Skip to main content

Advertisement

Log in

The Early Palaeozoic high-grade metamorphism at the active continental margin of West Gondwana in the Andes (NW Argentina/N Chile)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The evolution of the Early Palaeozoic orogen of West Gondwana in the Cambrian to Ordovician basement of the Andes between ~18° and 32° S is investigated for pressure and temperature conditions and age of metamorphism. It is characterized by mid-crust temperatures commonly above the wet granite solidus (~650°C). Widespread felsic migmatite and rare granulite formed at pressures of ca 0.5–0.7 GPa, locally 1.0 GPa. These rocks represent the deepest exhumed sections of the Early Palaeozoic crust. High pressure–low temperature rocks are absent. The crystallization ages, compiled from the literature in combination with new data, for near peak metamorphic conditions of these high-grade metamorphic rocks in NW Argentina and N Chile are ~530–500 Ma and ~470–420 Ma. Both age groups are spatially overlapping. Radiogenic isotope signatures (Sr, Nd, Pb) are used to characterize the Early Palaeozoic basement. The Pb and Sr isotope compositions of the Early Palaeozoic basement indicate mixing arrays between pre-Palaeozoic unradiogenic and radiogenic crust. Crustal residence ages (Sm–Nd TDM) indicate a prominent event of crust formation around ~2 Ga, which is known continent-wide. This material was recycled during Midproterozoic and Early Palaeozoic orogenies without prominent additions of new crust present in the isotope record, i.e. accretion of compositional exotic material is absent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aceñolaza FG, Toselli AJ (1976) Consideraciones estratigráficas y tectónicas sobre el Paleozoico inferior del noroeste argentino. 2° Congreso Latinoamericano de Geología, Caracas. Actas 2:755–763

    Google Scholar 

  • Aceñolaza FG, Miller H, Toselli AJ (2002) Proterozoic–early paleozoic evolution in western South America—a discussion. Tectonophysics 352:121–137

    Article  Google Scholar 

  • Astini RA, Dávila FM (2004) Ordovician back arc foreland and Ocloyic thrust belt development on the western Gondwana margin as a response to Precordillera terrane accretion. Tectonics 23. doi:10.1029/2003TC001620

  • Baeza L (1984) Petrography and tectonics of the plutonic and metamorphic complexes of Limon Verde and Mejillones Peninsula, northern Chile. PhD. thesis, Eberhard-Karl Universität, Tübingen, pp 1–205

  • Bahlburg H, Vervoort JD, Du Frane SA, Bock B, Augustsson C, Reimann C (2009) Timing of crust formation and recycling in accretionary orogens: Insights learned from the western margin of South America. Earth Sci Rev 97:215–241

    Article  Google Scholar 

  • Baldo EG, Demange M, Martino RD (1996) Evolution of the Sierras de Cordoba, Argentina. Tectonophysics 267:121–146

    Article  Google Scholar 

  • Becchio R (2000) Petrología y geoquímica del basamento del borde oriental de la Puna Austral. PhD. thesis, Universidad Nacional de Salta, Argentina, pp 1–183

  • Becchio R, Lucassen F, Franz G, Viramonte J, Wemmer K (1999) El basamento paleozoico inferior del noroeste de Argentina (23–27°S)—metamorfismo y geocronologia. In: Bonorino GG, Omarini R, Viramonte J (eds) Geologia del noroeste Argentino. XIV Congreso Geológico Argentino, Salta, Argentina, Relatorio, pp 58–72

    Google Scholar 

  • Berman RG (1988) Internally-consistent thermodynamic data for stoichiometric minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2. J Petrol 29:445–522

    Google Scholar 

  • Berman RG (1991) Thermobarometry using multi-equilibrium calculations: a new technique, with petrological applications. Can Mineral 29:833–855

    Google Scholar 

  • Bhattacharya A, Mohanty L, Maji A, Sen SK, Raith M (1989) Non-ideal mixing in the phlogopite–annite binary: constraints from experimental data on Mg–Fe partitioning and a reformulation of the biotite–garnet geothermometer. Contrib Mineral Petrol 111:87–93

    Article  Google Scholar 

  • Bock B, Bahlburg H, Wörner G, Zimmermann U (2000) Tracing crustal evolution in the southern Central Andes from Late Precambrian to Permian using Nd and Pb isotopes. J Geol 108:515–535

    Article  Google Scholar 

  • Büttner SH (2009) The Ordovician Sierras Pampeanas—Puna basin connection: basement thinning and basin formation in the Proto-Andean back-arc. Tectonophysics 477:278–291

    Article  Google Scholar 

  • Büttner SH, Glodny J, Lucassen F, Wemmer K, Erdmann S, Handler R, Franz G (2005) Ordovician metamorphism and plutonism in the Sierra de Quilmes metamorphic array: Implications for the tectonic setting of the northern Sierras Pampeanas (NW Argentina). Lithos 83:143–181

    Article  Google Scholar 

  • Cardona A, Cordani UG, Ruiz J, Valencia VA, Armstrong R, Chew D, Nutman A, Sanchez AW (2009) U-Pb zircon geochronology and Nd isotopic signatures of the pre-Mesozoic metamorphic basement of the eastern Peruvian Andes: growth and provenance of a Late Neoproterozoic to Carboniferous accretionary orogen on the northwest margin of Gondwana. J Geol 117:285–305

    Article  Google Scholar 

  • Casquet C, Rapela CW, Pankhurst RJ, Galindo C, Dahlquist J, Baldo EG, Saavedra J, González Casado JM, Fanning CM (2004) Grenvillian massif-type anorthosites in the Sierras Pampeanas. J Geol Soc Lond 162:9–12

    Article  Google Scholar 

  • Casquet C, Pankhurst RJ, Fanning CM, Baldo E, Galindo C, Rapela CW, González-Casado JM, Dahlquist JA (2006) U–Pb SHRIMP zircon dating of Grenvillian metamorphism in Western Sierras Pampeanas (Argentina): correlation with the Arequipa Antofalla craton and constraints on the extent of the Precordillera Terrane. Gondwana Res 9:524–529

    Article  Google Scholar 

  • Casquet C, Pankhurst RJ, Rapela CW, Galindo C, Fanning CM, Chiaradia M, Baldo E, González-Casado JM, Dahlquist J (2008) The Mesoproterozoic Maz terrane in the Western Sierras Pampeanas, Argentina, equivalent to the Arequipa–Antofalla block of southern Peru? Implications for West Gondwana margin evolution. Gondwana Res 13:163–175

    Article  Google Scholar 

  • Casquet C, Fanning CM, Galindo C, Pankhurst RJ, Rapela C, Torres P (2010) The Arequipa massif of Peru: new SHRIMP and isotope constraints on a Paleoproterozoic inlier in the Grenvillian orogen. J S Am Earth Sci 29:128–142

    Article  Google Scholar 

  • Cawood PA, Buchan C (2007) Linking accretionary orogenesis with supercontinent assembly. Earth Sci Rev 82:217–256

    Article  Google Scholar 

  • Chew DM, Kosler J, Whitehouse MJ, Gutjahr M, Spikings RA, Miskovic A (2007) UPb geochronologic evidence for the evolution of the Gondwanan margin of the north-central Andes. Geol Soc Am Bull 119:697–711

    Article  Google Scholar 

  • Chew D, Schaltegger U, Kosler J, Magna T, Whitehouse MJ, Kirkland C, Miskovic A, Cardona A, Spikings RA (2008) U–Pb geochronologic evidence for the Neoproterozoic—Palaeozoic evolution of the Gondwanan margin of the North-Central Andes. In: 27th International Symposium on Andean Geodynamics (Nice), Extended Abstracts, pp 120–123

  • Coira B, Davidson J, Mpodozis C, Ramos V (1982) Tectonic and magmatic evolution of the Andes of northern Argentina and Chile. Earth Sci Rev 18:303–332

    Article  Google Scholar 

  • Coira B, Kirschbaum A, Hongn F, Pérez B, Menegatti N (2009) Basic magmatism in northeastern Puna, Argentina: chemical composition and tectonic setting in the Ordovician back-arc. J S Am Earth Sci 28:374–382

    Article  Google Scholar 

  • Collo G, Astini RA, Cawood PA, Buchan C, Pimentel M (2009) U–Pb detrital zircon ages and Sm–Nd isotopic features in low-grade metasedimentary rocks of the Famatina belt: implications for late Neoproterozoic–early Palaeozoic evolution of the proto-Andean margin of Gondwana. J Geol Soc 166:303–319

    Article  Google Scholar 

  • Comin-Chiaramonti P, Lucassen F, Girardi VAV, De Min A, Gomes CB (2010) Lavas and their mantle xenoliths from intracratonic Eastern Paraguay (South America Platform) and Andean Domain, NW-Argentina: a comparative review. Miner Petrol (in press). doi: 10.1007/s00710-009-0061-6

  • Cordani UG, D’Agrella-Filho MS, Brito-Neves BB, Trindade RIF (2003) Tearing up Rodinia: the Neoproterozoic palaeogeography of South American cratonic fragments. Terra Nova 15:350–359

    Article  Google Scholar 

  • Cordani UG, Teixeira W, D’Agrella-Filho MS, Trindade RIF (2009) The position of the Amazonian Craton in supercontinents. Gondwana Res 15:396–407

    Article  Google Scholar 

  • Damm KW, Pichowiak S, Harmon RS, Todt W, Kelley S, Omarini R, Niemeyer H (1990) Pre-Mesozoic evolution of the central Andes; the basement revisited. Geol Soc Am Special Pap 241:101–126

    Google Scholar 

  • Damm KW, Harmon RS, Kelley S (1994) Some isotope and geochemical constraints on the origin and evolution of the Central Andean basement (19°–24°S). In: Reutter KJ, Scheuber E, Wigger PJ (eds) Tectonics of the Southern Central Andes. Springer, Heidelberg, pp 263–275

    Google Scholar 

  • Delpino SH, Bjerg EA, Ferracutti GR, Mogessie A (2007) Counterclockwise tectonometamorphic evolution of the Pringles metamorphic complex, Sierras Pampeanas of San Luis (Argentina). J S Earth Am Sci 23:147–175

    Article  Google Scholar 

  • Drobe M, López de Luchi MG, Steenken A, Frei R, Naumann R, Siegesmund S, Wemmer K (2009) Provenance of the late Proterozoic to early Cambrian metaclastic sediments of the Sierra de San Luis (Eastern Sierras Pampeanas) and Cordillera Oriental, Argentina. J S Am Earth Sci 28:239–262

    Article  Google Scholar 

  • Egenhoff SO, Lucassen F (2003) Chemical and isotopic composition of lower to upper Ordovician sedimentary rocks (Central Andes/South Bolivia): implications for their source. J Geol 111:487–497

    Article  Google Scholar 

  • Finney SC, Peralta SH, Gehrels GE, Marsaglia K (2005) The Early Paleozoic history of the Cuyania (greater Precordillera) terrane of western Argentina: evidence from geochronology of detrital zircons from Middle Cambrian sandstones. Geol Acta 3:339–354

    Google Scholar 

  • Fowler CMR (1990) The solid Earth. Cambridge University Press, Cambridge, pp 1–472

    Google Scholar 

  • Franz G, Lucassen F, Kramer W, Trumbull RB, Romer RL, Wilke H-G, Viramonte JG, Becchio R, Siebel W (2006) Crustal evolution at the Central Andean continental margin: a geochemical record of crustal growth, recycling and destruction. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes: active subduction orogeny. Frontiers in earth sciences, vol 1. Springer, Heidelberg, pp 45–64

    Google Scholar 

  • Ghent ED, Stout MZ (1981) Geobarometry and geothermometry of plagioclase-biotite-muscovite assemblages. Contrib Mineral Petrol 76:92–97

    Article  Google Scholar 

  • Goldstein SL, ONions RK, Hamilton PJ (1984) A Sm–Nd study of atmospheric dust and particulates from major river systems. Earth Planet Sci Lett 70:221–236

    Article  Google Scholar 

  • Graham CM, Powell R (1984) A garnet-hornblende geothermometer: calibration, testing and application to the Pelona Schist, Southern California. J Met Geol 2:13–31

    Article  Google Scholar 

  • Grissom GC, Debari SM, Page SE, Page RE, Villar LM, Coleman RG, de Ramirez MV (1991) The deep crust of an early Paleozoic arc; The Sierra de Fiambala, northwestern Argentina. In: Harmon RS, Rapela CW (eds) Andean magmatism and its tectonic setting. Geol Soc Am Spec Pap 265:189–200

  • Grissom GC, DeBari SM, Snee LW (1998) Geology of the Sierra Fiambalá, northwestern Argentina: implications for Early Palaeozoic Andean tectonics. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean Margin of Gondwana. Geol Soc London Spec Pub 142:297–332

  • Hauzenberger ChA, Mogessie A, Hoinkes G, Felfernig A, Bjerg EA, Kostadinoff J, Delpino SY, Dimieri L (2001) Metamorphic evolution of the Sierras de San Luis: granulite facies metamorphism related to mafic intrusions. Mineral Petrol 71:95–126

    Article  Google Scholar 

  • Holdaway M, Mukhopadhyay B, Dyar M, Guidotti C, Dutrow B (1997) Garnet-biotite geothermometry revised: new Margules parameters and a natural specimen data set from Maine. Am Mineral 82:582–595

    Google Scholar 

  • Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116:433–447

    Article  Google Scholar 

  • Johannes W, Holtz F (1996) Petrogenesis and experimental petrology of granitic rocks. Springer, Berlin, pp 1–335

    Google Scholar 

  • Kleemann U, Reinhardt J (1994) Garnet-biotite thermometry revisited: the effect of Alvi and Ti in biotite. Eur J Mineral 6:925–941

    Google Scholar 

  • Kleine T, Mezger K, Zimmermann U, Münker C, Bahlburg H (2004) Crustal evolution of the early Ordovician Proto-Andean margin of Gondwana: trace element and isotope evidence from Complejo Igneo Pocitos (Northwest Argentina). J Geol 112:503–520

    Article  Google Scholar 

  • Kohn MJ, Spear FS (1990) Two new geobarometers for garnet amphibolites, with applications to southeastern Vermont. Am Mineral 75:89–96

    Google Scholar 

  • Kraemer B, Adelmann D, Alten M, Schnurr W, Erpenstein K, Kiefer E, van den Bogaared P, Goerler K (1999) Incorporation of the Paleogene foreland into the Neogene Puna plateau: the Salar de Antofalla area, NW Argentina. J S Am Earth Sci 12:157–182

    Article  Google Scholar 

  • Lindsley DH (1983) Pyroxene thermometry. Am Mineral 68:477–493

    Google Scholar 

  • Loewy SL, Connelly JN, Dalziel IWD (2004) An orphaned basement block: the Arequipa-Antofalla basement of the central Andean margin of South America. Geol Soc Am Bull 116:171–187

    Article  Google Scholar 

  • Lucassen F, Becchio R (2003) Timing of high-grade metamorphism: early Paleozoic U-Pb formation ages of titanite indicate longstanding high-T conditions at the western margin of Gondwana (Argentina, 26–29°S). J Metamorphic Geol 21:649–662

    Article  Google Scholar 

  • Lucassen F, Franz G, Thirlwall MF, Mezger K (1999a) Crustal recycling of metamorphic basement: late Paleozoic granites of the Chilean coast range and Precordillera at 22°S. J Petrol 40:1527–1551

    Article  Google Scholar 

  • Lucassen F, Franz G, Laber A (1999b) Permian high pressure rocks—the basement of Sierra de Limón Verde in N-Chile. J S Am Earth Sci 12:183–199

    Article  Google Scholar 

  • Lucassen F, Becchio R, Wilke HG, Thirlwall MF, Viramonte J, Franz G, Wemmer K (2000) Proterozoic–Paleozoic development of the basement of the Central Andes (18°–26°)—a mobile belt of the South American craton. J S Am Earth Sci 13:697–715

    Article  Google Scholar 

  • Lucassen F, Becchio R, Harmon R, Kasemann S, Franz G, Trumbull R, Wilke HG, Romer RL, Dulski P (2001) Composition and density model of the continental crust at an active continental margin—the Central Andes between 21° and 27°S. Tectonophysics 341:195–223

    Article  Google Scholar 

  • Lucassen F, Harmon R, Franz G, Romer RL, Becchio R, Siebel W (2002) Lead evolution of the Pre-mesozoic crust in the Central Andes (18°–27°): progressive homogenisation of Pb. Chem Geol 186:183–197

    Article  Google Scholar 

  • Lucassen F, Kramer W, Bartsch V, Wilke H-G, Franz G, Romer RL, Dulski P (2006) Nd, Pb, and Sr isotope composition of juvenile magmatism in the mesozoic large magmatic province of northern Chile (18–27°S): indications for a uniform subarc mantle. Contrib Mineral Petrol 152:571–589

    Article  Google Scholar 

  • Lucassen F, Franz G, Romer RL, Schultz F, Dulski P, Wemmer K (2007) Pre-cenozoic intra-plate magmatism along the Central Andes (17–34°S): composition of the mantle at an active margin. Lithos 99:312–338

    Article  Google Scholar 

  • Maksaev V (1990) Metallogeny, geological evolution, and thermochronology of the Chilean Andes between latitudes 21° and 26° south, and the origin of the major porphyry copper deposits. Unpublished PhD thesis, Dalhouse University, Halifax, Nova Scotia, Canada, 555 pp

  • Mamani M, Tassara A, Wörner G (2008) Composition and structural control of crustal domains in the central Andes. Geochem Geophys Geosyst 9. doi:10.1029/2007GC001925

  • Martin-Gombojav N, Winkler W (2008) Recycling of Proterozoic crust in the Andean Amazon foreland of Ecuador: implications for orogenic development of the Northern Andes. Terra Nova 20:22–31

    Article  Google Scholar 

  • Massonne HJ, Schreyer W (1987) Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contrib Mineral Petrol 96:212–224

    Article  Google Scholar 

  • Miller H, Toselli AJ, Rossi de Toselli J, Aceñolaza FG (1994) Regional and geochronological development of the metamorphic basement in Northwest Argentina. Zentralblatt Geologie Paläontologie Teil1 (Heft 1/2):263–273

  • O’Brien PJ, Carswell DA (1993) Tectonometamorphic evolution of the Bohemian massif: evidence from high pressure metamorphic rocks. Geologische Rdsch 82:531–555

    Article  Google Scholar 

  • Otamendi JE, Tibaldi AM, Vujovich GI, Viñao GA (2008) Metamorphic evolution of migmatites from the deep Famatinian arc crust exposed in Sierras Valle Fértil–La Huerta, San Juan, Argentina. J S Am Earth Sci 25:313–335

    Article  Google Scholar 

  • Palma M, Parica P, Ramos V (1986) El granito de Archibarca: su edad y significado tectónico, provincia de Catamarca. Rev Asoc Geol Argent 41:414–419

    Google Scholar 

  • Palme H, O’Neill HStC (2004) Cosmochemical estimates of Mantle Composition. In: Holland HD, Turrekian KK (eds) Treatise on geochemistry 2, pp 1–38. Elsevier, Amsterdam, The Netherlands

  • Pankhurst RJ, Rapela CW (1998) The Proto-Andean margin of Gondwana. Geol Soc Lond Spec Pub 142:383 pp

    Google Scholar 

  • Pankhurst RJ, Rapela CW, Saavedra J, Baldo E, Dahlquist J, Pascua I, Fanning CM (1998) The Famatinian magmatic arc in the southern Sierras Pampeanas. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean Margin of Gondwana. Geol Soc Lond Spec Pub 142:343–367

  • Pankhurst RJ, Rapela CW, Fanning CM (2000) Age and origin of coeval TTG, I- and S-type granites in the Famatinian Belt of the NW Argentina. In: Barbarin B, Stephens WE, Bonin B, Bouchez JL, Clarke D, Cuney M, Martin H (eds) Fourth Hutton symposium on the origin of granites and related rocks. Trans Royal Soc Edinburgh Earth Sci 91:151–168

  • Pankhurst RJ, Rapela CW, Fanning CM, Márquez M (2006) Gondwanide continental collision and the origin of Patagonia. Earth Sci Rev 76:235–257

    Article  Google Scholar 

  • Porcher CC, Fernandes LAD, Vujovich GI, Chernicoff CJ (2004) Thermobarometry, Sm/Nd ages and geophysical evidence for the location of the suture zone between Cuyania and the western Proto-Andean margin of Gondwana. Gondwana Res 7:1057–1076

    Article  Google Scholar 

  • Ramos VA (2000) The Southern Central Andes. In: Cordani UG, Milani EJ, Thomaz-Filho A, Campos DA (eds) Tectonic evolution of South America: Rio de Janeiro, 31st International Geological Congress, 561–604

  • Ramos VA (2008) The basement of the Central Andes: the Arequipa and related terranes. Annu Rev Earth Planet Sci 36:289–324

    Article  Google Scholar 

  • Ramos VA, Jordan TE, Allmendinger RW, Mpodozis C, Kay SM, Cortés JM, Palma MA (1986) Palaeozoic terranes of the central Argentine Chilean Andes. Tectonics 5:855–880

    Article  Google Scholar 

  • Rapela CW, Pankhurst RJ, Casquet C, Baldo E, Saavedra J, Galindo C, Fanning CM (1998) The Pampean Orogeny of the southern proto-Andes: evidence for Cambrian continental collision in the Sierras de Córdoba. In: Pankhurst RJ, Rapela CW (eds) The Proto Andean margin of Gondwana. Geol Soc Lond Spec Pub 142:181–217

  • Rapela CW, Pankhurst RJ, Casquet C, Baldo E, Galindo C, Fanning CM, Dahlquist JM (2010) The Western Sierras Pampeanas: protracted Grenville-age history (1330–1030 Ma) of intra-oceanic arcs, subduction-accretion at continental edge and AMCG intraplate magmatism. J S Am Earth Sci 29:105–127

    Article  Google Scholar 

  • Rino S, Komiy T, Windley BF, Katayama I, Motoki A, Hirata T (2004) Major episodic increases of continental crustal growth determined from zircon age of river sands: implications for mantle overturns in the early Precambrian. Phys Earth Planet Ints 146:369–394

    Article  Google Scholar 

  • Romer RL (2001) Lead incorporation during crystal growth and the misinterpretation of geochronological data from low-238U/204Pb metamorphic minerals. Terra Nova 13:258–263

    Article  Google Scholar 

  • Romer RL, Rötzler J (2001) P–T–t evolution of ultrahigh-temperature granulites from the Saxon Granulite Massif, Germany. Part II: geochronology. J Petrol 42:2015–2032

    Article  Google Scholar 

  • Romer RL, Rötzler J (2005) Effect of metamorphic reaction history on the U–Pb dating of titanite. Geol Soc Lond Spec Pub 220: 147–158

    Google Scholar 

  • Sato K, Siga O Jr (2002) Rapid growth of continental crust between 2.2 and 1.1 Ga in the South American Platform: integrated Australian, European, North American and SW USA crustal evolution study. Gondwana Res 5:165–173

    Article  Google Scholar 

  • Scheuber E, González G (1999) Tectonics of the Jurassic Early Cretaceous magmatic arc of the north Chilean Coastal Cordillera (22°–26°S): a story of crustal deformation along a convergent plate boundary. Tectonics 18:895–910

    Article  Google Scholar 

  • Scheuber E, Reutter K-J (1992) Magmatic arc tectonics in the Central Andes between 21° and 25°S. Tectonophysics 205:127–140

    Article  Google Scholar 

  • Schwartz J, Gromet P (2004) Provenance of a late Proterozoic to early Cambrian basin, Sierras de Córdoba, Argentina. Precambrian Res 129:1–21

    Article  Google Scholar 

  • Schwartz J, Gromet P, Miro R (2008) Timing and duration of the calc-alkaline arc of the Pampean orogeny: implications for the late Neoproterozoic to Cambrian evolution of western Gondwana. J Geol 116:39–61

    Article  Google Scholar 

  • SEGEMAR (Servicio Geologico y Minero Argentino) (1997) Mapa geológico de la República Argentina, scale 1: 250000. Secretaria de Industria Comercio y Mineria de Argentina, Buenos Aires

    Google Scholar 

  • Sempere T, Carlier G, Soler P, Fornari M, Carlotto V, Jacay J, Arispe O, Néraudeau D, Cárdenas J, Rosas S, Jiménez N (2002) Late Permian–Middle Jurassic lithospheric thinning in Peru and Bolivia, and its bearing on Andean-age tectonics. Tectonophysics 45:153–181

    Article  Google Scholar 

  • Sengupta P, Dasgupta S, Bhattacharya PK, Hariya Y (1989) Mixing behavior in quaternary garnet solid solution and an extended Ellis and Green garnet-clinopyroxene geothermometer. Contrib Mineral Petrol 103:223–227

    Article  Google Scholar 

  • Siegesmund S, Steenken A, Martino RD, Wemmer K, López de Luchi MG, Frei R, Presnyakov S, Guereschi A (2010) Time constraints on the tectonic evolution of the Eastern Sierras Pampeanas (Central Argentina). Int J Earth Sci (Geol Rundsch). doi:10.1007/s00531-009-0471-z

  • Sims JP, Ireland TR, Camacho A (1998) U–Pb, Th–Pb and Ar–Ar geochronology from the southern Sierras Pampeanas, Argentina: implications for the Palaeozoic tectonic evolution of the western Gondwana margin. In: Pankhurst RJ, Rapela CW (eds) The Proto Andean margin of Gondwana. Geol Soc Lond Spec Pub 142:259–282

  • Spalla MI, Lardeaux JM, Dal Piaz JV, Gosso G, Messiga B (1996) Tectonic significance of Alpine eclogites. J Geodynamics 21:257–285

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Steenken A, Siegesmund S, López de Luchi MG, Frei R, Wemmer K (2006) Neoproterozoic to Early Palaeozoic events in the Sierra de San Luis: implications for the Famatinian geodynamics in the Eastern Sierras Pampeanas (Argentina). J Geol Soc 163:965–982

    Article  Google Scholar 

  • Steenken A, Siegesmund S, Wemmer K, López de Luchi MG (2008) Time constraints on the Famatinian and Achalian structural evolution of the basement of the Sierra de San Luis (Eastern Sierras Pampeanas, Argentina). J S Am Earth Sci 25:336–358

    Article  Google Scholar 

  • Tankard AJ, Suárez Soruco R, Welsink HJ (1995) Petroleum basins of South America. AAPG Memoir 62:792

    Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  • Tilton GR, Barreiro BA (1980) Origin of lead in Andean calcalkaline lavas, southern Peru. Science 210:1245–1247

    Article  Google Scholar 

  • Tosdal RM (1996) The Amazon–Laurentian connection as viewed from the middle Proterozoic rocks in the central Andes, western Peru and northern Chile. Tectonics 15:827–842

    Article  Google Scholar 

  • Varela R, Sato AM, Basei MAS, Siga O Jr (2003) Proterozoico medio y Paleozoico inferior de la sierra de Umango, antepaís andino (29°S), Argentina: edades U-Pb y caracterizaciones isotópicas. Revista Geológica de Chile 30:265–284

    Article  Google Scholar 

  • Viramonte JM, Becchio R, Viramonte JG, Pimentel MM, Martino R (2007) Ordovician igneous and metamorphic units in southeastern Puna: new U–Pb and Sm–Nd data and implications for the evolution of northwestern Argentina. J S Am Earth Sci 24:167–183

    Article  Google Scholar 

  • Wasteneys HA, Clark AH, Farrar E, Langridge RJ (1995) Grenvillian granulite-facies metamorphism in the Arequipa Massif, Peru; a Laurentia-Gondwana link. Earth Planet Sci Let 132:63–73

    Article  Google Scholar 

  • Willner AP, Gerdes A, Massonne H-J (2008) History of crustal growth and recycling at the Pacific convergent margin of South America at latitudes 29°-36°S revealed by a U-Pb and Lu-Hf isotope study of detrital zircon from late Paleozoic accretionary systems. Chem Geol 253:114–129

    Article  Google Scholar 

  • Wörner G, Lezaun J, Beck A, Heber V, Lucassen F, Zinngrebe E, Rößling R, Wilke HG (2000) Geochronology, metamorphic petrology and geochemistry of basement rocks from Belén (N. Chile) and C. Uyarani (W. Bolivian Altiplano): Implications for the evolution of Andean basement. J S Am Earth Sci 13:717–737

    Article  Google Scholar 

  • Zimmermann U, Bahlburg H (2003) Provenance analysis and tectonic setting of the Ordovician clastic deposits in the southern Puna Basin, NW Argentina. Sedimentology 50:1079–1104

    Article  Google Scholar 

  • Zimmermann U, Niemeyer H, Meffre S (2010) Revealing the continental margin of Gondwana: the Ordovician arc of the Cordón de Lila (northern Chile). Int J Earth Sci (Geol Rundsch). doi:10.1007/s00531-009-0483-8

Download references

Acknowledgments

We thank F. Galbert (TU-Berlin), O. Appelt and D. Rhede (Deutsches GeoForschungsZentrum) for help with the electron microprobes; M. Lewerenz (TU-Berlin) for the XRF analyses; P. Dulski and B. Zander for ICP- MS analyses and C. Schulz for help with the sample preparation for TIMS (all at Deutsches GeoForschungsZentrum); R. L. Romer for providing advice during the U–Pb data acquisition and critical reading of the manuscript. Reviews of C. Augustsson and V. Ramos improved the manuscript. The study was funded by the German Research foundation (DFG) in the frame of SFB 267 “Deformation Processes in the Andes”, a DAAD travel grant to F. L., a DAAD grant and CONICET PIP 6103 to R. B., who also thanks FONCYT–PICT 07-38131 and CIUNSa for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Lucassen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucassen, F., Becchio, R. & Franz, G. The Early Palaeozoic high-grade metamorphism at the active continental margin of West Gondwana in the Andes (NW Argentina/N Chile). Int J Earth Sci (Geol Rundsch) 100, 445–463 (2011). https://doi.org/10.1007/s00531-010-0585-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-010-0585-3

Keywords

Navigation