International Journal of Earth Sciences

, Volume 100, Issue 6, pp 1413–1422

Anaerobic oxidation of methane in a cold-water coral carbonate mound from the Gulf of Cadiz

  • L. Maignien
  • D. Depreiter
  • A. Foubert
  • J. Reveillaud
  • L. De Mol
  • P. Boeckx
  • D. Blamart
  • J.-P. Henriet
  • N. Boon
Original Paper

Abstract

The Gulf of Cadiz is an area of mud volcanism and gas venting through the seafloor. In addition, several cold-water coral carbonate mounds have been discovered at the Pen Duick escarpment amidst the El Arraiche mud volcano field on the Moroccan margin. One of these mounds -named Alpha mound- has been studied to examine the impact of the presence of methane on pore-water geochemistry, potential sulphate reduction (SR) rate and dissolved inorganic carbon (DIC) budget of the mound in comparison with off-mound and off-escarpment locations. Pore-water profiles of sulphate, sulphide, methane, and DIC from the on-mound location showed the presence of a sulphate to methane transition zone at 350 cm below the sea floor. This was well correlated with an increase in SR activity. 13C-depleted DIC at the transition zone (−21.9‰ vs. Vienna Pee Dee Belemnite) indicated that microbial methane oxidation significantly contribute to the DIC budget of the mound. The Alpha mound thus represents a new carbonate mound type where the presence and anaerobic oxidation of methane has an important imprint on both geochemistry and DIC isotopic signature and budget of this carbonate mound.

Keywords

Cold-water carbonate mound Anaerobic oxidation of methane Gulf of Cadiz Methane 

References

  1. Aloisi G, Bouloubassi I, Heijs SK, Pancost RD, Pierre C, Damste JSS, Gottschal JC, Forney LJ, Rouchy JM (2002) CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps. Earth Planet Sc Lett 203:195–203CrossRefGoogle Scholar
  2. Blamart D, Rollion-Bard C, Cuif J-P, Juillet-Leclerc A, Lutringer C, van Weering TCE, Henriet J-P (2005) C and O isotopes in a deep-sea coral (Lophelia pertusa) related to skeletal microstructure. Springer, BrelinGoogle Scholar
  3. Borowski WS, Paull CK, Ussler W (1996) Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology 24:655–658CrossRefGoogle Scholar
  4. Borowski WS, Hoehler TM, Alperin MJ, Rodriguez NM, Paull CK (2000) Significance of anaerobic methane oxidation in methane-rich sediments overlying the Blake Ridge gas hydrates. In: Paull CK, Matsumoto R, Wallace PJ, Dillon WP (eds) Proceedings of the ocean drilling program, scientific results, vol 164, pp 87–99. http://www-odp.tamu.edu/publications/164_SR/VOLUME/CHAPTERS/SR164_09.PDF
  5. Boudreau BP (1997) Diagenetic models and their implementation. Springer, HeidelbergGoogle Scholar
  6. Chen Y, Matsumoto R, Paull CK, Ussler W, Lorenson T, Hart P, Winters W (2007) Methane-derived authigenic carbonates from the northern Gulf of Mexico - MD02 cruise. J Geochem Explor 95:1–15CrossRefGoogle Scholar
  7. Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr-Methods 14:454CrossRefGoogle Scholar
  8. Costello MJ, McCrea M, Freiwald A, Lundälv T, Jonsson L, Bett BJ, Van Weering TCE, de Haas H, Roberts JM, Allen D (2005) Role of cold-water Lophelia pertusa coral reefs as fish habitat in the NE Atlantic. Springer, BrelinGoogle Scholar
  9. De Mol B, Van Rensbergen P, Pillen S, Van Herreweghe K, Van Rooij D, McDonnell A, Huvenne V, Ivanov M, Swennen R, Henriet JP (2002) Large deep-water coral banks in the Porcupine Basin, southwest of Ireland. Mar Geol 188:193–231CrossRefGoogle Scholar
  10. Dorschel B, Hebbeln D, Ruggeberg A, Dullo WC, Freiwald A (2005) Growth and erosion of a cold-water coral covered carbonate mound in the Northeast Atlantic during the Late Pleistocene and Holocene. Earth Planet Sc Lett 233:33–44CrossRefGoogle Scholar
  11. Dorschel B, Hebbeln D, Ruggeberg A, Dullo C (2007) Carbonate budget of a cold-water coral carbonate mound: propeller mound, porcupine seabight. Int J Earth Sci 96:73–83CrossRefGoogle Scholar
  12. Duan ZH, Moller N, Greenberg J, Weare JH (1992) The prediction of methane solubility in natural-waters to high ionic-strength from 0-degrees-C to 250-degrees-C and from 0 to 1600 bar. Geochim Cosmochim Acta 56:1451–1460CrossRefGoogle Scholar
  13. Dullo WC, Flogel S, Ruggeberg A (2008) Cold-water coral growth in relation to the hydrography of the Celtic and Nordic European continental margin. Mar Ecol-Prog Ser 371:165–176Google Scholar
  14. Ferdelman TG, Kano A, Williams T, Cragg BA, Frank TD, Gharib JJ, Leonide P, Mangelsdorf K, Sakai S, Samrikin VA, Spivack AJ, Par IES (2006) Scientific drilling of a cold-water carbonate mound: shipboard biogeochemical results from IODP Expedition 307. Geochim Cosmochim Acta 70:A170–A170CrossRefGoogle Scholar
  15. Foubert A, Depreiter D, Beck T, Maignien L, Pannemans B, Frank N, Blamart D, Henriet JP (2008) Carbonate mounds in a mud volcano province off north-west Morocco: key to processes and controls. Mar Geol 248:74–96CrossRefGoogle Scholar
  16. Frank N, Ricard E, Lutringer-Paquet A, van der Land C, Colin C, Blamart D, Foubert A, Van Rooij D, Henriet JP, de Haas H, van Weering T (2009) The Holocene occurrence of cold water corals in the NE Atlantic: implications for coral carbonate mound evolution. Mar Geol 266:129–142CrossRefGoogle Scholar
  17. Fry JC (1988) Determination of biomass. In: Austin B (ed) Methods in aquatic bacteriology. Wiley, Chichester, pp 27–72Google Scholar
  18. Gieskes JM, Gamo T, Brumsack H (1991) Chemical methods for interstitial water analysis aboard JOIDES Resolution. ODP Tech. Note, 15 Available from World Wide Web: <http://www- odp.tamu.edu/publications/tnotes/tn15/f_chem1.htm>
  19. Girguis PR, Cozen AE, DeLong EF (2005) Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor. Appl Environ Microb 71:3725–3733CrossRefGoogle Scholar
  20. Henriet J-P, De Mol B, Pillen S, Vanneste M, Van Rooij D, Versteeg W, Croker PF, Shannon PM, Unnithan V, Bouriak S, Chachkine P (1998) Porcupine-Belgica 97 shipboard party, gas hydrate crystals may help build reefs. Nature 391:648–649CrossRefGoogle Scholar
  21. Hensen C, Nuzzo M, Hornibrook E, Pinheiro LM, Bock B, Magalhaes VH, Bruckmann W (2007) Sources of mud volcano fluids in the Gulf of Cadiz – indications for hydrothermal imprint. Geochim Cosmochim Acta 71:1232–1248Google Scholar
  22. Hoehler TM, Alperin MJ, Albert DB, Martens CS (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment - evidence for a methanogen-sulfate reducer consortium. Global Biogeochem Cycles 8:451–463CrossRefGoogle Scholar
  23. Huvenne VAI, Croker PF, Henriet JP (2002) A refreshing 3D view of an ancient sediment collapse and slope failure. Terra Nova 14:33–40CrossRefGoogle Scholar
  24. Iversen N, Jorgensen BB (1985) Anaerobic methane oxidation rates at the sulfate methane transition in marine-sediments from Kattegat and Skagerrak (Denmark). Limnol Oceanogr 30:944–955CrossRefGoogle Scholar
  25. Jorgensen BB, Bottcher ME, Luschen H, Neretin LN, Volkov II (2004) Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochim Cosmochim Acta 68:2095–2118CrossRefGoogle Scholar
  26. Kallmeyer J, Ferdelman TG, Weber A, Fossing H, Jorgensen BB (2004) A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements. Limnol Oceanogr-Methods 2:171–180Google Scholar
  27. Kenyon NH, Ivanov MK, Akhmetzhanov AM, Akhmanov GG (2002) Geological processes in the Mediterranean and Black Seas and North East Atlantic. IOC Technical Series No. 62, UNESCOGoogle Scholar
  28. Kenyon NH, Akhmetzhanov AM, Wheeler AJ, van Weering TCE, de Haas H, Ivanov MK (2003) Giant carbonate mud mounds in the southern Rockall Trough. Mar Geol 195:5–30CrossRefGoogle Scholar
  29. Kenyon NH, Ivanov MK, Akhmetzhanov AM, Akhmanov GG (2006) Interdisciplinary geoscience studies of the Gulf of Cadiz and Western Mediterranean basins. IOC Technical Series No. 70, UNESCOGoogle Scholar
  30. Knab NJ, Cragg BA, Hornibrook ERC, Holmkvist L, Pancost RD, Borowski C, Parkes RJ, Jorgensen BB (2009) Regulation of anaerobic methane oxidation in sediments of the Black Sea. Biogeosciences 6:1505–1518CrossRefGoogle Scholar
  31. Leon R, Somoza L, Medialdea T, Maestro A, Diaz-del-Rio V, Fernandez-Puga MD (2006) Classification of sea-floor features associated with methane seeps along the Gulf of Cadiz continental margin. Deep-Sea Res Part II-Top Stud Oceanogr 53:1464–1481CrossRefGoogle Scholar
  32. Loveley D (2006) Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. In: Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, Dworkin M (eds) The prokaryotes, 3rd edn. 2, 635–658Google Scholar
  33. Luff R, Wallmann K (2003) Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: Numerical modeling and mass balances. Geochim Cosmochim Acta 67:3403–3421CrossRefGoogle Scholar
  34. Luff R, Wallmann K, Aloisi G (2004) Numerical modeling of carbonate crust formation at cold vent sites: significance for fluid and methane budgets and chemosynthetic biological communities. Earth Planet Sc Lett 221:337–353CrossRefGoogle Scholar
  35. Nauhaus K, Boetius A, Kruger M, Widdel F (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ Microbiol 4:296–305CrossRefGoogle Scholar
  36. Nauhaus K, Treude T, Boetius A, Kruger M (2005) Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ Microbiol 7:98–106CrossRefGoogle Scholar
  37. Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F (2007) In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ Microbiol 9:187–196CrossRefGoogle Scholar
  38. Niemann H, Duarte J, Hensen C, Omoregie E, Magalhaes VH, Elvert M, Pinheiro LM, Kopf A, Boetius A (2006) Microbial methane turnover at mud volcanoes of the Gulf of Cadiz. Geochim Cosmochim Acta 70:5336–5355CrossRefGoogle Scholar
  39. Niewohner C, Hensen C, Kasten S, Zabel M, Schulz HD (1998) Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Geochim Cosmochim Acta 62:455–464CrossRefGoogle Scholar
  40. Parkes RJ, Cragg BA, Bale SJ, Getliff JM, Goodman K, Rochelle PA, Fry JC, Weightman AJ, Harvey SM (1994) Deep bacterial biosphere in pacific-ocean sediments. Nature 371:410–413CrossRefGoogle Scholar
  41. Parkes RJ, Cragg BA, Wellsbury P (2000) Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol J 8:11–28CrossRefGoogle Scholar
  42. Pinheiro LM, Ivanov MK, Sautkin A, Akhmanov G, Magalhaes VH, Volkonskaya A, Monteiro JH, Somoza L, Gardner J, Hamouni N, Cunha MR (2003) Mud volcanism in the Gulf of Cadiz: results from the TTR-10 cruise. Mar Geol 195:131–151CrossRefGoogle Scholar
  43. Poulton SW, Krom MD, Raiswell R (2004) A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochim Cosmochim Acta 68:3703–3715CrossRefGoogle Scholar
  44. Rice DD, Claypool GE (1981) Generation, accumulation, and resource potential of biogenic gas. Aapg Bull-Am Assoc Petroleum Geol 65:5–25Google Scholar
  45. Ritger S, Carson B, Suess E (1987) Methane-derived authigenic carbonates formed by subduction induced pore-water expulsion along the Oregon Washington margin. Geol Soc Am Bull 98:147–156Google Scholar
  46. Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547CrossRefGoogle Scholar
  47. Schoell M (1980) The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim Cosmochim Acta 44:649–661Google Scholar
  48. Schoell M (1983) Genetic-characterization of natural gases. Aapg Bull-Am Assoc Petroleum Geol 67:2225–2238Google Scholar
  49. Schoell M (1988) Multiple origins of methane in the earth. Chem Geol 71:1–10Google Scholar
  50. Scientists E (2005) Modern carbonate mounds: porcupine drilling. IODP Prel. Rept., 307. doi:10.2204/iodp.pr.307.2005 http://publications.iodp.org/preliminary_report/307/
  51. Seeberg-Elverfeldt J, Schluter M, Feseker T, Kolling M (2005) Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnol Oceanogr-Methods 3:361–371CrossRefGoogle Scholar
  52. Somoza L, Diaz-del-Rio V, Leon R, Ivanov M, Fernandez-Puga MC, Gardner JM, Hernandez-Molina FJ, Pinheiro LM, Rodero J, Lobato A, Maestro A, Vazquez JT, Medialdea T, Fernandez-Salas LM (2003) Seabed morphology and hydrocarbon seepage in the Gulf of Cadiz mud volcano area: acoustic imagery, multibeam and ultra-high resolution seismic data. Mar Geol 195:153–176CrossRefGoogle Scholar
  53. Stadnitskaia A, Ivanov MK, Blinova V, Kreulen R, van Weering TCE (2006) Molecular and carbon isotopic variability of hydrocarbon gases from mud volcanoes in the Gulf of Cadiz, NE Atlantic. Mar Pet Geol 23:281–296CrossRefGoogle Scholar
  54. Thamdrup B, Finster K, Fossing H, Hansen JW, Jorgensen BB (1994) Thiosulfate and sulfite distributions in porewater of marine-sediments related to manganese, iron, and sulfur geochemistry. Geochim Cosmochim Acta 58:67–73CrossRefGoogle Scholar
  55. Titschack J, Thierens M, Dorschel B, Schulbert C, Freiwald A, Kano A, Takashima C, Kawagoe N, Li X, Party IES (2009) Carbonate budget of a cold-water coral mound (Challenger Mound, IODP Exp. 307). Mar Geol 259:36–46CrossRefGoogle Scholar
  56. Treude T, Boetius A, Knittel K, Nauhaus K, Elvert M, Kruger M, Losekann T, Wallmann K, Jorgensen BB, Widdel F, Amman R (2003) Anaerobic oxidation of methane at hydrate ridge (OR). Geochim Cosmochim Acta 67:A491–A491Google Scholar
  57. Treude T, Niggemann J, Kallmeyer J, Wintersteller P, Schubert CJ, Boetius A, Jorgensen BB (2005) Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin. Geochim Cosmochim Acta 69:2767–2779CrossRefGoogle Scholar
  58. Ussler W III, Paull CK (2008) Rates of anaerobic oxidation of methane and authigenic carbonate mineralization in methane-rich deep-sea sediments inferred from models and geochemical profiles. Earth Planet Sc Lett 266:271–287Google Scholar
  59. Van Rensbergen P, Henriet J-P, Depreiter D, Hamoumi N, Ivanov M, Rachidi M (2003) Mud volcanoes, corals and carbonate crusts of the al araiche mud volcano field, Gulf of Cadiz. Results from the Belgica Cadipor and Logachev TTR-12 cruises. Geological and biological processes at deepsea European margins and oceanic basins, International Conference and Eleventh Post-Cruise Meeting of the Training-Through-Research ProgrammeGoogle Scholar
  60. Van Rensbergen P, Depreiter D, Pannemans B, Moerkerke G, Van Rooij D, Marsset B, Akhmanov G, Blinova V, Ivanov M, Rachidi M, Magalhaes V, Pinheiro L, Cunha M, Henriet JP (2005) The El arraiche mud volcano field at the Moroccan Atlantic slope, Gulf of Cadiz. Mar Geol 219:1–17CrossRefGoogle Scholar
  61. Weaver PPE, Billett DSM, Boetius A, Danovaro R, Freiwald A, Sibuet M (2004) Hotspot ecosystem research on Europe’s deep-ocean margins. Oceanography 17:123–143Google Scholar
  62. Webster G, Blazejak A, Cragg BA, Schippers A, Sass H, Rinna J, Tang XH, Mathes F, Ferdelman TG, Fry JC, Weightman AJ, Parkes RJ (2009) Subsurface microbiology and biogeochemistry of a deep, cold-water carbonate mound from the Porcupine Seabight (IODP Expedition 307). Environ Microbiol 11:239–257CrossRefGoogle Scholar
  63. Wheeler AJ, Beyer A, Freiwald A, de Haas H, Huvenne VAI, Kozachenko M, Roy KOL, Opderbecke J (2007) Morphology and environment of cold-water coral carbonate mounds on the NW European margin. Int J Earth Sci 96:37–56CrossRefGoogle Scholar
  64. Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314CrossRefGoogle Scholar
  65. Whiticar MJ, Faber E, Schoell M (1986) Biogenic methane formation in marine and fresh-water environments – Co2 reduction vs acetate fermentation isotope evidence. Geochim Cosmochim Acta 50:693–709Google Scholar
  66. Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes. Springer, New York, pp 3352–3378Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • L. Maignien
    • 1
    • 2
  • D. Depreiter
    • 2
  • A. Foubert
    • 2
  • J. Reveillaud
    • 5
  • L. De Mol
    • 2
  • P. Boeckx
    • 4
  • D. Blamart
    • 3
  • J.-P. Henriet
    • 2
  • N. Boon
    • 1
  1. 1.Laboratory of Microbial Ecology and Technology (LabMET)Ghent UniversityGentBelgium
  2. 2.Renard Center of Marine Geology (RCMG)Ghent UniversityGentBelgium
  3. 3.Laboratoire des Sciences de Climat et de l’EnvironnementLaboratoire mixte CNRS/CEAGif-sur-YvetteFrance
  4. 4.Laboratory of Applied Physical ChemistryGhent UniversityGentBelgium
  5. 5.Marine Biology LaboratoryGhent UniversityGentBelgium

Personalised recommendations