International Journal of Earth Sciences

, Volume 99, Issue 7, pp 1535–1544 | Cite as

Links between the structure of the mantle lithosphere and morphology of the Cheb Basin (Eger Rift, central Europe)

Original Paper

Abstract

The Cheb Basin (CHB), located in the western part of the Eger Rift (ER) and the western Bohemian Massif, is characterized by earthquake swarms, neotectonic crust movements and emanations of CO2 dominated gases of mantle origin. Deep structure of the region can be characterized as junction of three domains of mantle lithosphere with different olivine fabrics revealed by consistent orientations of seismic anisotropy. The domains represent mantle components of the major tectonic units (micro-plates): Saxothuringian (ST), Teplá-Barrandian (TB) and Moldanubian (MD), which were assembled during the Variscan orogeny. The ST-TB boundary, reactivated during the Cenozoic extension, controlled the position and development of the ER and the CHB. We show that the CHB originated above the rejuvenated mantle suture between the ST and TB. Though the basin is located within the ST crust domain, which is thrust over the mantle junction, it is the mantle suture that controls the CHB shape and its development through the allochthonous ST crust. The seismically active Mariánské Lázně Fault limits the basin against the uplifted block of the Erzgebirge Crystalline Complex. The most subsided parts of the ER and CHB developed above the centre of the mantle transition, whereas a well expressed morphology developed above its flanks. Our study documents a long memory of the mantle lithosphere assembly inherited from the Variscan orogeny. It is possible that other continental regions also contain some of intra-plate basins that originated above healed palaeo-plate mantle boundaries.

Keywords

Western Bohemian Massif Eger Rift Cheb Basin Surface morphology Mantle lithosphere 

Notes

Acknowledgments

We are grateful to Peter Ziegler and to an anonymous reviewer for thoughtful and constructive comments and suggestions, which substantially improved the original manuscript. Our research was supported by the Grant Agency of the Czech Republic under project 205/07/1088 and by grant No. IAA300120709 of the Grant Agency of the Czech Academy of Sciences.

References

  1. Babuška V, Plomerová J (2001) Subcrustal lithosphere around the Saxothuringian-Moldanubian Suture Zone—a model derived from anisotropy of seismic wave velocities. Tectonophysics 332:85–199Google Scholar
  2. Babuška V, Plomerová J (2006) European mantle lithosphere assembled from rigid microplates with inherited seismic anisotropy. Phys Earth Planet Inter 158:264–280. doi: 10.1016/j.pepi.2006.01.010 CrossRefGoogle Scholar
  3. Babuška V, Plomerová J (2008) Control of paths of Quaternary volcanic products in western Bohemian Massif by rejuvenated Variscan triple junction of ancient microplates. Studia Geophys Geod 52:607–630CrossRefGoogle Scholar
  4. Babuška V, Plomerová J, BOHEMA WG (2003) BOHEMA seismic experiment: search for an active magmatic source in the deep lithosphere in central Europe. EOS, Trans AGU 84:409–417Google Scholar
  5. Babuška V, Plomerová J, Fischer T (2007) Intraplate seismicity in the western Bohemian Massif (central Europe): a possible correlation with a paleoplate junction. J Geodyn 44:149–159. doi: 10.1016/j.jog.2007.02.004 CrossRefGoogle Scholar
  6. Babuška V, Plomerová J, Vecsey L (2008) Mantle fabric of western Bohemian Massif (central Europe) constrained by 3D seismic P and S anisotropy. Tectonophysics 462:149–163. doi: 10.1016/j.tecto.2008.01.020 CrossRefGoogle Scholar
  7. Babuška V, Fiala J, Plomerová J (2010) Bottom to top lithosphere structure and evolution of western Eger Rift (central Europe). Int J Earth Sci. doi:  10.1007/s00531-009-0434-4 (in press)
  8. Bankwitz P, Schneider G, Kämpf H, Bankwitz E (2003) Structural characteristics of epicentral areas in Central Europe: study case Cheb Basin (Czech Republic). J Geodyn 35:5–32CrossRefGoogle Scholar
  9. Beránek B, Zátopek A (1981) Earth’s crust structure in Czechoslovakia and in Central Europe by methods of explosion seismology. In: Zátopek A (ed) Geophysical syntheses in Czechoslovakia. Veda, Bratislava, pp 243–264Google Scholar
  10. Blecha V, Štemprok M, Fischer T (2009) Geological interpretation of gravity profiles through the Karlovy Vary granite massif (Czech Republic). Stud Geophys Geod 53:295–314CrossRefGoogle Scholar
  11. Bräuer K, Kämpf H, Niedermann S, Strauch G (2005) Evidence for ascending upper mantle-derived melt beneath the Cheb basin, central Europe. Geophys Res Lett 32:1–4. doi: 10.1029/2004GL022205 L08303Google Scholar
  12. Burbank DW, Anderson RS (2001) Tectonic geomorphology. Blackwell Science, Malden, p 274Google Scholar
  13. Cloetingh S, Cornu T, Ziegler PA, Beekman F (2006) Neotectonics and intraplate continental topography of the northern Alpine Foreland. Earth Sci Rev 74:127–196CrossRefGoogle Scholar
  14. Dèzes P, Schmid SM, Ziegler PA (2004) Evolution of the Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithoshpere. Tectonophysics 389:1–33CrossRefGoogle Scholar
  15. Dobeš M, Hercog F, Mazáč F (1986) Die geophysikalische Untersuchung der hydrogeologischen Strukturen im Cheb-Becken. Sbor geol věd, Užitá geofyz 21:117–158 (Praha, ISSN 0036-5319)Google Scholar
  16. Fischer T, Horálek J (2003) Space-time distribution of earthquake swarms in the principal focal zone of the NW Bohemia/Vogtland seismoactive region: period 1985–2001. J Geodyn 35:125–144CrossRefGoogle Scholar
  17. Fischer T, Horálek J (2005) Slip-generated patterns of swarm microearthquakes from West Bohemia/Vogtland (central Europe): evidence of their triggering mechanism? J Geophys Res 110:1–14. doi: 10.1029/2004jb003363 (B05S21)CrossRefGoogle Scholar
  18. Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc London Spec Publ 179, pp 35–61Google Scholar
  19. Franke W, Dallmeyer RD, Weber K (1995) Geodynamic evolution. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin Heidelberg New York, pp 579–593Google Scholar
  20. Geissler WH, Kampf H, Kind R, Bräuer K, Klinge K, Plenefisch T, Horálek J, Zedník J, Nehybka V (2005) Seismic structure and location of a CO2 source in the upper mantle of the western Eger (Ohře) Rift, central Europe. Tectonics 24: TC5001. doi:  10.1029/2004TC001672
  21. Grad M, Tiira T, WG ESC (2009) The Moho depth of the European Plate. Geophys J Int 176:279–292. doi: 10.1111/j.1365-246X.2008.03919.x CrossRefGoogle Scholar
  22. Granet M, Wilson M, Achauer U (1995) Imaging a mantle plume beneath the Massif Central (France). Earth Planet Sci Lett 17:1109–1112Google Scholar
  23. Hecht L, Vigneresse JL, Morteani G (1997) Constrains on the origin of zonation of thje granite complexes of the Fichtelgebirge (Germany and Czech Republic). Evidence from gravity and geochemical study. Geol Rundschau 86(Suppl):93–109Google Scholar
  24. Heuer B, Geissler WH, Kind R, Kämpf H (2006) Seismic evidence for asthenospheric updoming beneath the western Bohemian Massif, central Europe. Geoph Res Lett 33:L05311. doi: 10.1029/2005GL025158 CrossRefGoogle Scholar
  25. Horálek J, Fischer T, Boušková A, Jedlička P (2000) The western Bohemia/Vogtland region in the light of the WEBNET network. Studia geoph geod 44:107–125CrossRefGoogle Scholar
  26. Hrubcová P, Sroda P, Špičák A, Guterch A, Grad M, Keller GR, Brueckl E, Thybo H (2005) Crustal and uppermost mantle structure of the Bohemian Massif based on CELEBRATION 2000 data. J Geophys Res 110:B11305. doi: 101029/2004JB003080 CrossRefGoogle Scholar
  27. Kachlík V (1997) The Kladská Unit. In: Vrána S, Štědrá V (eds) Geological model of western Bohemia related to the KTB borehole in Germany. J Geol Sci (Prague) 47:70–80Google Scholar
  28. Kämpf H, Peterek A, Rohrmüller J, Kümpel H-J, Geissler WH (eds) (2005) The KTB deep crustal laboratory and the western Eger Graben. In: Koch R, Röhling H-G (eds) GeoErlangen 2005 System Earth—biosphere coupling, regional geology of Central Europe, Exkursionsführer, Schriftenreihe Deutsche Gesellschaft für Geowissenschaften, H 40, 37–107, Hannover (ISBN-3-932537-35-1)Google Scholar
  29. Krawczyk CM, Stein E, Choi S, Oettinger G, Schuster K, Götze H-J, Haak V, Prodehl C, Schulze A (2000) Geophysical constraints on exhumation mechanisms of high-pressure rocks: the Saxo-Thuringian case between the Franconian Line and Elbe Zone. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt. Geol Soc London Spec Publ vol. 179. pp 303–322Google Scholar
  30. Malkovský M (1987) The Mesozoic and Tertiary basins of the Bohemian Massif and their evolution. Tectonophysics 137:31–42CrossRefGoogle Scholar
  31. Mlčoch B (2003) Character of the contact between the Saxothuringian and Teplá-Barrandian unit. Geolines (Prague) 16:75Google Scholar
  32. Mlčoch B, Skácelová Z (2007) Digital elevation model of the crystalline basement in the Cheb and Sokolov Basin areas. Book of abstracts. Inst Geophys Czech Acad Sci, Praha, p 41Google Scholar
  33. Mrlina J, Seidl M (2008) Relation of surface movements in West Bohemia to Earthquake Swarms. Studia Geophys Geod 52:549–566CrossRefGoogle Scholar
  34. Peterek A, Schunk R (2009) Die geologische Geschichte des Egerrifts. Beiträge zur Geschichte unserer Heimat zwischen Fichtelgebirge und Böhmerwald. Landkreis Tirschenreuth, Band 21: 105–117, Tirschenreuth. ISBN 3-937117-86-5Google Scholar
  35. Plomerová J, Babuška V, Šílený J, Horálek J (1998) Seismic anisotropy and velocity variations in the mantle beneath the Saxothuringicum-Moldanubicum contact in central Europe. Pure Appl Geophys 151:365–394CrossRefGoogle Scholar
  36. Plomerová J, Achauer U, Babuška V, Granet M, BOHEMA WG (2003) Passive seismic experiment to study lithosphere-asthenosphere system in the western part of the Bohemian Massif. Studia Geophys Geod 47:691–701CrossRefGoogle Scholar
  37. Plomerová J, Vecsey L, Babuška V, Granet M, Achauer U (2005) Passive seismic experiment MOSAIC–a pilote study of mantle lithosphere anisotropy of the Bohemian Massif. Studia Geophys Geod 49:541–560CrossRefGoogle Scholar
  38. Plomerová J, Achauer U, Babuška V, Vecsey L, BOHEMA WG (2007) Upper mantle beneath the Eger Rift (Central Europe): plume or asthenosphere upwelling? Geophys J Int 169:675–682. doi: 10.1111/j.1365-246X.2007.03361.x CrossRefGoogle Scholar
  39. Prodehl C, Mueller S, Haak V (1995) The European Cenozoic rift system. In: Olsen KH (ed) Continental rifts: evolution, structure, tectonics. Elsevier, Amsterdam, pp 133–212Google Scholar
  40. Rajchl M, Uličný D (2005) Depositional record of an avulsive fluvial system controlled by peat compaction (Neogene, Most Basin, Czech Republic). Sedimentology 52:601–625. doi: 10.1111/j.1365-3091.2005.00691.x CrossRefGoogle Scholar
  41. Scheck-Wenderoth M, Lamarche J (2005) Crustal memory and basin evolution in the Central European Basin System–new insights from 3D structural model. Tectonophysics 397:143–165CrossRefGoogle Scholar
  42. Schunk R, Peterek A, Reuther CD (2003) Untersuchungen zur quartären und rezenten Tektonik im Umfeld der Marienbader Störung und des Egerer Beckens (Tschechien)–erste Ergebnisse. Mitt Geol-Paläont Inst Univ Hamburg 87:19–46Google Scholar
  43. Schunk R, Peterek A, Reuther CD (2005) Second day: active processes of the western Eger Graben system, Stop 6a-c. In: Kämpf H, Peterek A, Rohrmüller J, Kümpel H-J, Geissler W (eds) The KTB deep crustal laboratory and the Western Eger Graben. Schriftreihe Dt. Ges. Geowiss. 40:66–71Google Scholar
  44. Špičáková L, Uličný D, Koudelková G (2000) Tectonosedimentary evolution of the Cheb Basin (NW Bohemia, Czech Republic) between Late Oligocene and Pliocene: a preliminary note. Studia geopht geod 44:556–580CrossRefGoogle Scholar
  45. Tomek Č, Dvořáková V, Vrána S (1997) Geological interpretation of the 9HR and 503 M seismic profiles in western Bohemia. In: Vrána S, Štědrá V (eds) Geological model of western Bohemia related to the KTB borehole in Germany. J Geol Sci (Prague) 47: 43–50Google Scholar
  46. Wagner GH, Coyle DA, Duyster J, Henjes-Kunst F, Peterek A, Schröder B, Stöckhert B, Wemmer K, Zulauf G (1997) Post-Variscan thermal and tectonic evolution of the KTB site and surroundings. J Geophys Res 102:18221–18232CrossRefGoogle Scholar
  47. Weinlich FH, Brauer K, Kampf H, Strauch G, Tesař J, Weise SM (1999) An active subcontinental mantle volatile system in the western Eger rift, Central Europe: gas flux, isotopic (He, C, and N) and compositional fingerprints. Geochim Cosmochim Acta 63:3653–3671CrossRefGoogle Scholar
  48. Ziegler PA (1990) Geological Atlas of Western and Central Europe, 2nd ed. Shell Interntational Petroleum Maatschappij BV, distributed by Geological Society Publishing House Bath, pp 239Google Scholar
  49. Ziegler PA (1992) European Cenozoic rift system. Tectonophysics 208:91–111CrossRefGoogle Scholar
  50. Ziegler PA, Cloetingh S (2004) Dynamic processes controlling evolution of rifted basins. Earth Sci Rev 64:1–50CrossRefGoogle Scholar
  51. Ziegler PA, Dèzes P (2007) Cenozoic uplift of Variscan Massifs in the Alpine foreland: timing and controlling mechanisms. Global Planet Change 58:237–269CrossRefGoogle Scholar
  52. Zulauf G, Buess C, Dörr W, Vejnar Z (2002) 10 km Minimum throw along the West Bohemian shear zone: evidence for dramatic crustal thickening and high topography in the Bohemian Massif (European Variscides). Int J Earth Sci 91:850–864CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute of GeophysicsAcademy of Sciences of the Czech RepublicPraha 4Czech Republic

Personalised recommendations