Advertisement

International Journal of Earth Sciences

, Volume 99, Issue 7, pp 1575–1597 | Cite as

Thermal and exhumation history of the central Rwenzori Mountains, Western Rift of the East African Rift System, Uganda

  • F. U. BauerEmail author
  • U. A. Glasmacher
  • U. Ring
  • A. Schumann
  • B. Nagudi
Original Paper

Abstract

The Rwenzori Mountains (Mtns) in west Uganda are the highest rift mountains on Earth and rise to more than 5,000 m. We apply low-temperature thermochronology (apatite fission-track (AFT) and apatite (U–Th–Sm)/He (AHe) analysis) for tracking the cooling history of the Rwenzori Mtns. Samples from the central and northern Rwenzoris reveal AFT ages between 195.0 (±8.4) Ma and 85.3 (±5.3) Ma, and AHe ages between 210.0 (±6.0) Ma to 24.9 (±0.5) Ma. Modelled time–temperature paths reflect a protracted cooling history with accelerated cooling in Permo-Triassic and Jurassic times, followed by a long period of constant and slow cooling, than succeeded by a renewed accelerated cooling in the Neogene. During the last 10 Ma, differentiated erosion and surface uplift affected the Rwenzori Mtns, with more pronounced uplift along the western flank. The final rock uplift of the Rwenzori Mtns that partly led to the formation of the recent topography must have been fast and in the near past (Pliocene to Pleistocene). Erosion could not compensate for the latest rock uplift, resulting in Oligocene to Miocene AHe ages.

Keywords

Low-temperature thermochronology Apatite fission-track Uplift Denudation Rwenzori Mountains Albertine Rift 

Notes

Acknowledgments

We thank the RiftLink research group and our partners from Makerere University for discussion on the Rwenzori geology as well as for the support in the field. We also thank the Uganda National Council for Science and Technology (UNCST) as well as the Uganda Wildlife Authority (UWA) for supporting fieldwork. Furthermore, we would like to thank Peter W. Reiners and Stefan Nicolescu for analytical assistance and valuable discussions. Matthias Hinderer and Martin Wipf are thanked for their constructive suggestions and comments on an earlier version of the manuscript. For providing the computer code HeFTy we would like to express our thanks to Richard A. Ketcham and Raymond A. Donelick, and to Raymond A. Donelick, allowing using Dpar as a kinetic parameter. ASTER GDEM, product of METI & NASA is thanked for providing their images. We furthermore appreciate the support given by Heiko Gerstenberg and the Forschungs-Neutronenquelle FRM II at Garching, TU München. Acknowledgement is given to the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) for their support (GL 182/9-1) and for funding the project (DFG research unit 703). The University Mainz is gratefully acknowledged for a grant supporting a pilot study.

References

  1. Abbate E, Balestrieri ML, Bigazzi G (2002) Morphostructural development of the Eritrean rift flank (southern Red Sea) inferred from apatite fission track analysis. J Geophys Res 107:2319–2331CrossRefGoogle Scholar
  2. Abeinomugisha D, Mugisha F (2004) Structural analysis of the Albertine graben, Western Uganda. Abstract, East African rift System Evolution, Resources and Environmental Conference, Addis Abeba, June 2004Google Scholar
  3. Ahnert F (2003) Einführung in die Geomorphologie. Ulmer, StuttgartGoogle Scholar
  4. Bahat D, Mohr P (1987) Horst faulting in continental rifts. Tectonophysics 141:61–73CrossRefGoogle Scholar
  5. Batt GE, Brandon MT (2002) Lateral thinking: 2-D interpretation of thermochronology in convergent orogenic settings. Tectonophysics 349(1–4):185–201CrossRefGoogle Scholar
  6. Bauer FU, Karl M, Glasmacher UA, Nagudi B, Andreas S, Mroszewski L (in review) The Rwenzori Mountains of western Uganda–an approach to unravel the evolution of a remarkable morphological feature within the Albertine Rift. Submitted to J Afr Earth SciGoogle Scholar
  7. Bishop P (2007) Long-term landscape evolution: linking tectonics and surface processes. Earth Surf Proc Land 32:329–365CrossRefGoogle Scholar
  8. Boven A, Pasteels P, Punzalan LE, Yamba TK, Musisi JH (1998) Quaternary perpotassic magmatism in Uganda (Tore-Ankole Volcanic Province): age assessment and significance for magmatic evolution along the East African Rift. J Afr Earth Sci 26(3):463–476CrossRefGoogle Scholar
  9. Braun J (2002) Quantifying the effect of recent relief changes on age-elevation relationships. Earth Planet Sci Lett 200:331–343CrossRefGoogle Scholar
  10. Bumby AJ, Guiraud R (2005) The geodynamic setting of the Phanerozoic basins of Africa. J Afr Earth Sci 43(1–3):1–12Google Scholar
  11. Davis W (1899) The geographical cycle. Geogr J 14:481–504CrossRefGoogle Scholar
  12. Delvaux D, Barth A (2010) African Stress Pattern from formal inversion of focal mechanism data. Implications for rifting dynamics. Tectonophysics 482:105–128CrossRefGoogle Scholar
  13. Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol 40:259–274CrossRefGoogle Scholar
  14. Donelick RA, Ketcham RA, Carlson WD (1999) Variability of apatite fission-track annealing kinetics II: crystallographic orientation effects. Am Mineral 84:1224–1234Google Scholar
  15. D’Oreye N, Cayol V, Kervyn F, GVO (2007) The November 2006 Nyamulagira eruption revealed by lnSAR. Proceeding of the 26th ECGS workshop, AVCOR07, Luxemburg, November 2007Google Scholar
  16. Donelick RA, O’Sullivan PB, Ketcham RA (2005) Apatite fission-track analysis. Rev Mineral Geochem 58:49–94CrossRefGoogle Scholar
  17. Dunkl I (2002) Trackkey: a Windows program for calculation and graphical presentation offission track data. Comput Geosci 28:3–12CrossRefGoogle Scholar
  18. Ebinger CJ (1989) Tectonic development of the western branch of the East African rift system. Geol Soc Am Bull 101:885–903CrossRefGoogle Scholar
  19. Ebinger CJ, Furman T (2002) Geodynamical setting of the Virunga Volcanic Province, East Africa. Acta Vulcanol 14(1–2):1–8Google Scholar
  20. Ebinger CJ, Sleep NH (1998) Cenozoic magmatism throughout East Africa resulting from impact of a single plume. Nature 395:788–791CrossRefGoogle Scholar
  21. Ebinger CJ, Deino AL, Tesha AL, Becker T, Ring U (1993) Tectonic controls on rift basin morphology: evolution of the Northern Malawi (Nyasa) Rift. J Geophys Res 98(B10):17,821–17,836Google Scholar
  22. Emmel B, Jöns N, Kroener A, Jacobs J, Wartho J-A, Schenk V, Razakamanana T, Austegard A (2008) From closure of the mozambique ocean to gondwana breakup: new evidence from geochronological data of the vohibory terrane, Southwest Madagascar. J Geol 116(1):21–38CrossRefGoogle Scholar
  23. England P, Molnar P (1990) Surface uplift, uplift of rocks, and exhumation of rocks. Geology 18:1173–1177CrossRefGoogle Scholar
  24. Farley KA (2000) Helium diffusion from apatite: general behaviour as illustrated by Durango fluorapatite. J Geophys Res 105(B2): 2903–2914Google Scholar
  25. Farley KA, Wolf RA, Silver LT (1996) The effects of long-alpha-stopping distances on (U–Th)/He ages. Geochim Cosmochim Acta 60:4223–4229CrossRefGoogle Scholar
  26. Fitzgerald PG, Baldwin SL, Webb LE, O’Sullivan PB (2006) Interpretation of (U-Th)/He single grain ages from slowly cooled crustal terranes: a case study from the Transantarctic Mountains of southern Victoria Land. Chem Geol 225(1–2):91–120CrossRefGoogle Scholar
  27. Flowers RM, Bowring SA, Reiners PW (2006) Low long-term erosion rates and extreme continental stability documented by ancient (U–Th)/He dates. Geology 34:925–928CrossRefGoogle Scholar
  28. Flowers RM, Ketcham RA, Shuster DL, Farley KA (2009) Apatite (U–Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochim Cosmochim Acta 73(8):2347–2365. doi: 10.1016/j.gca.2009.01.015 CrossRefGoogle Scholar
  29. Foster DA, Gleadow AJW (1992) The morphotectonic evolution of rift-margin mountains in central Kenya: constraints from apatite fission-track thermochronology. Earth Planet Sci Lett 113:157–171CrossRefGoogle Scholar
  30. Foster DA, Gleadow AJW (1993) Episodic denudation in East Africa: a legacy of intracontinental tectonism. Geophys Res Lett 20(21):2395–2398CrossRefGoogle Scholar
  31. Foster DA, Gleadow AJW (1996) Structural framework and denudation history of the flanks of the Kenya and Anza Rifts, East Africa. Tectonics 15:258–271CrossRefGoogle Scholar
  32. Galbraith RF (1981) On statistical models for fission track counts. Math Geol 13(6):471–478CrossRefGoogle Scholar
  33. Green PF (1981) ‘Track-in track’ length measurements in annealed apatites. Nucl Tracks 5:121–128CrossRefGoogle Scholar
  34. Green PF (1988) The relationship between track shortening and fission track age reduction in apatite: combined influences of inherent instability, annealing anisotropy, length bias and system calibration. Earth Planet Sci Lett 89(3–4):335–352CrossRefGoogle Scholar
  35. Green PF, Durrani SA (1977) Annealing studies of tracks in crystals. Nucl Track Detect 1:33–39CrossRefGoogle Scholar
  36. Grist AM, Ravenhurst CE (1992a). Mineral separation techniques used at Dalhousie University. In: Zentilli M, Reynolds PH (eds), Short course handbook on low temperature thermochronology, 1992. Mineral Associ Can Short Course Handb 20 Append 2: 203–209Google Scholar
  37. Grist AM, Ravenhurst CE (1992b). A step-by-step laboratory guide to fission track thermochronology at Dalhousie University. In: Zentilli M, Reynolds PH (eds), Short course handbook on low temperature thermochronology, 1992. Mineral Associ Can Short Course Handb 20 Append 1:190–201Google Scholar
  38. Haines S (2008) Transformations in clay-rich fault rocks: constraining fault zone processes and the kinematic evolution of regions. Master Thesis, University of MichiganGoogle Scholar
  39. Hurford AJ (1990) Standardization of fission track dating calibration: recommendation by the fission track working group of the I.U.G.S. Subcommission on geochronology. Chem Geol 80:171–178Google Scholar
  40. Hurford AJ, Green PF (1982) A user’s guide to fission-track dating calibration. Earth Planet Sci Lett 59:343–354CrossRefGoogle Scholar
  41. Hurford AJ, Green PF (1983) The Zeta age calibration of fission-track dating. Isot Geosci 1:285–317Google Scholar
  42. Kampunzu AB, Bonhomme MG, Kanika M (1998) Geochronology of volcanic rocks and evolution of the Cenozoic Western Branch of the East African Rift System. J Afr Earth Sci 26(3):441–461CrossRefGoogle Scholar
  43. Karner GD, Byamungu BR, Ebinger CJ, Kampunzu AB, Mukasa RK, Nyakaana J, Rubondo ENT, Upcott NM (2000) Distribution of crustal extension and regional basin architecture of the Albertine rift system, East Africa. Mar Petrol Geol 17:1131–1150CrossRefGoogle Scholar
  44. Ketcham RA (2005) Forward and inverse modelling of low-temperature thermochronometry data. In: Reiners PW, Ehlers TA (eds), Low-temperature thermochronology: techniques, interpretations and applications. Rev Mineral Geochem 58:275–314Google Scholar
  45. Ketcham (2009) HeFTy version 1.6.7, ManualGoogle Scholar
  46. Ketcham RA, Donelick RA, Carlson WD (1999) Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales. Ame Mineral 84:1235–1255Google Scholar
  47. Ketcham RA, Carter A, Donelick RA, Barbarand J, Hurford AJ (2007a) Improved measurements of fission-track annealing in apatite. Ame Mineral 92:789–798CrossRefGoogle Scholar
  48. Ketcham RA, Carter A, Donelick RA, Barbarand J, Hurford AJ (2007b) Improved modeling of fission-track annealing in apatite. Ame Mineral 92:799–810CrossRefGoogle Scholar
  49. Ketcham RA, Donelick RA, Balestrieri ML, Zattin M (2009) Reproducibility of apatite fission-track length data and thermal history reconstruction. Earth Planet Sci Lett 284:504–515CrossRefGoogle Scholar
  50. Koehn D, Aanyu K, Haines S, Sachau T (2008) Rift nucleation, rift propagation and the creation of basement micro-plates within active rifts. Tectonophysics 458:105–116CrossRefGoogle Scholar
  51. Koehn D, Lindenfeld M, Rümpker G, Aanyu, Haines S, Passchier C (2010) Active transsection faults in rift transfer zones: Evidence for rotating stress fields in the East African Rift and implications for crustal fragmentation processes. Int J Earth Sci (this issue)Google Scholar
  52. Kooi H, Beaumont C (1994) Escarpment evolution on high-elevation rifted margins: insights derived from a surface processes model that combines diffusion, advection, and reaction. J Geophys Res 99:12,191–12,209Google Scholar
  53. Kooi H, Beaumont C (1996) Large-scale geomorphology: classical concepts reconciled and integrated with contemporary ideas via a surface processes model. J Geophys Res 101:3361–3386CrossRefGoogle Scholar
  54. Laerdal T, Talbot MR (2002) Basin neotectonics of Lakes Edward and George, East African Rift. Palaeogeogr Palaeoclimatol Palaeoecol 187:213–232CrossRefGoogle Scholar
  55. Laslett GM, Gleadow AJW, Duddy IR (1984) The relationship between fission track length and track density distributions. Nucl Tracks 9:29–38Google Scholar
  56. Lisker F, Ventura B, Glasmacher UA (2009) Apatite thermochronology in modern geology. Geol Soc London Spec Publ 324:1–23CrossRefGoogle Scholar
  57. Logatchev NA, Beloussov VV, Milanovsky EE (1972) East African Rift Development. Tectonophysics 15:71–81CrossRefGoogle Scholar
  58. MacPhee D (2006) Exhumation, Rift-flank uplift, and Thermal Evolution of the Rwenzori Mountains Determined by Combined (U-Th)/He and U-Pb Thermochronometry. Master Thesis, Massachusetts Institute of TechnologyGoogle Scholar
  59. Mbede EL (2001) Tectonic setting and uplift analysis of the Pangani Rift Basin in Northern Tanzania using apatite fission track thermochronology. Tanzan J Sci 27A (Abstr vol)Google Scholar
  60. McConnell RB (1959) Outline of the geology of the Ruwenzori Mountains, a preliminary account of the results of the British Ruwenzori expedition, 1951–1952. Overseas Geol Miner Resour 7(3):245–268Google Scholar
  61. Michot F (1938) Etude pétrographique et géologique du Ruwenzori septentrional. Mém Inst Roy Colon Belg Sect Sc Nat Med 8:66–271Google Scholar
  62. Mitchell SG, Reiners PW (2003) Influence of wildfires on apatite and zircon (U-Th)/He ages. Geology 31:1025–1028CrossRefGoogle Scholar
  63. Montgomery DR, Brandon MT (2002) Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet Sci Lett 201:481–489CrossRefGoogle Scholar
  64. Morley CK (1999) Tectonic evolution of the East African Rift System and the modifying influence of magmatism: a review. Acta Vulcanol 11(1):1–19Google Scholar
  65. Nagudi B, Bauer FU, Glasmacher UA, Foerster A, Foerster H-J, Schumann A, Kontny J (in preparation) Petrography and geochemistry of Rwenzori Mountains lithologies, East African Rift System, UgandaGoogle Scholar
  66. Noble WP, Foster DA, Gleadow AJW (1997) The post-Pan-African thermal and extensional history of the crystalline basement rocks in eastern Tanzania. Tectonophysics 275:331–350CrossRefGoogle Scholar
  67. Nyblade AA (1997) Heat flow across the East African Plateau. Geophys Res Lett 24(16):2083–2086CrossRefGoogle Scholar
  68. Nyblade AA, Brazier RA (2002) Precambrian lithospheric controls on the development of the East African rift system. Geology 30(8):755–758CrossRefGoogle Scholar
  69. Nyblade AA, Pollack HN, Jones DL, Podmore F, Musjayandebvu M (1990) Terrestrial heat flow in East and Southern Africa. J Geophys Res 95:17,371–17,384Google Scholar
  70. Ollier CD, Pain CF (2000) The origin of mountains. Routledge, LondonGoogle Scholar
  71. Osmaston HA, Harrison SP (2005) The late Quaternary glaciation of Africa: a regional synthesis. Quatern Int 138:32–54CrossRefGoogle Scholar
  72. Ovington T, Burdon P (2009) Upper Pliocene Fluvio-DElataic Reservoirs of the Victoria Nile/Butiaba Play, Alpert Rift, Western Uganda. PESGB Conference September 2009, LondonGoogle Scholar
  73. Petters SW (1991) Regional geology of Africa. In: Bhattacharji S, Friedmann GM, Neugebauer HJ, Seilacher A (eds) Lect Notes Earth Sci 40. Springer, HeidelbergGoogle Scholar
  74. Pickford M (1990) Uplift of the Roof of Africa and its bearing on the Evolution of mankind. Human Evol 5(1):1–20CrossRefGoogle Scholar
  75. Pickford M, Senut B, Hadoto D (1993) Geology and paleobiology of the albertine rift valley in uganda-zaire. vol I, Geol Occas Publ 24 Centre International pour la Formation et les Echanges Geologiques, OrléansGoogle Scholar
  76. Pik R, Marty B, Carignan J, Lavé J (2003) Stability of the Upper Nile drainage network (Ethiopia) deduced from (U-Th)/He thermochronometry: implications for uplift and erosion fo the Afar plume dome. Earth Planet Sci Lett 215:73–88CrossRefGoogle Scholar
  77. Pik R, Marty B, Carignan J, Yirgu G, Ayalew T (2008) Timing of East African Rift development in southern Ethiopia: implication for mantle plume activity and evolution of topography. Geology 36:167–170CrossRefGoogle Scholar
  78. Reiners PW, Brandon MT (2006) Using thermochronology to understand orogenic erosion. Annu Rev Earth Planet Sci 34:419–466CrossRefGoogle Scholar
  79. Reiners PW, Ehlers TA (2005) Low-temperature thermochronology: techniques, interpretations and applications. Rev Mineral Geochem 58:151–176CrossRefGoogle Scholar
  80. Reiners PW, Farley KA (2001) Influence of crystal size on apatite (U-Th)/He thermochronology: an example from the Bighorn Mountains, Wyoming. Earth Planet Sci Lett 188:413–420CrossRefGoogle Scholar
  81. Reiners PW, Nicolescu S (2006) Measurement of parent nuclides for (U-Th)/He chronometry by solution sector ICP-MS, ARHDL Report 1, University of ArizonaGoogle Scholar
  82. Reiners PW, Shuster DL (2009) Thermochronology and landscape evolution. Phys Today 62(9):31–36CrossRefGoogle Scholar
  83. Ring U (2008) Extreme uplift of the Rwenzori Mountains in the East African Rift, Uganda: Structural framework and possible role of glaciations. Tectonics 27 (TC4018). doi: 10.1029/2007TC002176
  84. Ring U, Betzler C (1995) Geology of the Malawi Rift: kinematic and tectono-sedimentary background to the Chiwondo Beds, northern Malawi. J Hum Evol 28(1):7–21CrossRefGoogle Scholar
  85. Ring U, Betzler C, Delvaux D (1992) Normal versus strike-slip faulting during rift development in East Africa: the Malawi rift. Geology 20:1015–1018CrossRefGoogle Scholar
  86. Roller S, Hornung J, Hinderer M, Ceglarek J, Ssemmanda I (2008) A Middle Miocene to Pleistocene synrift sedimentary sequence in the southern Albertine Grabend (Uganda). 26th IAS Regional Meeting/SEPM-CES SEDIMENT 2008, Bochum, Abstract Volume, SDGG 58Google Scholar
  87. Schlueter T (1994) Zur Verbreitung, Fazies und Stratigraphie der Karoo in Uganda. Berliner Geowiss Abh E13:453–467Google Scholar
  88. Schlueter T (1997) Geology of East Africa. Gebr. Bortntraeger, Berlin, StuttgartGoogle Scholar
  89. Shuster DL, Farley KA (2009) The influence of artificial radiation damage and thermal annealing on helium diffusion kinetics in apatite. Geochim Cosmochim Acta 73(1):183–196CrossRefGoogle Scholar
  90. Shuster DL, Flowers RM, Farley KA (2006) The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet Sci Lett 249:148–161CrossRefGoogle Scholar
  91. Sobel ER, Seward D (2010) Influence of etching conditions on apatite fission-track etch pit diameter. Chem Geol 271:59–69CrossRefGoogle Scholar
  92. Spiegel C, Kohn BP, Belton DX, Gleadow AJW (2004) Integrating apatite fission track and (U-Th)/He data: the thermal evolution of rift-valley flanks in central Kenya. Abstract book, Int. Fission-track conference 2004, AmsterdamGoogle Scholar
  93. Spiegel C, Kohn BP, Belton DX, Gleadow AJW (2007) Morphotectonic evolution of the central Kenya rift flanks: implications for late cenozoic environmental change in East Africa. Geology 35(5):427–430CrossRefGoogle Scholar
  94. Tanner PWG (1971) The Stanley Volcanics formation of Ruwenzori, Uganda. Fifteenth Annual Report of the Research Institute of African Geology, University of LeedsGoogle Scholar
  95. Taylor RG, Howard KWF (1998) Post-Palaeozoic evolution of weathered land surfaces in Uganda by tectonically controlled deep weathering and stripping. Geomorphology 25(3–4):173–192CrossRefGoogle Scholar
  96. Torsvik TH, Gaina C, Redfield TF (2008) Antarctica and global paleogeography: fromRodinia, through Gondwanaland and Pangea, to the birth of the Southern Ocean and the opening of gateways. In Antarctica: A Keystone in a ChangingWorld, Proceedings 10th Int Symp Antarctic Earth Sci, The National Academies Press, Washington, pp 125–140Google Scholar
  97. Upcott NM, Mukasa RK, Ebinger CJ (1996), Along-axis segmentation and isostasy in the Western rift, East Africa. J Geophys Res 101(B2): 3247–3268Google Scholar
  98. Van Damme D, Pickford M (2003) The late Cenozoic Thiaridae (Mollusca, Gastropoda, Cerithioidea) of the Albertine Rift Valley (Uganda - Congo) and their bearing on the origin and evolution of the Tangayikan thallasoid malacofauna. Hydrobiologia 498:1–83CrossRefGoogle Scholar
  99. Van der Beek P, Mbede E, Andriessen P, Delvaux D (1998) Denudation history of the Malawi and Rukawa Rift flanks (East African Rift System) from apatite fission track thermochronology. J Afr Earth Sci 26:363–385CrossRefGoogle Scholar
  100. Wagner GA (1972) Spaltspurenalter von Mineralen und natürlichen Gläsern: eine Übersicht. Fortsch Miner 49:114–145Google Scholar
  101. Wagner GA, Van den Haute P (1992) Fission-track dating. Enke, StuttgartCrossRefGoogle Scholar
  102. Wagner M, Altherr R, Van den Haute P (1992) Apatite fission-track analysis of Kenyan basement rocks: constraints on the thermotectonic evolution of the Kenya dome. A reconnaissance study. Tectonophysics 204:93–110CrossRefGoogle Scholar
  103. Wallis CS, Valliant WW (2004) Technical report on the Kilembe Mine, Uganda. Prepared for Uganda Gold Mining Ltd. Rosco Postle Associates Inc, ReportGoogle Scholar
  104. Wallner H, Schmeling H (2010) Rift induced delamination of mantle lithosphere and crustal uplift. Int J Earth Sci, doi: 10.1007/s00531-010-0521-6
  105. Whittow JB (1966) The landforms of the central Ruwenzori, East Africa. Geogr J 132(1):32–42CrossRefGoogle Scholar
  106. Wolf RA, Farley KA, Silver LT (1996) Helium diffusion and low-temperature thermochronometry of apatite. Geochim Cosmochim Acta 60(21):4231–4240CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • F. U. Bauer
    • 1
    Email author
  • U. A. Glasmacher
    • 1
  • U. Ring
    • 2
  • A. Schumann
    • 3
  • B. Nagudi
    • 3
  1. 1.Institute of Earth SciencesUniversity of HeidelbergHeidelbergGermany
  2. 2.Department of Geological SciencesUniversity of CanterburyChristchurchNew Zealand
  3. 3.Geology DepartmentMakerere UniversityKampalaUganda

Personalised recommendations