International Journal of Earth Sciences

, Volume 100, Issue 7, pp 1477–1495 | Cite as

Structure, emplacement, and tectonic setting of Late Devonian granitoid plutons in the Teplá–Barrandian unit, Bohemian Massif

  • Jiří Žák
  • Zuzana Kratinová
  • Jakub Trubač
  • Vojtěch Janoušek
  • Jiří Sláma
  • Jan Mrlina
Original Paper

Abstract

The Štěnovice and Čistá granodiorite–tonalite plutons are small (~27 and ~38 km2, respectively) intrusions that are largely discordant to regional ductile structures in the center of the upper-crustal Teplá–Barrandian unit, Bohemian Massif. Their whole-rock and trace-element compositions are consistent with medium-K calc-alkaline magma, generated above a subducted slab in a continental margin arc setting. The U–Pb zircon age of the Štěnovice pluton, newly determined at 375 ± 2 Ma using the laser ablation ICP-MS technique, is within the error of the previously published Pb–Pb age of 373 ± 1 Ma for the Čistá pluton. The two plutons also share other characteristics that are typical of concentrically expanded plutons (CEPs), such as elliptical cross-section in plan view, steep contacts, inferred downward-narrowing conical shape, faint normal zoning, and margin-parallel magmatic foliation decoupled from the regional host-rock structures. We interpret the Štěnovice and Čistá plutons as representing the initial Late Devonian stage of much more voluminous early Carboniferous arc-related plutonism (represented most typically by the Central Bohemian Plutonic Complex) in the upper crust of the central Bohemian Massif. These two plutons are important tectonic elements in that they indicate an overall shift of the arc-related plutonic activity from the ~NW to the ~SE, accompanied with a general compositional trend of the magmas from medium-K calc-alkaline to shoshonitic/ultrapotassic. Such a pattern is compatible with SE-directed subduction of the Saxothuringian Ocean beneath the Teplá–Barrandian overriding plate as a cause of arc-related magmatism in this part of the Bohemian Massif.

Keywords

Bohemian Massif Granite Pluton Subduction Teplá–Barrandian unit Variscan orogeny 

Notes

Acknowledgments

We gratefully acknowledge Fritz Finger and Philippe Olivier for their detailed and critical reviews and Associate Editor Marlina Elburg for helpful comments and careful editorial handling of the manuscript. This work also benefited greatly from discussions with František Hrouda, Marta Chlupáčová, František Holub, Kryštof Verner, Václav Kachlík, Gernold Zulauf, and Josef Klomínský on various aspects of Variscan magmatism in the Bohemian Massif. František Veselovský of the Czech Geological Survey is thanked for zircon separations. This research was supported by the Czech Academy of Sciences (Grant No. KJB30012702 to Z. Kratinová), by the Grant Agency of the Czech Republic (Grant No. 205/07/0992 to V. Janoušek), and by the Ministry of Education, Youth and Sports of the Czech Republic Research Plan No. MSM0021620855.

Supplementary material

531_2010_565_MOESM1_ESM.tif (24.3 mb)
Supplementary material 1 (TIFF 24.2 mb)
531_2010_565_MOESM2_ESM.tif (34.1 mb)
Supplementary material 2 (TIFF 34.1 mb)
531_2010_565_MOESM3_ESM.tif (40.2 mb)
Supplementary material 3 (TIFF 40.2 mb)
531_2010_565_MOESM4_ESM.doc (101 kb)
Supplementary material 4 (DOC 101 kb)
531_2010_565_MOESM5_ESM.doc (72 kb)
Supplementary material 5 (DOC 72 kb)
531_2010_565_MOESM6_ESM.xls (70 kb)
Supplementary material 6 (XLS 70.5 kb)
531_2010_565_MOESM7_ESM.tif (435 kb)
Supplementary material 7 (TIFF 435 kb)

References

  1. Arculus RJ (1987) The significance of source versus process in the tectonic controls of magma genesis. J Volcanol Geotherm Res 32:1–12Google Scholar
  2. Barbarin B (1990) Granitoids: main petrogenetic classifications in relation to origin and tectonic setting. Geol J 25:227–238Google Scholar
  3. Bartošek J, Chlupáčová M, Šťovíčková N (1969) Petrogenesis and structural position of small granitoid intrusions in the aspect of geophysical data. J Geol Sci Appl Geophys 8:37–65Google Scholar
  4. Bonin B (1990) From orogenic to anorogenic settings: evolution of granitoid suites after a major orogenesis. Geol J 25:261–270Google Scholar
  5. Bouchez JL (1997) Granite is never isotropic: an introduction to AMS studies of granitic rocks. In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer, Amsterdam, pp 95–112Google Scholar
  6. Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114Google Scholar
  7. Breiter K, Sokol A (1997) Chemistry of the Bohemian granitoids: geotectonic and metallogenetic implications. J Geol Sci Econ Geol Mineral 31:75–96Google Scholar
  8. Bues C, Dörr W, Fiala J, Vejnar Z, Zulauf G (2002) Emplacement depths and radiometric ages of Paleozoic plutons of the Neukirchen–Kdyně massif: differential uplift and exhumation of Cadomian basement due to Carboniferous orogenic collapse (Bohemian Massif). Tectonophysics 352:225–243Google Scholar
  9. Čadková Z, Jakeš P, Haková M, Mrázek P (1985) Geochemical catalogue of the basic network. In: Lithogeochemical Database of the Czech Geological Survey, Prague (unpublished manuscript)Google Scholar
  10. Chlupáčová M, Hrouda F, Rejl L (1975) The fabric, genesis, and relative age of the granitic rocks of the Čistá–Jesenice massif (Czechoslovakia), as studied by magnetic anisotropy. Gerlands Beitr Geophys 84:487–500Google Scholar
  11. Dallmeyer RD, Urban M (1998) Variscan vs Cadomian tectonothermal activity in northwestern sectors of the Teplá–Barrandian zone, Czech Republic: constraints from 40Ar/39Ar ages. Geol Rundsch 87:94–106Google Scholar
  12. Debon F, Le Fort P (1983) A chemical–mineralogical classification of common plutonic rocks and associations. Trans Roy Soc Edinb Earth Sci 73:135–149Google Scholar
  13. Didier J, Barbarin B (eds) (1991) Enclaves and granite petrology. Elsevier, AmsterdamGoogle Scholar
  14. Dietl C, Koyi HA (2002) Emplacement of nested diapirs: results of centrifuge modelling. J Virtual Explor 6:81–88Google Scholar
  15. Dörr W, Zulauf G (2010) Elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zone. Int J Earth Sci 99:299–325Google Scholar
  16. Dörr W, Fiala J, Vejnar Z, Zulauf G (1998) U–Pb zircon ages and structural development of metagranitoids of the Teplá crystalline complex: evidence for pervasive Cambrian plutonism within the Bohemian Massif (Czech Republic). Geol Rundsch 87:135–149Google Scholar
  17. Dunstan LP, Gramlich JW, Barnes IL, Purdy WC (1980) Absolute isotopic abundance and the atomic weight of a reference sample of thallium. J Res Natl Bureau Stand 85:1–10Google Scholar
  18. Edel JB, Schulmann K (2009) Geophysical constraints and model of the “Saxothuringian and Rhenohercynian subductions–magmatic arc system” in NE France and SW Germany. Bull Soc Geol Fr 180:545–558Google Scholar
  19. Finger F, Roberts MP, Haunschmid B, Schermaier A, Steyrer HP (1997) Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations. Mineral Petrol 61:67–96Google Scholar
  20. Finger F, Gerdes A, Janoušek V, René M, Riegler G (2007) Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo–Moldanubian tectonometamorphic phases. J Geosci 52:9–28Google Scholar
  21. Finger F, René M, Gerdes A, Riegler G (2009) The Saxo-Danubian granite belt: magmatic response to postcollisional delamination of mantle lithosphere below the southwestern sector of the Bohemian Massif (Variscan orogen). Geol Carpath 60:205–212Google Scholar
  22. Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt, vol 179. Geol Soc London Spec Publ, London, pp 35–61Google Scholar
  23. Franke W (2006) The Variscan orogen in Central Europe: construction and collapse. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics, vol 34. Geol Soc London Memoirs, London, pp 333–343Google Scholar
  24. Galadí-Enríquez E, Galindo-Zaldívar J, Simancas F, Exposito I (2003) Diapiric emplacement in the upper crust of a granitic body: the La Bazana granite (SW Spain). Tectonophysics 361:83–96Google Scholar
  25. Gerdes A (2001) Magma homogenization during anatexis, ascent and/or emplacement? Constraints from the Variscan Weinsberg Granites. Terra Nova 13:305–312Google Scholar
  26. Gerdes A, Wörner G, Henk A (2000a) Post-collisional granite generation and HT–LP metamorphism by radiogenic heating: the Variscan South Bohemian Batholith. J Geol Soc London 157:577–587Google Scholar
  27. Gerdes A, Wörner G, Finger F (2000b) Hybrids, magma mixing and enriched mantle melts in post-collisional Variscan granitoids: the Rastenberg Pluton, Austria. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt, vol 179. Geol Soc London Spec Publ, London, pp 415–431Google Scholar
  28. Gerdes A, Friedl G, Parrish RR, Finger F (2003) High-resolution geochronology of Variscan granite emplacement–the South Bohemian Batholith. J Czech Geol Soc 48:53–54Google Scholar
  29. Glodny J, Grauert B, Fiala J, Vejnar Z, Krohe A (1998) Metapegmatites in the western Bohemian massif: ages of crystallisation and metamorphic overprint, as constrained by U–Pb zircon, monazite, garnet, columbite and Rb–Sr muscovite data. Geol Rundsch 87:124–134Google Scholar
  30. Hajná J, Žák J, Kachlík V, Chadima M (2010) Subduction-driven shortening and differential exhumation in a Cadomian accretionary wedge: the Teplá–Barrandian unit, Bohemian Massif. Precambrian Res 176:27–45Google Scholar
  31. He B, Xu YB, Paterson SR (2009) Magmatic diapirism of the Fangshan pluton, southwest of Beijing, China. J Struct Geol 31:615–626Google Scholar
  32. Hibbard MJ (1991) Textural anatomy of twelve magma-mixed granitoid systems. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Elsevier, Amsterdam, pp 431–444Google Scholar
  33. Hibbard MJ (1995) Petrography to petrogenesis. Prentice Hall, New JerseyGoogle Scholar
  34. Holub FV (1997) Ultrapotassic plutonic rocks of the durbachite series in the Bohemian Massif: petrology, geochemistry, and petrogenetic interpretation. J Geol Sci Econ Geol Mineral 31:5–26Google Scholar
  35. Holub FV, Cocherie A, Rossi P (1997a) Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex: constraints on the chronology of thermal and tectonic events along the Barrandian-Moldanubian boundary. CR Geosci 325:19–26Google Scholar
  36. Holub FV, Machart J, Manová M (1997b) The Central Bohemian Plutonic Complex: geology, chemical composition and genetic interpretation. J Geol Sci Econ Geol Mineral 31:27–50Google Scholar
  37. Horn I, Rudnick RL, McDonough WF (2000) Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: application to U–Pb geochronology. Chem Geol 164:281–301Google Scholar
  38. Hoskin PWO, Kinny PD, Wyborn D, Chappell BW (2000) Identifying accessory mineral saturation during differentiation in granitoid magmas: an integral approach. J Petrol 41:1365–1396Google Scholar
  39. Hrouda F, Chlupáčová M, Rejl L (1971) The mimetic fabric of magnetite in some foliated granodiorites, as indicated by magnetic anisotropy. Earth Planet Sci Lett 11:381–384Google Scholar
  40. Hrouda F, Chlupáčová M, Rejl L (1972) Changes in the magnetite content and magnetite fabric during fenitization, as investigated by petromagnetic methods. N Jb Miner Abh 177:61–72Google Scholar
  41. Irvine TM, Baragar WR (1971) A guide to the chemical classification of common volcanic rocks. Canad J Earth Sci 8:523–548Google Scholar
  42. Janoušek V (2006) Saturnin, R language script for application of accessory-mineral saturation models in igneous geochemistry. Geol Carpath 57:131–142Google Scholar
  43. Janoušek V, Gerdes A (2003) Timing the magmatic activity within the Central Bohemian Pluton, Czech Republic: conventional U–Pb ages for the Sázava and Tábor intrusions and their geotectonic significance. J Czech Geol Soc 48:70–71Google Scholar
  44. Janoušek V, Holub F (2007) The causal link between HP–HT metamorphism and ultrapotassic magmatism in collisional orogens: case study from the Moldanubian Zone of the Bohemian Massif. Proc Geol Assoc 118:75–86Google Scholar
  45. Janoušek V, Rogers G, Bowes DR (1995) Sr–Nd isotopic constraints on the petrogenesis of the Central Bohemian Pluton, Czech Republic. Geol Rundsch 84:520–534Google Scholar
  46. Janoušek V, Bowes DR, Rogers G, Farrow CM, Jelínek E (2000) Modelling diverse processes in the petrogenesis of a composite batholith: the Central Bohemian Pluton, Central European Hercynides. J Petrol 41:511–543Google Scholar
  47. Janoušek V, Braithwaite CJR, Bowes DR, Gerdes A (2004a) Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic. Lithos 78:67–99Google Scholar
  48. Janoušek V, Finger F, Roberts MP, Frýda J, Pin C, Dolejš D (2004b) Deciphering petrogenesis of deeply buried granites: whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif. Trans Roy Soc Edinb Earth Sci 95:141–159Google Scholar
  49. Janoušek V, Farrow CM, Erban V (2006a) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J Petrol 47:1255–1259Google Scholar
  50. Janoušek V, Gerdes A, Vrána S, Finger F, Erban V, Friedl G, Braithwaite CJR (2006b) Low-pressure granulites of the Lišov Massif, southern Bohemia: Viséan metamorphism of Late Devonian plutonic arc rocks. J Petrol 47:705–744Google Scholar
  51. Janoušek V, Wiegand B, Žák J (2010a) Dating the onset of Variscan crustal exhumation in the core of the Bohemian Massif: new U–Pb single zircon ages from the high-K calc-alkaline granodiorites of the Blatná suite, Central Bohemian Plutonic Complex. J Geol Soc London 167:347–360Google Scholar
  52. Janoušek V, Konopásek J, Ulrich S, Erban V, Tajčmanová L, Jeřábek P (2010b) Geochemical character and petrogenesis of Pan-African Amspoort suite of the Boundary Igneous Complex in the Kaoko Belt (NW Namibia). Gondwana Res. doi:10.1016/j.gr.2010.02.014 (in press)
  53. Jelínek V (1981) Characterization of the magnetic fabric of rocks. Tectonophysics 79:T63–T67Google Scholar
  54. Klomínský J (1963) Geology of the Čistá massif. J Geol Sci Geol 3:7–27Google Scholar
  55. Klomínský J (1965) The Štěnovice granodiorite massif. J Geol Sci Geol 8:75–98Google Scholar
  56. Klötzli US, Parrish RR (1996) Zircon U/Pb and Pb/Pb geochronology of the Rastenberg granodiorite, South Bohemian Massif, Austria. Mineral Petrol 58:197–214Google Scholar
  57. Konopásek J, Schulmann K (2005) Contrasting early Carboniferous field geotherms: evidence for accretion of a thickened orogenic root and subducted Saxothuringian crust (Central European Variscides). J Geol Soc London 162:463–470Google Scholar
  58. Kopecký L, Chlupáčová M, Klomínský J, Sokol A (1997) The Čistá–Jesenice pluton in western Bohemia: geochemistry, geology and ore potential. J Geol Sci Econ Geol Mineral 31:97–127Google Scholar
  59. Košler J, Sylvester PJ (2003) Present trends and the future of zircon in geochronology: laser ablation ICP-MS. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev Mineral Geoch 53:243–275Google Scholar
  60. Košler J, Aftalion M, Bowers DR (1993) Mid-late Devonian plutonic activity in the Bohemian Massif: U–Pb zircon isotopic evidence from the Staré Sedlo and Mirotice gneiss complexes, Czech Republic. N Jb Miner Mh 9:417–431Google Scholar
  61. Košler J, Rogers G, Roddick JC, Bowes DR (1995) Temporal association of ductile deformation and granitic plutonism: Rb–Sr and 40Ar–39Ar evidence from roof pendants above the Central Bohemian Pluton, Czech Republic. J Geol 103:711–717Google Scholar
  62. Košler J, Bowes DR, Farrow CM, Hopgood AM, Rieder M, Rogers G (1997) Constraints on the timing of events in the multi-episodic history of the Teplá–Barrandian complex, western Bohemia, from integration of deformational sequence and Rb–Sr isotopic data. N Jb Miner Mh 5:203–220Google Scholar
  63. Košler J, Fonneland H, Sylvester P, Tubrett M, Pedersen RB (2002) U–Pb dating of detrital zircons for sediment provenance studies–a comparison of laser ablation ICP-MS and SIMS techniques. Chem Geol 182:605–618Google Scholar
  64. Kotková J, Schaltegger U, Leichmann J (2010) Two types of ultrapotassic plutonic rocks in the Bohemian Massif–coeval intrusions at different crustal levels. Lithos 115:163–176Google Scholar
  65. Kováříková P, Siebel W, Jelínek E, Štemprok M, Kachlík V, Holub F, Blecha V (2007) Petrology, geochemistry and zircon age for redwitzite at Abertamy, NW Bohemian Massif (Czech Republic): tracing the mantle component in Late Variscan intrusions. Chem Erde 67:151–174Google Scholar
  66. Kováříková P, Siebel W, Jelínek E, Štemprok M, Kachlík V, Holub FV, Blecha V (2010) Dioritic intrusions of the Slavkovský les (Kaiserwald), Western Bohemia: their origin and significance in late Variscan granitoid magmatism. Int J Earth Sci 99:545–565Google Scholar
  67. Kusiak MA, Dunkley DJ, Suzuki K, Kachlík V, Kedzior A, Lekki J, Opluštil S (2010) Chemical (non-isotopic) and isotopic dating of Phanerozoic zircon–a case study of durbachite from the Třebíč Pluton, Bohemian Massif. Gondwana Res 17:153–161Google Scholar
  68. Machek M, Ulrich S, Janoušek V (2009) Strain coupling between upper mantle and lower crust: natural example from the Běstvina granulite body, Bohemian Massif. J Met Geol 27:721–737Google Scholar
  69. Maniar PD, Piccoli PM (1989) Tectonic discriminations of granitoids. Geol Soc Am Bull 101:635–643Google Scholar
  70. Medaris G, Wang H, Jelínek E, Mihaljevič M, Jakeš P (2005) Characteristics and origins of diverse Variscan peridotites in the Gföhl Nappe, Bohemian Massif, Czech Republic. Lithos 82:1–23Google Scholar
  71. Miller RB, Paterson SR (1999) In defense of magmatic diapirs. J Struct Geol 21:1161–1173Google Scholar
  72. Miller CF, McDowell SM, Mapes RW (2003) Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31:529–532Google Scholar
  73. Molyneux SJ, Hutton DHW (2000) Evidence for significant granite space creation by the ballooning mechanism: the example of the Ardara pluton, Ireland. Geol Soc Am Bull 112:1543–1558Google Scholar
  74. Mrlina J (1993) Gravity field of the West Bohemian Proterozoic formation. Geol Průzk 35:326–333 (in Czech)Google Scholar
  75. Nagata T (1961) Rock magnetism. Maruzen, TokyoGoogle Scholar
  76. O’Brien PJ (2000) The fundamental Variscan problem: high-temperature metamorphism at different depths and high-pressure metamorphism at different temperatures. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt, vol 179. Geol Soc London Spec Publ, London, pp 369–386Google Scholar
  77. Paterson SR, Fowler TK (1993) Re-examining pluton emplacement processes. J Struct Geol 15:191–206Google Scholar
  78. Paterson SR, Vernon RH (1995) Bursting the bubble of ballooning plutons: a return to nested diapirs emplaced by multiple processes. Geol Soc Am Bull 107:1356–1380Google Scholar
  79. Paterson SR, Vernon RH, Tobisch OT (1989) A review of criteria for identification of magmatic and tectonic foliations in granitoids. J Struct Geol 11:349–363Google Scholar
  80. Paterson SR, Vernon RH, Fowler TK (1991) Aureole tectonics. In: Kerrick DM (ed) Contact metamorphism. Rev Mineral 26:673–722Google Scholar
  81. Paterson SR, Fowler TK, Schmidt KL, Yoshinobu AS, Yuan ES, Miller RB (1998) Interpreting magmatic fabric patterns in plutons. Lithos 44:53–82Google Scholar
  82. Pearce JA (1996) Sources and settings of granitic rocks. Episodes 19:120–125Google Scholar
  83. Pearce JA, Parkinson IJ (1993) Trace element models of mantle melting: application to volcanic arc petrogenesis. In: Prichard HM, Alabaster T, Harris NBW, Neary CR (eds) Magmatic processes and plate tectonics, vol 76. Geol Soc London Spec Publ, London, pp 373–403Google Scholar
  84. Pearce JA, Harris NW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983Google Scholar
  85. Peccerillo A, Taylor SR (1976) Geochemistry of the Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81Google Scholar
  86. Pitcher WS (1982) Granite type and tectonic environment. In: Hsü KJ (ed) Mountain building processes. Academic Press, London, pp 19–40Google Scholar
  87. Ramsay JG (1989) Emplacement kinematics of a granite diapir: the Chindamora batholith, Zimbabwe. J Struct Geol 11:191–209Google Scholar
  88. Roberts MP, Clemens JD (1993) Origin of high-potassium, calc-alkaline, I-type granitoids. Geology 21:825–828Google Scholar
  89. Saunders AD, Norry MJ, Tarney J (1991) Fluid influence on the trace element compositions of subduction zone magmas. In: Tarney J, Pickering KT, Knipe RJ, Dewey JF (eds) The behaviour and influence of fluids in subduction zones. The Royal Society, London, pp 151–166Google Scholar
  90. Schäfer J, Neuroth H, Ahrendt H, Dörr W, Franke W (1997) Accretion and exhumation at a Variscan active margin, recorded in the Saxothuringian flysch. Geol Rundsch 86:599–611Google Scholar
  91. Schandl ES, Gorton MP (2002) Application of high field strength elements to discriminate tectonic settings in VMS environments. Econ Geol 97:629–642Google Scholar
  92. Scheuvens D, Zulauf G (2000) Exhumation, strain localization, and emplacement of granitoids along the western part of the Central Bohemian shear zone (Bohemian Massif). Int J Earth Sci 89:617–630Google Scholar
  93. Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux JM, Edel JB, Štípská P, Ulrich S (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. CR Geosci 341:266–286Google Scholar
  94. Shand SJ (1943) Eruptive rocks. Their genesis, composition, classification, and their relation to ore-deposits with a chapter on meteorite. Wiley, New YorkGoogle Scholar
  95. Siebel W, Trzebski R, Stettner G, Hecht L, Casten U, Höhndorf A, Müller P (1997) Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept. Geol Rundsch 86:S45–S63Google Scholar
  96. Siebel W, Breiter K, Wendt I, Höhndorf A, Henjes-Kunst F, René M (1999) Petrogenesis of contrasting granitoid plutons in western Bohemia (Czech Republic). Mineral Petrol 65:207–235Google Scholar
  97. Siebel W, Chen F, Satir M (2003) Late-Variscan magmatism revisited: new implications from Pb-evaporation zircon ages on the emplacement of redwitzites and granites in NE Bavaria. Int J Earth Sci 92:36–53Google Scholar
  98. Siebel W, Shang CK, Reitter E, Rohrmüller J, Breiter K (2008) Two distinctive granite suites in the SW Bohemian Massif and their record of emplacement: constraints from geochemistry and zircon 207Pb/206Pb chronology. J Petrol 49:1853–1872Google Scholar
  99. Siegesmund S, Becker JK (2000) Emplacement of the Ardara pluton (Ireland): new constraints from magnetic fabrics, rock fabrics and age dating. Int J Earth Sci 89:307–327Google Scholar
  100. Slaby E, Martin H (2008) Mafic and felsic magma interaction in granites: the Hercynian Karkonosze pluton (Sudetes, Bohemian Massif). J Petrol 49:353–391Google Scholar
  101. Štemprok M, Holub FV, Novák J (2003) Multiple magmatic pulses of the eastern volcano-plutonic complex, Krušné hory/Erzgebirge batholith, and their phosphorus contents. Bull Geosci 78:277–296Google Scholar
  102. Strnad L, Mihaljevič M (2005) Sedimentary provenance of Mid-Devonian clastic sediments in the Teplá-Barrandian Unit (Bohemian Massif): U–Pb and Pb–Pb geochronology of detrital zircons by laser ablation ICP-MS. Mineral Petrol 84:47–68Google Scholar
  103. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry M (eds) Magmatism in ocean basins, vol 42. Geol Soc London Spec Publ, London, pp 313–345Google Scholar
  104. Tahiri A, Simancas JF, Azor A, Galindo-Zaldívar J, Lodeiro FG, El Hadi H, Poyatos DM, Ruiz-Constán A (2007) Emplacement of ellipsoid-shaped (diapiric ?) granite: structural and gravimetric analysis of the Oulmes granite (Variscan Meseta, Morocco). J Afr Earth Sci 48:301–313Google Scholar
  105. Tatsumi Y, Eggins S (1995) Subduction zone magmatism. Frontiers in Earth Sciences. Blackwell, Cambridge, MassachusettsGoogle Scholar
  106. Timmerman MJ (2008) Palaeozoic magmatism. In: McCann T (ed) The geology of Central Europe. Volume 1: Precambrian and Palaeozoic. Geological Society, London, pp 665–748Google Scholar
  107. Timmermann H, Dörr W, Krenn E, Finger F, Zulauf G (2006) Conventional and in situ geochronology of the Teplá Crystalline unit, Bohemian Massif: implications for the processes involving monazite formation. Int J Earth Sci 95:629–647Google Scholar
  108. Venera Z, Schulmann K, Kröner A (2000) Intrusion within a transtensional tectonic domain: the Čistá granodiorite (Bohemian Massif)–structure and rheological modelling. J Struct Geol 22:1437–1454Google Scholar
  109. Verner K, Žák J, Hrouda F, Holub F (2006) Magma emplacement during exhumation of the lower- to mid-crustal orogenic root: the Jihlava syenitoid pluton, Moldanubian Unit, Bohemian Massif. J Struct Geol 28:1553–1567Google Scholar
  110. Verner K, Žák J, Nahodilová R, Holub F (2008) Magmatic fabrics and emplacement of the cone-sheet-bearing Knížecí Stolec durbachitic pluton (Moldanubian Unit, Bohemian Massif): implications for mid-crustal reworking of granulitic lower crust in the Central European Variscides. Int J Earth Sci 97:19–33Google Scholar
  111. Verner K, Buriánek D, Vrána S, Vondrovic L, Pertoldová J, Hanžl P, Nahodilová R (2009) Tectonometamorphic features of geological units along the northern periphery of the Moldanubian Zone (Bohemian Massif). J Geosci 54:87–100Google Scholar
  112. Vernon RH (1984) Microgranitoid enclaves in granites–globules of hybrid magma quenched in a plutonic environment. Nature 309:438–439Google Scholar
  113. Vernon RH (2000) Review of microstructural evidence of magmatic and solid-state flow. El Geosci 5:1–23Google Scholar
  114. Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:95–304Google Scholar
  115. Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newslett 19:1–23Google Scholar
  116. Wilson M (1989) Igneous petrogenesis. Unwin Hyman, LondonGoogle Scholar
  117. Winchester JA (2002) Palaeozoic amalgamation of Central Europe: new results from recent geological and geophysical investigations. Tectonophysics 360:5–21Google Scholar
  118. Žák J, Holub FV, Verner K (2005a) Tectonic evolution of a continental magmatic arc from transpression in the upper crust to exhumation of mid-crustal orogenic root recorded by episodically emplaced plutons: the Central Bohemian Plutonic Complex (Bohemian Massif). Int J Earth Sci 94:385–400Google Scholar
  119. Žák J, Schulmann K, Hrouda F (2005b) Multiple magmatic fabrics in the Sázava pluton (Bohemian Massif, Czech Republic): a result of superposition of wrench-dominated regional transpression on final emplacement. J Struct Geol 27:805–822Google Scholar
  120. Žák J, Dragoun F, Verner K, Chlupáčová M, Holub FV, Kachlík V (2009) Forearc deformation and strain partitioning during growth of a continental magmatic arc: the northwestern margin of the Central Bohemian Plutonic Complex, Bohemian Massif. Tectonophysics 469:93–111Google Scholar
  121. Zulauf G (1997a) From very low-grade to eclogite-facies metamorphism: tilted crustal sections as a consequence of Cadomian and Variscan orogeny in the Teplá–Barrandian unit (Bohemian Massif). Geotekt Forsch 89:1–302Google Scholar
  122. Zulauf G (1997b) Constriction due to subduction: evidence for slab pull in the Mariánské Lázně Complex (central European Variscides). Terra Nova 9:232–236Google Scholar
  123. Zulauf G (2001) Structural style, deformational mechanisms and paleodifferential stress along an exposed crustal section: constraints on the rheology of quartzofeldspathic rocks at supra- and infrastructural levels (Bohemian Massif). Tectonophysics 332:211–237Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jiří Žák
    • 1
    • 2
  • Zuzana Kratinová
    • 3
    • 4
  • Jakub Trubač
    • 1
    • 5
  • Vojtěch Janoušek
    • 5
    • 6
  • Jiří Sláma
    • 7
    • 8
  • Jan Mrlina
    • 3
  1. 1.Institute of Geology and Paleontology, Faculty of ScienceCharles UniversityPragueCzech Republic
  2. 2.Czech Geological SurveyPragueCzech Republic
  3. 3.Institute of GeophysicsAcademy of Sciences of the Czech RepublicPragueCzech Republic
  4. 4.University of Lisbon and IDLLisbonPortugal
  5. 5.Czech Geological SurveyPragueCzech Republic
  6. 6.Institute of Petrology and Structural Geology, Faculty of ScienceCharles UniversityPragueCzech Republic
  7. 7.Centre for Geobiology and Department of Earth ScienceUniversity of BergenBergenNorway
  8. 8.Institute of GeologyAcademy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations