International Journal of Earth Sciences

, Volume 100, Issue 6, pp 1375–1381 | Cite as

Recent plumbing system of the Krakatau volcano revealed by teleseismic earthquake distribution

Original Paper


Spatial and temporal analysis of global seismological data 1964–2005 reveals a distinct teleseismic earthquake activity producing a columnar-like formation in the continental wedge between the Krakatau volcano at the surface and the subducting slab of the Indo-Australian plate. These earthquakes occur continuously in time, are in the body-wave (mb) magnitude range 4.5–5.3 and in the depth range 1–100 km. The Krakatau earthquake cluster is vertical and elongated in the azimuth N30°E, suggesting existence of a deep-rooted fault zone cutting the Sunda Strait in the SSW-NNE direction. Possible continuation of the fault zone in the SW direction was activated by an intensive 2002/2003 aftershock sequence, elongated in the azimuth of N55°E. Beneath the Krakatau earthquake cluster, an aseismic gap exists in the Wadati-Benioff zone of the subducting plate at the depths 100–120 km. We interpret this aseismic gap as a consequence of partial melting inhibiting stress concentration necessary to generate stronger earthquakes, whereas the numerous earthquakes observed in the overlying lithospheric wedge beneath the volcano probably reflect magma ascent in the recent plumbing system of the Krakatau volcano. Focal depth of the deepest events (~100 km) of the Krakatau cluster constrains the location of the primary magma generation to greater depths. The ascending magmatic fluids stress fault segments within the Sunda Strait fault zone and change their friction parameters inducing the observed tectonic earthquakes beneath Krakatau.


Subduction-related volcanoes Krakatau Earthquake distribution Volcanic plumbing system 

Supplementary material

531_2010_543_MOESM1_ESM.pdf (119 kb)
Supplementary material 1 (PDF 118 kb)


  1. Engdahl ER, van der Hilst RD, Buland R (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull Seismol Soc Am 88:722–743Google Scholar
  2. Engdahl ER, Villaseñor A, De Shon HR (2007) Teleseismic relocation and assessment of seismicity (1918–2005) in the region of the 2004 Mw 9.0 Sumatra-Andaman and 2005 Mw 8.6 Nias island great earthquakes. Bulletin of the Seismological Society of America 97:S43–S61. doi:10.1785/0120050614 Google Scholar
  3. Guschenko II (1979) Izverzhenia vulkanov mira. Nauka, MoscowGoogle Scholar
  4. Hanuš V, Špičák A, Vaněk J (1996) Sumatran segment of the Indonesian subduction zone: morphology of the Wadati-Benioff zone and seismotectonic pattern of the continental wedge. J Southeast Asian Earth Sci 13:39–60CrossRefGoogle Scholar
  5. Harjono H, Diament M, Dubois J, Larue M, Zen MT (1991) Seismicity of the Sunda Strait: evidence for crustal extension and volcanological implications. Tectonics 10:17–30CrossRefGoogle Scholar
  6. Malod JA, Kemal BM (1996) The Sumatra margin: oblique subduction and lateral displacement of the accretionary prism. In: Hall R, Blundell D (eds) Tectonic Evolution of Southeast Asia, Geological Society Special Publication 106, pp 19–28Google Scholar
  7. Schlüter HU, Gaedicke C, Roeser HA, Schreckenberger B, Meyer H (2002) Tectonic features of the southern Sumatra-western Java forearc of Indonesia. Tectonics 21:1047. doi:10.1029/2001TC901048 CrossRefGoogle Scholar
  8. Simkin T, Siebert L, McClelland L, Bridge D, Ch Newhall, Latter JH (1981) Volcanoes of the world. Smithsonian Institution, Hutchinson Ross, Stroudsburg PaGoogle Scholar
  9. Špičák A, Hanuš V, Vaněk J (2002) Seismic activity around and under Krakatau volcano, Sunda Arc: constraints to the source region of island arc volcanics. Studia Geophysica et Geodaetica 46:545–565CrossRefGoogle Scholar
  10. Špičák A, Hanuš V, Vaněk J (2004) Seismicity pattern: an indicator of source region of volcanism at convergent plate margins. Phys Earth Planetary Interior 141:303–326CrossRefGoogle Scholar
  11. Špičák A, Hanuš V, Vaněk J, Běhounková M (2007) Internal tectonic structure of the Central American Wadati-Benioff zone based on analysis of aftershock sequences. J Geophys Res 112:B09304. doi:10.1029/2006JB004318 CrossRefGoogle Scholar
  12. Špičák A, Vaněk J, Hanuš V (2009) Volcanic plumbing system and seismically active column in the volcanic arc of the Izu-Bonin subduction zone. Geophys J Int 179:1301–1312. doi:10.1111/j.1365-246X.2009.04375.x CrossRefGoogle Scholar
  13. Stothers RB, Rampino MR (1983) Volcanic eruptions in the Mediterranean before A.D. 630 from written and archaeological sources. J Geophys Res 88:6357–6371CrossRefGoogle Scholar
  14. Venzke E, Wunderman RW, Mc Clelland L, Simkin T, Luhr JF, Siebert L, Mayberry G. (eds) (2002) Global volcanism, 1968 to the Present. Smithsonian Institution, Global Volcanism Program, Digital Information Series, GVP-4Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Aleš Špičák
    • 1
  • Jiří Vaněk
    • 1
  • Václav Hanuš
    • 1
  1. 1.Institute of Geophysics, Academy of Sciences of the Czech RepublicPraha 4Czech Republic

Personalised recommendations