and transpressive faulting in the footwall of the Northern Giudicarie fault and the Meran-Mauls fault.

Keywords

Periadriatic intrusions Giudicarie fault system Fission track dating U/Pb laser ablation ICP-MS Anisotropy of magnetic susceptibility 

References

  1. Baggio P, Friz C, Gatto GO, Gatto P, Gregnanini A, Justin-Visentin E, Lorenzoni S, Mezzacasa G, Morgante S, Omenetto EM, Sassi FP, Zanettin-Lorenzoni EBZ, Zulian T (1971) Note illustrative della Carta Geologica D’Italia 1:100.000. Foglio 4/Merano Carta Geologica D’Italia 1:100.000, Nuova Tecnica Grafica, Roma 161Google Scholar
  2. Barbarin B (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46:605–626CrossRefGoogle Scholar
  3. Bargossi GM, Bove G, Cucato M, Gregnanini A, Morelli C, Moretti A, Poli S, Zanchetta S, Zanchi A (in press) Erläuterungen zur geologischen Karte von Italien im Maßstab 1:50.000 Blatt 013 Meran. CARG. ISPRA, Istituto Superiore per la Protezione e la Ricerca Ambientale. Roma p 285Google Scholar
  4. Barth S, Oberli F, Meier M (1989) U-Th-Pb systematics of morphologically characterized zircon and allanite: a high-resolution isotopic study of the Alpine Rensen pluton (northern Italy). Earth Planet Sci Lett 95:235–254CrossRefGoogle Scholar
  5. Becke F (1903) Exkursion durch das Westende der Hohen Tauern (Zillertal). Führer für Geologische Exkurisonen in Österreich 9. Internationale Geologische Konferenz: 1–41Google Scholar
  6. Bellieni G, Peccerillo A, Poli G (1981) The Vedrette di Ries (Rieserferner) plutonic complex: petrological and geochemical data bearing on its genesis. Contrib Mineral Petrol 78:145–156CrossRefGoogle Scholar
  7. Bianchi A, Callegari E, Jobstraibizer PG (1970) I tipi petrografici fondamentali del Plutone dell’Adamello. Tonaliti, quarzdioriti, granodioriti e loro varietà leucocrate. Memorie dell’Istituto Geologico Mineralogico dell’Università di Padova, 27:148Google Scholar
  8. Bögel H (1975) Zur Literatur über die “Periadriatische Naht”. Verhandlungen der Geologischen Bundesanstalt 2–3:163–199Google Scholar
  9. Borradaile GJ, Jackson M (2004) Anisotropy of magnetic susceptibility (AMS): magnetic petrofabrics of deformed rocks. In: magnetic fabric: methods and applications. The Geological Society, London, pp 299–360Google Scholar
  10. Borsato A, Bonani A, Morelli C, Barazzuol D, Mulas F, Prosser G, Rigatti G, Avanzini M, Cucato M (2007) Appiano—026. Carta Geologica d’Italia 1:50.000. SystemCart, RomaGoogle Scholar
  11. Borsi S, Del Moro A, Ferrara G (1972) Età radiometriche delle rocce intrusive del Massiccio di Bressanone-Ivigna-Monte Croce (Alto Adige). Bollettino della Società Geologica Italiana 91:387–406Google Scholar
  12. Borsi S, Del Moro A, Sassi FP, Zirpoli G (1979) On the age of the vedrette di ries (rieserferner) massif and its geodynamic significance. Geol Rundschau 68:41–60CrossRefGoogle Scholar
  13. Brandner R, Reiter F, Töchterle A (2008) Überblick zu den Ergebnissen der geologischen Vorerkundung für den Brenner-Basistunnel. Geo Alp 5:165–174Google Scholar
  14. Castellarin A (1992) Alpine compressional tectonics in the Southern Alps. Relationships with the N-Apennines. Annales Tectonicae 6:62–95Google Scholar
  15. Castellarin A, Cantelli L (2000) Neo-Alpine evolution of the Southern Eastern Alps. J Geodynamics 30:251–274CrossRefGoogle Scholar
  16. Castellarin A, Picotti V (1990) Jurassic tectonic framework of the eastern border of the Lombardian basin. Eclogae Geologicae Helvetiae 83:683–700Google Scholar
  17. Castellarin A, Vai GB, Cantelli L (2006) The Alpine evolution of the Southern Alps around the Giudicarie faults: a late cretaceous to early eocene transfer zone. Tectonophysics 414:2–3Google Scholar
  18. Collinson DW (1983) Methods in rock magnetism and palaeomagnetism. Techniques and instrumentation. Chapman and Hall, LondonGoogle Scholar
  19. Dal Piaz G (1926) Il confine alpino-dinarico dall’Adamello al massiccio di Monte Croce nell’Alto Adige. Atti dell’Accademia Scientifica Veneto-Trentino-Istriana 17:3–7Google Scholar
  20. Dal Piaz G (1942) Geologia della bassa Val d’Ultimo e del massiccio di Monte Croce con considerazioni sull’etá e la giacitura delle masse intrusive periadriatiche e sulla tettonica del bacino dell’Adige. Memorie del Museo di Storia Naturale della Venezia Tridentina 5:179–360Google Scholar
  21. Dekkers MJ (1990) Magnetic properties of natural goethite-III. Magnetic behaviour and properties of minerals originating from goethite dehydration during thermal demagnetization. Geophys J Inter 103:233–250CrossRefGoogle Scholar
  22. Del Moro A, Sassi FP, Zirpoli G (1982) New radiometric data on the alpine thermal history in the Oetztal-Merano area (Eastern Alps). Memorie di Scienze Geologiche 35:319–325Google Scholar
  23. Del Moro A, Pardini G, Quercioli C, Villa I, Callegari E (1983) Rb/Sr and K/Ar chronology of Adamello granitoids, Southern Alps. Memorie della Società Geologica Italiana 26:285–299Google Scholar
  24. Deutsch A (1984) Young Alpine dykes south of the Tauern Window (Austria): a K-Ar and Sr isotope study. Contrib Mineral Petrol 85:45–57CrossRefGoogle Scholar
  25. Doglioni C, Bosellini A (1987) Eoalpine and Mesoalpine tectonics in the Southern Alps. Geologische Rundschau 76:735–754CrossRefGoogle Scholar
  26. Donelick RA (1993) Apatite etching characteristics versus chemical composition. Nucl Tracks Radiat Meas 21:604Google Scholar
  27. Dunkl I (2002) Trackkey: a Windows program for calculation and graphical presentation of fission track data. Comput Geosci 28:3–12CrossRefGoogle Scholar
  28. Elias J (1998) The thermal history of the Ötztal-Stubai Complex (Tyrol, Austria/Italy) in the light of the lateral extrusion model. Tübinger Geowissenschaftliche Arbeiten, A36; Tübingen, p 172Google Scholar
  29. Exner C (1976) Die geologische Position der Magmatite des periadriatischen Lineaments. Verhandlungen der Geologischen Bundesanstalt 2:3–64Google Scholar
  30. Fodor LI, Gerdes A, Dunkl I, Koroknai B, Pécskay Z, Trajanova M, Horváth P, Vrabec M, Jelen B, Balogh K, Frisch W (2008) Miocene emplacement and rapid cooling of the Pohorje pluton at the Alpine-Pannonian-Dinaridic junction, Slovenia. Swiss J Geosci 101:255–271CrossRefGoogle Scholar
  31. Frisch W, Kuhlemann J, Dunkl I, Brügel A (1998) Palinspastic reconstruction and topographic evolution of the Eastern Alps during late Tertiary extrusion. Tectonophysics 297:1–15CrossRefGoogle Scholar
  32. Frisch W, Dunkl I, Kuhlemann J (2000) Post-collisional orogen-parallel large-scale extension in the Eastern Alps. Tectonophysics 327:239–265CrossRefGoogle Scholar
  33. Fügenschuh B, Seward D, Mancktelow N, Fumasoli M (1997) Exhumation in a convergent orogen: the western Tauern window. Terra Nova 9:213–217CrossRefGoogle Scholar
  34. Galbraith RF (1981) On statistical models for fission track counts. Math Geol 13:471–488CrossRefGoogle Scholar
  35. Gleadow AJW (1981) Fission-track dating methods: what are the real alternatives? Nucl Tracks 5:3–14CrossRefGoogle Scholar
  36. Hansmann W, Oberli F (1991) Zircon inheritance in an igneous rock suite from the southern Adamello batholith (Italian Alps). Contrib Mineral Petrol 107:501–518CrossRefGoogle Scholar
  37. Hurford AJ, Green IR (1983) The zeta age calibration of fission track dating. Isot Geosci 1:285–317Google Scholar
  38. Hurford AJ, Hammerschmidt K (1985) 40Ar/39Ar and K/Ar dating of the Bishop an Fish Canyon Tuffs: calibration ages for fission track dating standards. Chemical Geol Isot Geosci Sect 58:23–32CrossRefGoogle Scholar
  39. Irschara M, Pomella H (2006) Geologie und Geodynamik im Raum Meran. Magister thesis, University of Innsbruck, p 172Google Scholar
  40. Jelinek V (1981) Characterisation of the magnetic fabric of rocks. Tectonophysics 79:T63–T67CrossRefGoogle Scholar
  41. Ketcham RA (2005) Forward and inverse modeling of low-temperature thermochronometry data. Rev Mineral Geochem 58:275–314CrossRefGoogle Scholar
  42. Ketcham RA, Carter A, Donelick RA, Barbarand J, Hurford AJ (2007) Improved modeling of fission-track annealing in apatite. Am Mineral 92:799–810CrossRefGoogle Scholar
  43. Kirschvink JL (1980) The least squares line and plane and the analysis of paleomagnetic data. Geophys J Roy Astron Soc 62:699–718Google Scholar
  44. Klötzli U, Klötzli E, Günes Z, Kosler J (2009) Accuracy of laser ablation U-Pb Zircon dating: results from a test using five different reference zircons. Geostan Geoanal Res 33:5–15CrossRefGoogle Scholar
  45. Laubscher HPV (1971) Das Alpen-Dinariden-Problem und die Palinspastik der südlichen tethys. Int J Earth Sci 40:813–833Google Scholar
  46. Lowrie W (1990) Identification of ferromagnetic minerals by coercivity and unblocking temperatures properties. Geophys Research Letters 17:159–162CrossRefGoogle Scholar
  47. Ludwig KR (2003) User’s manual for Isoplot/Ex version 3.00. A geochronological toolkit for microsoft excel. Berkeley Geochronology Center, Special Publication 4:70Google Scholar
  48. Mancktelow NS, Stöckli DF, Grollimund B, Müller W, Fügenschuh B, Viola G, Seward D, Villa IM (2001) The DAV and Periadriatic fault system in the Eastern Alps south of the Tauern window. Int J Earth Sci 90:593–622CrossRefGoogle Scholar
  49. Martin S, Prosser G, Santini L (1991) Alpine deformation along the periadriatic lineament in the Italian Eastern Alps. Annales Tectonicae 5:118–140Google Scholar
  50. Martin S, Prosser G, Morten L (1993) Tectono-magmatic evolution of sheeted plutonic bodies along the north Giudicarie line (northern Italy). Int J Earth Sci 82:51–86Google Scholar
  51. Márton E, Trajanova M, Zupancic N, Jelen B (2006) Formation, uplift and tectonic integration of a periadriatic intrusive complex (Pohorje, Slovenia) as reflected in magnetic parameters and palaeomagnetic directions. Geophys J Int 167:1148–1159CrossRefGoogle Scholar
  52. Mayer A, Cortiana G, Dal Piaz GV, Deloule E, De Pieri R, Jobstraibizer P (2003) U-Pb single zircon ages of the Adamello batholith, Southern Alps. Memorie di Scienze Geologiche 55:151–167Google Scholar
  53. McDowell FW, Kreizer P (1977) Timing of mid-tertiary volcanism in the Sierra Madre Occidental between Durango City and Mazatlan, Mexico. Geol Soc Am Bull 88:1479–1487CrossRefGoogle Scholar
  54. Meli S (1995) Porphyroids in the Eastern Southalpine basement: a petrografic and geochemical study. Plinius 13:139–144Google Scholar
  55. Mendum JR (1976) The structure and metamorphic geology of the Tonale Pass area., Northern Italy. Phd thesis, University of Edinburgh, p 269Google Scholar
  56. Mojsisovics E (1879) Die Dolomitriffe von Südtirol und Venetien. Beiträge zur Bildungsgeschichte der Alpen. Wien; Hölder, p 552Google Scholar
  57. Morten L (1974) La tonalite della Valle dei Rivi (Rumo). Mineralogica e Petrografica Acta 20:79–90Google Scholar
  58. Müller W, Mancktelow N, Meier M (2000) Rb-Sr microchrons of synkinematic mica in mylonites: an example from the DAV fault of the Eastern Alps. Earth Planet Sci Lett 180:385–397CrossRefGoogle Scholar
  59. Müller W, Prosser G, Mancktelow N, Villa I, Kelley S, Viola G, Oberli F, Nemes F, Neubauer F (2001) Geochronological constraints on the evolution of the Periadreatic Fault System (Alps). Int J Earth Sci 90:623–653CrossRefGoogle Scholar
  60. Nommensen L (2009) A petrological and geochronological comparison between the presanella intrusion of the adamello pluton and the magmatic lamellae from the North Giudicarie fault zone (Southern Alps, northern Italy). Diploma thesis, Albert-Ludwigs-Universität Freiburg, p 67Google Scholar
  61. Oberli F, Meier M, Berger A, Rosenberg CL, Gieré R (2004) U-Th-Pb and 230Th/238U disequilibrium isotope systematics: Precise accessory mineral chronology and melt evolution tracing in the Alpine Bergell intrusion. Geochim Cosmochim Acta 68:2543–2560CrossRefGoogle Scholar
  62. Pearce JA, Harris NBW, Tindle AG (1984) Element discrimination diagrams for the tectonic interpretation of granitic rocks. Trace J Petrol 25:956–983Google Scholar
  63. Pennacchioni G (2005) Control of the geometry of precursor brittle structures on the type of ductile shear zone in the Adamello tonalites, Southern Alps (Italy). J Struct Geol 27:627–644CrossRefGoogle Scholar
  64. Picotti V, Prosser G, Castellarin A (1995) Structures and kinematics of the Giudicarie-Val Trompia fold and thrust belt (Central Southern Alps, northern Italy). Memorie della Società Geologica Italiana 47:95–109Google Scholar
  65. Pitcher WS (1997) The nature and origin of granite. Chapman, London, p 387CrossRefGoogle Scholar
  66. Pomella H, Fügenschuh B, Scholger R, Stipp M (2007) Was the periadriatic line originally curved or straight? A multidisciplinary study on boudinaged elements along the Giudicarie fault system. 8th Workshop on Alpine Geological Studies, Davos Abstract Volume: p 65Google Scholar
  67. Pomella H, Fügenschuh B, Stipp M (2008) The Giudicarie fault system at the transition between Southern and Eastern Alps (Northern Italy) A new structural analysis. 6. Swiss Geoscience Meeting, Lugano Abstract Volume: p 55Google Scholar
  68. Prosser G (1998) Strike-slip movements and thrusting along a transpressive fault zone: the North Giudicarie line (Insubric line, northern Italy). Tectonics 17:921–937CrossRefGoogle Scholar
  69. Ratschbacher L, Frisch W, Linzer HG, Merle O (1991a) Lateral extrusion in the Eastern Alps, part 2: structural analysis. Tectonics 10:257–271CrossRefGoogle Scholar
  70. Ratschbacher L, Merle O, Davy P, Cobbold P (1991b) Lateral extrusion in the Eastern Alps, part 1: boundary conditions and experiments scaled for gravity. Tectonics 10:245–256CrossRefGoogle Scholar
  71. Romer RL, Schärer U, Steck A (1996) Alpine and pre-Alpine magmatism in the root-zone of the western Central Alps. Contrib Mineral Petrol 123:138–158CrossRefGoogle Scholar
  72. Rosenberg CL (2004) Shear zones and magma ascent: A model based on a review of the Tertiary magmatism in the Alps. Tectonics 23: doi:10.1029/2003TC001526
  73. Rosenberg CL, Berger A, Schmid SM (1995) Observations from the floor of a granitoid pluton: inferences on the driving force of final emplacement. Geology 23:443–446CrossRefGoogle Scholar
  74. Sander B, Bonani A, Hammer W (1926) Note illustrative della Carta Geologica delle tre venezie—foglio merano. Note illustrative della carta geologica delle tre venezie. Tipografica, Padova, p 65Google Scholar
  75. Sassi PF, Zanferrari A (1971) Osservazioni sulla granodiorite affiorante lungo la linea della Gail presso Hollbruck (Tirolo Orientale, Austria). Studi Trentini di Scienze Naturali 48:271–281Google Scholar
  76. Sassi PF, Zanferrari A (1973) Sulla presenza di una massa tonalitica lungo la linea della Gail fra Obertillach e Liesing (Austria). Bollettino della Società Geologica Italiana 92:605–620Google Scholar
  77. Sassi FP, Cesare B, Mazzoli C, Peruzzo LRS, Spiess R (2004) The crystalline basement of the Italian eastern Alps: a review of the metamorphic features. Periodico di Mineralogia 73:23–42Google Scholar
  78. Schmid SM, Kissling E (2000) The arc of the Western Alps in the light of geophysikal data on deep crustal structure. Tectonics 19:62–85CrossRefGoogle Scholar
  79. Schmid SM, Aebli HR, Zingg A (1989) The role of the Periadriatic Line in the tectonic evolution of the Alps. Geo Soc Spec Publ 45:153–171CrossRefGoogle Scholar
  80. Schmid SM, Pfiffner OA, Froitzheim N, Schönborn G, Kissling E (1996) Geophysical-geological transect and tectonic evolution of the Swiss-Italian Alps. Tectonics 15:1036–1064CrossRefGoogle Scholar
  81. Schönborn G (1999) Balancing cross sections with kinematic constraints: the Dolomites (northern Italy). Tectonics 18:527–545CrossRefGoogle Scholar
  82. Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35CrossRefGoogle Scholar
  83. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–211CrossRefGoogle Scholar
  84. Stipp M, Fügenschuh B, Gromet LP, Stünitz H, Schmid SM (2004) Contemporaneous plutonism and strike-slip faulting: a case study from the Tonale fault zone north of the Adamello pluton (Italian Alps). Tectonics 23: doi:10.1029/2003TC001515
  85. Suess E (1885) Das Antlitz der Erde. 1; Leipzig (G. Freytag), Prag (F. Tempsky) p 310Google Scholar
  86. Tarling DH, Hrouda F (1993) The Magnetic Anisotropy of Rocks. Chapman and Hall, London, p 217Google Scholar
  87. Thöni M (1980) Distribution of pre-Alpine and Alpine metamorphism of the Southern Oetztal mass and the Scarl Unit, based on K/Ar age determination. Mitteilungern der Österreichischen Geologischen Gesellschaft 71(72):139–165Google Scholar
  88. Thöni M (1981) Degree and evolution of the Alpine metamorphism in the Austroalpine Unit W of the Hohe Tauern in the light of K/Ar and Rb/Sr age determinations on micas. Jahrbuch der Geologischen Bundesanstalt 124:111–174Google Scholar
  89. Thöny W, Ortner H, Scholger R (2006) Paleomagnetic evidence for large en-bloc rotations in the Eastern Alps during Neogene orogeny. Tectonophysics 414:169–189CrossRefGoogle Scholar
  90. Tumiati S, Godard G, Martin S, Klötzli U, Monticelli D (2007) Fluid-controlled crustal metasomatism within a high-pressure subducted mélange (Mt. Hochwart, Eastern Italian Alps). Lithos 94:148–167CrossRefGoogle Scholar
  91. Viola G, Mancktelow NS, Seward D (2001) Late Oligocene-Neogene evolution of Europe-Adria collision: New structural and geochronological evidence from the Giudicarie fault system (Italian Eastern Alps). Tectonics 20:999–1020CrossRefGoogle Scholar
  92. Visonà D (1976) Sulla presenza di filoni nella tonatite orientata del Passo di Valles (Massiccio granitico di Bressanone, Alpi Orientali). Museo Tridentino Scienze Naturali 53:61–73Google Scholar
  93. Von Blanckenburg F (1992) Combined high-precision chronometry and geochemical tracing using accessory minerals: applied to the Central-Alpine Bergell intrusion. Chem Geol 100:19–40CrossRefGoogle Scholar
  94. von Blanckenburg F, Davis JH (1995) Slab breakoff: a model for syncollisional magmatism and tectonics in the Alps. Tectonics 14:120–131CrossRefGoogle Scholar
  95. von Blanckenburg F, Kagami H, Deutsch A, Oberli F, Meier M, Wiedenbeck M, Barth S, Fischer H, Castellarin A, Vai GB (1998) The origin of Alpine plutons along the Periadriatic Lineament. Schweiz Mineral Petrogr Mitt 78:55–66Google Scholar
  96. Walker JD, Geissman JW (2009) Geologic time scale. Geological society of America: pp doi: 10.1130/2009.CTS004R2C
  97. Werling E (1992) Tonale-, Pejo- und Judicarien-Linie: Kinematik, Mikrostrukturen und Metamorphose von Tektoniten aus räumlich interferierenden aber verschiedenaltrigen Verwerfungszonen. PhD-Thesis, ETH, pp 276Google Scholar
  98. Zijderveld JD (1967) AC demagnetization of rocks: analysis of results. In: methods in paleomagnetism. Elsevier, Amsterdam, pp 254–286Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Hannah Pomella
    • 1
  • Urs Klötzli
    • 2
  • Robert Scholger
    • 3
  • Michael Stipp
    • 4
  • Bernhard Fügenschuh
    • 5
  1. 1.DOC-fFORTE-fellowship of the Austrian Academy of Sciences at the Institute of Geology and PaleontologyUniversity of InnsbruckInnsbruckAustria
  2. 2.Department of Lithospheric ResearchUniversity of ViennaViennaAustria
  3. 3.Paleomagnetic Laboratory Gams, Chair of GeophysicsUniversity of LeobenFrohnleitenAustria
  4. 4.Leibniz-Institute of Marine SciencesKielGermany
  5. 5.Institute of Geology and PaleontologyUniversity of InnsbruckInnsbruckAustria

Personalised recommendations