Advertisement

International Journal of Earth Sciences

, Volume 100, Issue 2–3, pp 489–510 | Cite as

Neoproterozoic to Lower Palaeozoic successions of the Tandilia System in Argentina: implication for the palaeotectonic framework of southwest Gondwana

  • Udo Zimmermann
  • Daniel G. Poiré
  • Lucía Gómez Peral
Original Paper

Abstract

The Cryogenian to Uppermost Ediacaran successions of the Tandilia System (Sierras Bayas Group and Cerro Negro Formation) in central-eastern Argentina is exceptional because of its unmetamorphosed and nearly undeformed character, its sediment provenance trend and the absence of any identified glacial deposit and the deposition of warm water carbonates. We decipher a dramatic change in the basin evolution from small-scale depositional areas during the Neoproterozoic to a larger basin related to an active continental margin throughout the Uppermost Ediacaran. The base of the succession is represented by immature detritus of alkaline composition (Villa Mónica Formation), but towards the top of this formation, the material is sorted and reworked, nonetheless still reflecting in its detritus the local rocks. The clastic deposition is interrupted by diagenetic overprinted dolomites. The unconformable overlying quartz-arenitic Ediacaran Cerro Largo Formation reworked the Cryogenian Villa Mónica Formation and contains mainly felsic granitic and metamorphic basement material of slightly wider variety, while the dominant alkaline geochemical signature in rocks of the Villa Mónica Formation disappears. Based on diagenetic, petrographic and sedimentological data, we can interpret the unconformity representing a longer time of erosion. The Cerro Largo Formation shows a transition to mudstones and the heterolithic facies of the Olavarría Formation. The top of the Sierras Bayas Group is represented by limestones (Loma Negra Formation), which are discordantly overlain by the Uppermost Ediacaran Cerro Negro Formation. The latter displays detrital material derived from a continental arc, mafic and felsic sources. Several arc-related geochemical proxies (Th/Sc < 0.8; Zr/Sc < 10; La/Sc < 2; Ti/Zr > 20) are recorded in the sediment detritus, as are syn-depositional pyroclastites. The absence of volcanic material in the underlying rocks allows proposing that the Cerro Negro Formation is related to an active continental margin fringing Gondwana (“Terra Australis Orogen”) as a retro-arc or retro-arc foreland basin.

Keywords

Neoproterozoic Lower Palaeozoic SW Gondwana Provenance study Eastern Argentina Active continental margin 

Notes

Acknowledgments

Fieldwork was supported by funds of the CONICET and Cemento Avellaneda S.A. wherefore DGP and LPG are thankful. XRF analyses were executed at the University of Johannesburg. Statoil and Marathon Norge supported other analytical work. We are grateful to S. Siegesmund and M.A.S. Basei to be invited to this special volume. We thank V.A. Janasi and an anonymous reviewer for their very helpful and thoughtful comments, which improved the manuscript.

Supplementary material

531_2010_584_MOESM1_ESM.xls (112 kb)
Complete geochemical data for rocks of the Sierras Bayas Group and the Cerro Negro Formation. [c-are = coarse grained arenite; sh = shale; qa = quartz-arenite; are = arenite; marl = marl; si = siltstone; normalisation and Ce* and Eu* values after Taylor and McLennan (1985) and McLennan et al. (1990, 1993); in grey and cursive samples excluded from CIA interpretations because they do not match the preconditions after Nesbitt and Young (1982)](XLS 111 kb)

References

  1. Andersen T (2005) Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chem Geol 216:249–270CrossRefGoogle Scholar
  2. Andreis RR, Zalba PE, Iñiguez Rodríguez AM (1992) Paleosuperficies y Sistemas Depositacionales en el Proterozoico Superior de Sierras Bayas, Sierras Septentrionales, Pcia. Buenos Aires, Argentina. In: IV Reunión Argentina de Sedimentología, La Plata, Argentina, Proceedings, vol 1, pp 283–290Google Scholar
  3. Bahlburg H (1998) The geochemistry and provenance of Ordovician turbidites in the Argentinian Puna. In: Pankhurst RJ, Rapela CW (eds) The Proto-andean margin of gondwana. Geol Soc London Spec Publ 142:127–142Google Scholar
  4. Barrio CA, Poiré DG, Iñiguez MA (1991) El contacto entre la Formación Loma Negra (Grupo Sierras Bayas) y la Formación Cerro Negro, un ejemplo de palaeokarst, Olavarría, provincia de Buenos Aires. Revista de la Asociación Geológica Argentina 46:69–76Google Scholar
  5. Basei MAS, Siga O Jr, Masquelin H, Harara OM, Reis Neto JM, Preciozzi Porta F (2000) The Dom Feliciano Belt and the Rio de la Plata Craton: tectonic evolution and correlation with similar provinces of southwestern Africa. In: Cordani UG, Milani EJ, Thomas Filho A, Campos DA (eds) Tectonic evolution of South America. 31st Intern Geol Congress, Rio de Janeiro, pp 311–334Google Scholar
  6. Basei MAS, Frimmel HE, Nutman AP, Preciozzi F, Jacob J (2005) A connection between the Neoproterozoic Dom Feliciano (Brazil/Uruguay) and Gariep (Namibia/South Africa) orogenic belts—evidence from a reconnaissance provenance study. Prec Res 139:195–221CrossRefGoogle Scholar
  7. Basei MAS, Frimmel HE, Nutman AP, Preciozzi F (2008) West Gondwana amalgamation based on detrital zircon ages from Neoproterozoic Ribeira and Dom Feliciano belts of South America and comparison with coeval sequences from SW Africa. Geol Soc London Spec Publ 294:239–254CrossRefGoogle Scholar
  8. Bertolino SRL, Zimmermann U, Sattler F (2007) Mineralogy and geochemistry of bottom sediments from water reservoirs in the vicinity of Córdoba, Argentina: environmental and health constraints. Appl Clay Sci 36:206–220CrossRefGoogle Scholar
  9. Bhatia MR, Crook KAW (1986) Trace elements characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol 92:181–193CrossRefGoogle Scholar
  10. Blanco G, Rajesh HM, Gaucher C, Germs GJB, Chemale F Jr (2009) Provenance of the Arroyo del Soldado Group (Ediacaran to Cambrian, Uruguay): implications for the palaeogeographic evolution of southwestern Gondwana. Prec Res 171:57–73CrossRefGoogle Scholar
  11. Cawood PA (2005) Terra Australis Orogen: rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Palaeozoic. Earth Sci Rev 69:249–279CrossRefGoogle Scholar
  12. Celesia N, Rapalini AE, Geuna SE, Singer SE (2008) Modelado magnetométrico del intrusivo básico de la Sierra de los Barrientos, Provincia de Buenos Aires. XVII Congreso Geológico Argentino, Actas 3:1075–1076Google Scholar
  13. Chew DM, Magna T, Kirkland CL, Miskovic A, Cardona A, Spikings R, Schaltegger U (2008) Detrital zircon fingerprint of the Proto-Andes: evidence for a Neoproterozoic active margin? Precam Res 167:186–200CrossRefGoogle Scholar
  14. Cingolani C, Bonhomme MG (1982) Geochronology of La Tinta Upper Proterozoic sedimentary rocks, Argentine. Precam Res 18:119–132CrossRefGoogle Scholar
  15. Cingolani C, Rauscher R, Bonhomme MG (1991) Grupo La Tinta (Precámbrico y Palaeozoico inferior) Provincia de Buenos Aires, República Argentina: Nuevos Datos Geocronológicos y Micropalaeontológicos en las Sedimentitas de Villa Cacique, Partido de Juárez. Revista YPFB, Bolivia 12:177–191Google Scholar
  16. Cingolani CA, Hartmann LA, Santos JOS, McNaughton NJ (2002) U–Pb SHRIMP dating of zircons from the Buenos Aires Complex of the Tandilia belt, Rio de la Plata craton, Argentina. In: XV Congreso Geológico Argentino, El Calafate, Actas, CD-ROMGoogle Scholar
  17. Dobrzinski N, Bahlburg H, Strauss H, Zhang Q (2004) Geochemical climate proxies applied to the Neoproterozoic glacial succession on the Yangtze Platform, South China. In: Jenkins G, McMenamin M, Sohl L, McKay C (eds) The extreme Proterozoic: geology, geochemistry and climate. Am Geophys Union Monograph Ser 146:13–32Google Scholar
  18. Dristas JA, Frisicale MC (1984) Estudio de los yacimientos de arcilla del Cerro Reconquista, San Manuel, Sierras Septentrionales de la provincia de Buenos Aires. IX Congreso Geológico Argentino, San Carlos de Bariloche V:507–521Google Scholar
  19. Dristas JA, Frisicale MC (1996) Geochemistry of an altered pyroclastic suite interbedded in the sedimentary cover of the Tandilia Area, Buenos Aires Province, Argentina. Zentr Geol Pal I:659–675Google Scholar
  20. Drobe M, López de Luchi M, Steenken A, Wemmer K, Naumann R, Frei R, Siegesmund S (2010) Geodynamic evolution of the Eastern Sierras Pampeanas based on eochemical, Sm-Nd, Pb-Pb and SHRIMP data; this volumeGoogle Scholar
  21. Fedo CM, Nesbitt HW, Young GM (1995) Unravelling the effects of potassium metasomatism in sedimentary rocks and palaeosoils, with implications for palaeoweathering conditions and provenance. Geology 23:921–924CrossRefGoogle Scholar
  22. Floyd PA, Leveridge BE (1987) Tectonic environment of the Devonian Gramscatho basin, south Cornwell: framework mode and geochemical evidence from turbidite sandstones. J Geol Soc London 144:531–542CrossRefGoogle Scholar
  23. Fourie PH (2010) Provenance and palaeotectonic setting of the Devonian Bokkeveld Group, Cape Supergroup, South Africa; MSc thesis, University of Johannesburg, 148pGoogle Scholar
  24. Fralick P (2003) Geochemistry of clastic sedimentary rocks: ratio techniques. In: Lentz DR (ed) Geochemistry of sediments and sedimentary rocks: evolutionary considerations to mineral-deposit-forming environments. Geol Assoc Can GEOText 4:85–104Google Scholar
  25. Frimmel HE, Fölling PG (2004) Late vendian closure of the adamastor ocean: timing of tectonic inversion and syn-orogenic sedimentation in the Gariep Basin. Gondwana Res 7:685–699CrossRefGoogle Scholar
  26. Frimmel HE, Klötzli U, Siegfried P (1996) New Pb-Pb single zircon age constraints on the timing of the Neoproterozoic glaciation and continental break-up in Namibia. J Geol 104:459–469CrossRefGoogle Scholar
  27. Frisicale MC, Dristas JA (2000) Génesis de los niveles arcillosos de la Sierra de La Tinta, Tandilia. Revista de la Asociación Geológica Argentina 55:3–14Google Scholar
  28. Gaucher C, Poiré DG (2009a) Biostratigraphy. Neoproterozoic-Cambrian evolution of the Río de la Plata Palaeocontinent. In: Gaucher C, Sial AN, Halverson GP, Frimmel HE (eds) Neoproterozoic-Cambrian tectonics, global change and evolution: a focus on southwestern Gondwana. Dev Precambrian Geol 16:103–114Google Scholar
  29. Gaucher C, Poiré DG (2009b) Palaeoclimatic events. Neoproterozoic-Cambrian evolution of the Río de la Plata Palaeocontinent. In: Gaucher C, Sial AN, Halverson GP, Frimmel HE (eds) Neoproterozoic-Cambrian tectonics, global change and evolution: a focus on southwestern Gondwana. Dev Precambrian Geol 16:123–130Google Scholar
  30. Gaucher C, Sprechmann P (2009) Neoproterozoic acritarch evolution. In: Gaucher C, Sial AN, Halverson GP, Frimmel HE (eds) Neoproterozoic-Cambrian tectonics, global change and evolution: a focus on southwestern Gondwana. Dev Precambrian Geol 16:319–326Google Scholar
  31. Gaucher C, Poiré DG, Gómez Peral L, Chiglino L (2005) Litoestratigrafía, bioestratigrafía y correlaciones de las sucesiones sedimentarias del Neoproterozoico-Cámbrico del Cratón del Río de La Plata (Uruguay y Argentina). Latin Am J Sedimentolgy Basin Analysis 12:145–160Google Scholar
  32. Gaucher C, Finney S, Poiré D, Valencia V, Grove M, Blanco G, Paoumukaghlian L, Peral L (2008) Detrital zircon ages of Neoproterozoic sedimentary successions in Uruguay and Argentina: insights into the geological evolution of the Río de la Plata Craton. Precam Res 167:150–170CrossRefGoogle Scholar
  33. Gómez Peral LE (2008) Petrología y Diagénesis de las unidades sedimentarias precámbricas de Olavarría, provincia de Buenos Aires. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata Tomo I: 327pp+tomo II: 292pp (PhD thesis)Google Scholar
  34. Gómez Peral LE, Poiré DG, Strauss H, Zimmermann U (2007) Chemostratigraphy and diagenetic constraints on Neoproterozoic carbonate successions from the Sierras Bayas Group, Tandilia System, Argentina. Chem Geol 237:127–146Google Scholar
  35. Gray RD, Foster DA, Goscombe B, Passchier C, Trouw AJ (2006) 40Ar/39Ar thermochronology of the Pan-African Damara Orogen, Namibia, with implications fortectonothermal and geodynamic evolution. Prec Res 150:49–72CrossRefGoogle Scholar
  36. Gregori DA, López VL, Grecco LE (2004) A Late Proterozoic-Early Palaeozoic magmatic cycle in Sierra de la Ventana, Argentina. J S Am Earth Sci 19:155–171CrossRefGoogle Scholar
  37. Gresse PG, von Veh MW, Frimmel HE (2006) Namibian (Neoproterozoic) to early cambrian sucessions. In: Johnson MR, Anhaeusser CR, Thomas RJ (eds) The Geology of South Africa, Council of Geoscience pp 395–420Google Scholar
  38. Grey K, Calvert CR (2007) Correlating the Ediacaran of Australia. Geol Soc London Spec Publ 286:115–135CrossRefGoogle Scholar
  39. Halverson GP, Wade BP, Hurtgen MT, Barovich KM (2010) Neoproterozoic chemostratigraphy. Precam Res (in press)Google Scholar
  40. Hofmann A (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust and oceanic crust. Earth Planet Sci Lett 90:297–314Google Scholar
  41. Hofmann A (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229Google Scholar
  42. Iñiguez Rodríguez AM (1999) La cobertura sedimentaria de Tandilia. In: Caminos R (ed) Geología Argentina. Subsecretaría de Miner5a de la Nación Servicio Geológico Minero Argentino Instituto de Geología y Recursos Minerales 29:101–106Google Scholar
  43. Kawashita K, Varela R, Cingolani C, Soliani E Jr, Linares E, Valencio SA, Ramos AV, Do Campo M (1999) Geochronology and chemostratigraphy of “La Tinta” Neoproterozoic sedimentary rocks, Buenos Aires Province, Argentina. II South Amer Symp on Isotope Geology, Brazil 1:403–407Google Scholar
  44. Lacassie JP, Herve F, Roser B (2006) Sedimentary provenance study of the post-Early Permian to pre-Early Cretaceous metasedimentary Duque de York Complex, Chile. Rev Geol Chile 33:199–219CrossRefGoogle Scholar
  45. McDaniel DK, Hemming SR, McLennan SM, Hanson GN (1994) Resetting of neodymium isotopes and redistribution of REEs during sedimentary processes: the Early Proterozoic Chelmsford Formation, Sudbury Basin, Ontario, Canada. Geoch Cosmochim Acta 58:931–941CrossRefGoogle Scholar
  46. McLennan SM, Taylor SR, McCulloch MT, Maynard JB (1990) Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochim Cosmochim Acta 54:2015–2205CrossRefGoogle Scholar
  47. McLennan SM, Hemming S, McDaniel DK, Hanson GN (1993) Geochemical approaches to sedimentation, provenance and tectonics. In: Johnsson MJ, Basu A (eds) Processes controlling the composition of clastic sediments. Geol Soc Am Spec Pap 284:21–40Google Scholar
  48. McLennan SM, Bock B, Hemming SR, Horrowitz JA, Lev SM, McDaniel DK (2003) The roles of provenance and sedimentary processes in the geochemistry of sedimentary rocks. In: Lentz RD (ed) Geochemistry of sediments and sedimentary rocks: evolutionary considerations to mineral-deposit-forming environments. Geol Assoc Canada, GEOText 4:7–38Google Scholar
  49. McLennan SM, Taylor SR, Hemming SR (2006) Composition, differentiation, and evolution of continental crust: constrains from sedimentary rocks and heat flow. In: Brown M, Rushmer T (eds) Evolution and differentiation of the continental crust. pp 92–134Google Scholar
  50. Milodowski AE, Zalasiewicz JA (1991) Redistribution of rare earth elements during diagenesis of turbidite/hemipelagite mudrock sequences of Llandovery age from Central Wales. In: Morton AC, Todd SP, Haughton PDW (eds) Developments in sedimentary Provenance Studies, Geol Soc Am Spec Pap 57:101–124Google Scholar
  51. Moore DM, Reynolds RC Jr (1989) X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, p 329ppGoogle Scholar
  52. Naidoo T (2008) Provenance of the neoproterozoic to early palaeozoic kango inlier, Oudtshoorn, South Africa. University of Johannesburg, MSc thesis; 261ppGoogle Scholar
  53. Naidoo T, Zimmermann U, Germs GJB (2006) Provenance of the Neoproterozoic to Early Palaeozoic sedimentary rocks of the Kango Inlier, Saldania Belt (South Africa). Abstract, 17th Int Sed Congress, Fukuoka, Japan, O-300Google Scholar
  54. Nance WB, Taylor SR (1976) Rare earth element patterns and crustal evolution—I. Australian Post-Archean sedimentary rocks. Geochim Cosmochim Acta 40:1539–1551CrossRefGoogle Scholar
  55. Nesbitt HW (2003) Petrogenesis of siliciclastic sediments and sedimentary rocks. In: Lentz DR (ed) Geochemistry of sediments and sedimentary rocks: evolutionary considerations to mineral-deposit-forming environments. Geol Assoc Canada GEOText 4:39–52Google Scholar
  56. Nesbitt HW, Young YM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717CrossRefGoogle Scholar
  57. Oyhantçabal P, Siegesmund S, Wemmer K, Presnyakov S, Layer P (2009) Geochronological constraints on the evolution of the southern Dom Feliciano Belt (Uruguay). J Geol Soc London 166:1075–1084CrossRefGoogle Scholar
  58. Pankhurst RJ, Ramos A, Linares E (2003) Antiquity of the Río de la Plata craton in Tandilia, southern Buenos Aires province, Argentina. J S Am Earth Sci 16:5–13CrossRefGoogle Scholar
  59. Pankhurst RJ, Rapela CW, Fanning CM, Márquez M (2006) Gondwanide continental collision and the origin of Patagonia. Earth Sci Rev 76:235–257CrossRefGoogle Scholar
  60. Pazos PJ, Bettucci LS, Loureiro J (2008) The Neoproterozoic glacial record in the Rı′o de la Plata Craton: a critical reappraisal. In: Pankhurst RJ, Trouw RAJ, Brito Neves BB, De Wit MJ (eds) West Gondwana: Pre-Cenozoic Correlations across the South Atlantic Region. Geol Soc, London, Special Publ 294:343–364Google Scholar
  61. Poiré DG (1987) Mineralogía y sedimentología de la Formación Sierras Bayas en el núcleo septentrional de las sierras homónimas, Partido de Olavarría, Provincia de Buenos Aires. PhD thesis, Universidad Nacional de La Plata, Argentina, 545ppGoogle Scholar
  62. Poiré DG (1989) Stromatolites of the Sierras Bayas Group, Upper Proterozoic of Olavarría, Sierras Septentrionales, Argentina. Stromatolite Newsl XI:58–61Google Scholar
  63. Poiré DG (1993) Estratigrafía del Precámbrico sedimentario de Olavaría, Sierras Bayas, Provincia de Buenos Aires, Argentina. XII Congreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos Acta II:1–11Google Scholar
  64. Poiré DG (2004) Sedimentary history of the Neoproterozoic of Olavarría, Tandilia System, Argentina: New evidence from their sedimentary sequences and unconformities—A “Snowball Earth” or a “Phantom” Glacial?; “1st Symposium on Neoproterozoic-Early Palaeozoic Events in SW-Gondwana”, Extended Abstracts, IGCP Project 478, Second Meeting, Brazil, October 2004, 46–48Google Scholar
  65. Poiré DG, Spalletti LA (2005) La cubierta sedimentaria precámbrica/palaeozoica inferior del Sistema de Tandilia. In: De Barrio RE, Etcheverry RO, Caballé MF, Llambías E (eds) Geología y Recursos Minerales de la provincial de Buenos Aires. Asociacion de Geología Argentina, La Plata, Relatorio del XVI Congreso Geológico Argentino 51–68Google Scholar
  66. Poiré DG, Spalletti LA, Del Valle A (2003) The Cambrian-Ordovician siliciclastic platform of the Balcarce Formation (Tandilia System, Argentina): Facies, trace fossils, Palaeoenvironments and sequence stratigraphy. Geologica Acta 1:41–60Google Scholar
  67. Poiré DG, Gómez Peral L, Bertolino S, Canalicchio JM (2005) Los Niveles con pirofilita de la Formación Villa Mónica, Precámbrico de Olavarría, Sistema de Tandilia, Argentina. XVI Congreso Geológico Argentino, Actas II:863–866Google Scholar
  68. Poiré DG, Gaucher C, Germs G (2007) La superficie “Barker” y su importancia regional, Neoproterozoico del Cratón del Río de La Plata, Actas Sextas Jornadas Geológicas y Geofísicas Bonaerenses 36Google Scholar
  69. Praekelt HE, Germs GJB, Kennedy JH (2008) A distinct unconformity in the Cango Caves Group of the Neoproterozoic to early Palaeozoic Saldania Belt in South Africa: its regional significance. S Afr J Geol 111:357–368CrossRefGoogle Scholar
  70. Rapalini AE, Poiré DG, Trindade R, Ficharte D (2008) Geochronologic and geodynamic implications of palaeomagnetic results from the Sierras Bayas Group, Rio de La Plata Craton (Argentina). VI South Amer Symp on Isotope Geology. Short Paper 1–3Google Scholar
  71. Rapela CW, Pankhurst RJ, Casquet C, Baldo E, Saavedra J, Galindo C, Fanning CM (1998) The Pampean Orogeny of the southern proto-Andes: Cambrian continental collision in the Sierras de Cordoba. In: Pankhurst RJ, Rapela CW (eds) The Proto-andean Margin of Gondwana. Geol Soc London Spec Publ 142:181–217Google Scholar
  72. Rapela CW, Pankhurst RJ, Fanning CM, Grecco LE (2003) Basement evolution of the Sierra del la Ventana Fold Belt: new evidence for Cambrian continental rifting along the southern margin of Gondwana. J Geol Soc London 160:613–628CrossRefGoogle Scholar
  73. Rapela CW, Pankhurst RJ, Casquet C, Fanning CM, Baldo EG, González-Casado JM, Galindo J, Dahlquist J (2007) The Río de la Plata craton and the assembly of SW Gondwana. Earth Sci Rev 83:49–82CrossRefGoogle Scholar
  74. Seilacher A, Congolani C, Varela R (2003) Ichnostratigraphic correlation of Early Palaeozoic sandstones in North Africa and Central Argentina. In: Salem MJ, Oun KM (eds) The geology of northwest Libya, pp 275–292Google Scholar
  75. Spalletti LA, Del Valle A (1984) Las diamictitas del sector oriental de Tandilia: caracteres sedimentológicos y orígen. Rev de la Asoc Geol Arg 49:188–206Google Scholar
  76. Spalletti LA, Poiré DG (2000) Secuencias silicoclásticas y carbonáticas del Precámbrico y Palaeozoico Inferior del Sistema de Tandilia, Argentina. Guía de Campo, II Congreso Latinoamericano de Sedimentología, 12-14.3.2000:1–39Google Scholar
  77. Stanistreet IG, Kukla PA, Henry G (1991) Sedimentary basinal responses to a Late Precambrian Wilson Cycle: the Damara Orogen and Nama Foreland, Namibia. J Afr Earth Sci 13:141–156CrossRefGoogle Scholar
  78. Tankard AJ, Jackson MP, Erikson KA, Holiday DK, Hunter DR, Minter WEL (1982) Crustal Evolution of Southern Africa. Springer, New York, pp 1–523Google Scholar
  79. Taylor SR, McLennan SM (1985) The Continental Crust: its Composition and Evolution. Blackwell, Oxford, pp 1–312Google Scholar
  80. Theron JH (1972) The stratigraphy and sedimentation of the Bokkeveld Group. PhD thesis, University of Stellenbosch, 1–175Google Scholar
  81. van Loon AJ (2000) The strangest 0.05% of the geological history. Earth Sci Rev 50:125–133CrossRefGoogle Scholar
  82. van Loon AJ (2008) Could ‘Snowball Earth’ have left thick glaciomarine deposits? Gondwana Res 14:73–81CrossRefGoogle Scholar
  83. Van Staden A, Naidoo T, Zimmermann U, Germs GJB (2006) Provenance analysis of selected clastic rocks in Neoproterozoic to lower Palaeozoic successions of southern Africa from the Gariep Belt and the Kango Inlier. S Afr J Geol 109:215–232CrossRefGoogle Scholar
  84. Van Staden A, Zimmermann U, Gutzmer J, Chemale F Jr, Germs GJB (2010) First regional correlation of Lower Palaeozoic successions from Argentina and South Africa using glacial diamictite deposits and its consequences for the regional geology. J Geol Soc London 167:217–220CrossRefGoogle Scholar
  85. von Eynatten H, Barceló-Vidal C, Pawlowsky-Glahn V (2003) Composition and discrimination of sandstones: a stochastic evaluation of different analytical methods. J Sed Res 73:47–57CrossRefGoogle Scholar
  86. Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343CrossRefGoogle Scholar
  87. Zack T, Kronz A, Foley SF, Rivers T (2002) Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chem Geol 184:97–122CrossRefGoogle Scholar
  88. Zhang S, Jiang G, Junming Zhang J, Song B, Kennedy MJ, Christie-Blick N (2005) U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in south China: constraints on late Neoproterozoic glaciations. Geology 33:473–476CrossRefGoogle Scholar
  89. Zimmermann U (2009) What was wrong with the Kalahari Craton? Rodinia: Supercontinents, Superplumes and Scotland—FERMOR Meeting. Geological Society of London, Programme and abstracts 59Google Scholar
  90. Zimmermann U (2010) Detrital zircons the major tool or fool for provenance studies? 29th Nordic Geological Winter Meeting, Oslo, January 11–13:215Google Scholar
  91. Zimmermann U, Bahlburg H (2003) Provenance analysis and tectonic setting of the Ordovician clastic deposits in the southern Puna Basin, NW Argentina. Sedimentology 50:1079–1104CrossRefGoogle Scholar
  92. Zimmermann U, Spalletti LA (2009) Provenance of the Lower Palaeozoic Balcarce Formation (Tandilia System, Buenos Aires Province, Argentina): implications for palaeogeographic reconstructions of SW Gondwana. Sed Geol 219:7–23CrossRefGoogle Scholar
  93. Zimmermann U, Poiré DG, Gómez Peral L (2005) Provenance studies on neoproterozoic successions of the tandilia system (Buenos Aires Province, Argentina): preliminary data. XVI Congr Geol Arg Actas 4:6 pages CD ROMGoogle Scholar
  94. Zimmermann U, Niemeyer H, Meffre S (2009a) Revealing the continental margin of Gondwana: the Ordovician arc of the Cordón de Lila (northern Chile). Int J Earth Sci. doi: 10.1007/s00531-009-0483-8
  95. Zimmermann U, Fourie P, Naidoo T, Van Staden A, Chemale F Jr, Nakamura E, Kobayashi K, Kosler J, Beukes NJ, Tait J (2009b) Unroofing the Kalahari craton: provenance data from Neoproterozoic to Palaeozoic Successions. Geochim et Cosmoch Actas 73(supp 1):A 1536Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Udo Zimmermann
    • 1
    • 2
  • Daniel G. Poiré
    • 3
  • Lucía Gómez Peral
    • 3
  1. 1.Department of Petroleum EngineeringUniversity of StavangerStavangerNorway
  2. 2.Department of GeologyUniversity of JohannesburgJohannesburgSouth Africa
  3. 3.Centro de Investigaciones Geológicas (CONICET-Universidad Nacional de La Plata)La PlataArgentina

Personalised recommendations