Advertisement

International Journal of Earth Sciences

, Volume 99, Issue 8, pp 1763–1772 | Cite as

A new method in palaeoecology: fish community structure indicates environmental changes

  • Ulrich SchmölckeEmail author
  • Kenneth Ritchie
Original Paper

Abstract

A new method to reconstruct aquatic palaeoenvironments is presented. It is based on a non-metrical ‘fish environment reconstruction index’ (FERI), calculated for the total fish community recorded at an archaeological site. As an example, a FERI is generated for the Baltic Sea using the ecological requirements of northern European fish species. The present study evaluates the proposed method by using fish bone assemblages from a region (the middle Holocene Baltic Sea coast) with well-studied hydrographic history. The bones originate from consecutive human riparian and coastal settlements of hunter-gatherers. The results obtained for the parameters salinity and sediment structure correlate well with geological knowledge. The new method shows a successive change from freshwater to brackish and finally to nearly marine conditions before, during, and towards the end of the marine transgression that created the present Baltic Sea. Additionally, a shift in the sediment structure from muddy to sandy/rocky conditions is recognisable.

Keywords

Coastal development Succession Habitat indicator Littorina transgression Holocene Baltic Sea 

Notes

Acknowledgments

We are grateful to H. Lübke and S. Hartz for their detailed information about the Mesolithic settlements, to B. Gustafsson and S. Wastegård for information about the Holocene salinity of the Baltic Sea, and to E. A. Nikulina for valuable comments and discussions. The German Research Foundation (DFG) supported parts of the research.

References

  1. Björck S (1995) A review of the history of the Baltic Sea 13.0–8.0 ka BP. Quat Int 27:19–40CrossRefGoogle Scholar
  2. Björck N, Hjärtner-Holdar E (2008) Mellan hav och skog. Högmossen, en stenåldersmiljö vid en skimrande strand i norra Uppland. Riksantikvarieämbetet, UV-Uppsala. Arkeologi E4 Uppland Studier 6:99–138Google Scholar
  3. Broughton JM, Madsen DB, Quade J (2000) Fish remains from homestead cave and lake levels of the past 13,000 years in the Bonneville Basin. Quat Res 53:392–401CrossRefGoogle Scholar
  4. Butler VL (1994) The role of bone density in structuring prehistoric Salmon bone assemblages. J Archaeol Sci 21:413–424CrossRefGoogle Scholar
  5. Casteel RW (1976) Comparison of column and whole unit samples for recovering fish remains. World Archaeol 8:192–196CrossRefGoogle Scholar
  6. Curry A (2006) A Stone Age world beneath the Baltic Sea. Science 314:1533–1535CrossRefGoogle Scholar
  7. Enghoff IB (1994) Fishing in Denmark during the Ertebølle period. Int J Osteoarchaeol 4:65–96CrossRefGoogle Scholar
  8. Enghoff IB (2007) Viking age fishing in Denmark, with particular focus on the freshwater site Viborg, methods of excavation, and smelt fishing. In: Hüster-Plogmann H (ed). The role of fish in ancient time. Proceedings of the 13th meeting of the ICAZ fish remains working group in October 4th–9th, Basel/August 2005, pp 69–76 (Marie Leidorf: Rahden/Westf.)Google Scholar
  9. Enghoff IB, MacKenzie BR, Nielsen EE (2007) The Danish fish fauna during the warm Atlantic period (ca. 7000–3900 bc): forerunner of future changes? Fish Res 87:167–180CrossRefGoogle Scholar
  10. Froese R, Pauly D (2007) FishBase. World Wide Web electronic publication. www.fishbase.org, version (08/2007)
  11. Gordon EA (1993) Screen size and differential faunal recovery: a Hawaiian example. J Field Archaeol 20:453–460CrossRefGoogle Scholar
  12. Gustafsson B, Westman P (2002) On the causes for salinity variations in the Baltic Sea during the last 8500 years. Paleoceanography 17:1–14CrossRefGoogle Scholar
  13. Harff J, Lampe R, Lemke W, Lübke H, Lüth F, Meyer M, Tauber F (2005) The Baltic Sea—a model ocean to study interrelations of geosphere, ecosphere, and anthroposphere in the coastal zone. J Coast Res 21:441–446CrossRefGoogle Scholar
  14. Harff J, Lemke W, Lampe R, Lüth F, Lübke R, Meyer M, Tauber F, Schmölcke U (2007) The Baltic Sea coast—a model of interrelations among geosphere, climate, and anthroposphere. In: Harff J, Hay WW, Tetzlaff DM (eds). Coastline change—interrelation of climate and geological processes. The Geological Society of America, pp 133–143Google Scholar
  15. Harff J, Meyer M, Lampe R (2008) Changing Holocene coastal zones of the Baltic Sea—a modelling approach. Reports of the Roman-Germanic Commission (in press)Google Scholar
  16. Hartz S, Lübke H (2006) New evidence for a chronostratigraphic division of the Ertebølle culture and the earliest funnel beaker culture on the Southern Mecklenburg Bay. In: Kind C-J (ed) After the ice age. Settlements, subsistence and social development in the Mesolithic of Central Europe. Konrad Theiss Verlag, Stuttgart, pp 59–74Google Scholar
  17. Janke W, Lampe R (2000) The sea-level rise on the South Baltic coast over the past 8000 years—new results and new questions. Beiträge zur Ur- und Frühgeschichte Mecklenburg-Vorpommerns 35:393–398Google Scholar
  18. Jensen JB, Bennike O, Witkowski A, Lemke W, Kuijpers A (1999) Early Holocene history of the south-western Baltic Sea: the Ancylus Lake stage. Boreas 28:437–453CrossRefGoogle Scholar
  19. Khlebovich VV (1968) Some peculiar features of the hydrochemical regime and the fauna of mesohaline waters. Mar Biol 2:47–49CrossRefGoogle Scholar
  20. Kliewe H, Janke W (1982) Der holozäne Wasserspiegelanstieg der Ostsee im nordöstlichen Küstengebiet der DDR. Petermanns Geogr Mitt 126:65–74Google Scholar
  21. Lam YM, Pearson OM (2005) Bone density studies and the interpretation of the faunal record. Evol Anthropol 14:99–108CrossRefGoogle Scholar
  22. Lampe R, Endtmann E, Janke W, Meyer H, Lübke H, Harff J, Lemke W (2005) A new relative sea-level curve for the Wismar Bay, N-German Baltic coast. Meyniana 57:5–35Google Scholar
  23. Lappalaien A, Shurukhin A, Alekseev G, Rinne J (2000) Coastal fish community along the northern coast of the Gulf of Finland, Baltic Sea: responses to salinity and eutrophication. Int Rev Hydrobiol 85:687–696CrossRefGoogle Scholar
  24. Lubinski PM (1996) Fish heads, fish heads: an experiment on differential bone preservation in a Salmonid fish. J Archaeol Sci 23:175–181CrossRefGoogle Scholar
  25. Lübke H (2002) Submarine Stone Age settlements as indicators of sea-level changes and the coastal evolution of the Wismar Bay area. In: Lampe R (ed) Holocene evolution of the South-Western Baltic Coast—geological, archaeological and Palaeo-environmental aspects. Greifswalder Geographische Arbeiten Band 27, Greifswald, pp 203–210Google Scholar
  26. Lübke H (2003) New investigations on submarine stone age settlements in the Wismar Bay Area. In: Kindgren H, Knutsson K, Larsson L, Loeffler D, Åkerlund A (eds). Mesolithic on the move. Proceedings of the 6th international conference on the Mesolithic in Europe, Stockholm 2000. Oxbow, Oxford, pp 69–78Google Scholar
  27. Lyman RL (1984) Bone density and differential survivorship of fossil classes. J Anthropol Archaeol 3:259–299CrossRefGoogle Scholar
  28. Mann RHK (1996) Environmental requirements of European non-salmonid fishes in rivers. Hydrobiologia 323:223–235CrossRefGoogle Scholar
  29. Matuszek JE, Goodier J, Wales DA (1990) The occurrence of cyprinidae and other small fish species in relation to pH in Ontario Lakes. Trans Am Fish Soc 119:850–861CrossRefGoogle Scholar
  30. Meyer M, Harff M (2005) Modelling Palaeo coastline changes of the Baltic Sea. J Coast Res 21:598–609CrossRefGoogle Scholar
  31. Nellen W (1968) Der Fischbestand und die Fischwirtschaft in der Schlei. Biologie, Wachstum, Nahrung und Fangerträge der häufigsten Fischarten. Schr Naturw Ver Schlesw Holst 38:5–50Google Scholar
  32. Neubaur R, Jaeckel S (1936) Die Schlei und ihre Fischereiwirtschaft. Schr Naturw Ver Schlesw Holst 21:440–482Google Scholar
  33. Noe-Nygaard N (1995) A dynamic model for changes in palaeoclimate, environment and ecology in Late and Postglacial time, Sjælland, Denmark. A multi-disciplinary study. Fossil Strata 37Google Scholar
  34. Nordquist B (2000) Coastal adaptations in the mesolithic. A study of coastal sites with organic remains from the Boreal and Atlantic periods in Western Sweden. Gotarc, Series B, No 13. Göteborg University, GöteborgGoogle Scholar
  35. Odum WE (1988) Comparative ecology of tidal freshwater and salt marshes. Annu Rev Ecol Syst 19:147–176CrossRefGoogle Scholar
  36. Ojaveer E, Lindroth A, Bagge O, Lehtonen H, Toivonen J (1981) Fishes and fisheries. In: Voipo A (ed) The Baltic Sea. Elsevier, Amsterdam, pp 275–349CrossRefGoogle Scholar
  37. Olson C (2008) Neolithic fisheries. Osteoarchaeology of fish remains in the Baltic Sea region. Theses and papers in Osteoarchaeology No. 5, Stockholm UniversityGoogle Scholar
  38. Reitz EJ, Wing ES (2001) Zooarchaeology. Cambridge University Press, CambridgeGoogle Scholar
  39. Remane A (1934) Die Brackwasserfauna. Zool Anzeiger (Suppl 7):34–74Google Scholar
  40. Remane A, Schlieper C (1971) Biology of brackish water. Wiley-Interscience, New YorkGoogle Scholar
  41. Rößler D (2006) Reconstruction of the Littorina transgression in the Western Baltic Sea. Marine Science Reports 67. Baltic Sea Research Institute, WarnemündeGoogle Scholar
  42. Rößler D, Lemke W, Moros M (2009) Reconstruction of the Littorina transgression in the Western Baltic Sea. Reports of the Roman-Germanic Commission (in press)Google Scholar
  43. Schmölcke U, Heinrich D (2006) Die Tierknochen aus dem Hafen von Haithabu–Schlämmfunde. In: Schietzel K (ed) Untersuchungen an Skelettresten von Tieren aus dem Hafen von Haithabu. Wachholtz Verlag, Neumünster, pp 195–240Google Scholar
  44. Schmölcke U, Endtmann E, Klooss S, Meyer M, Michaelis D, Rickert B-H, Rößler D (2006) Changes of sea level, landscape and culture: the south-western Baltic area between 8800 and 4000 BC. Palaeogeogr Palaeoclimatol Palaeoecol 240:423–438CrossRefGoogle Scholar
  45. Schmölcke U, Glykou A, Heinrich D (2009) Faunal development in the south-western Baltic area. Reports of the Roman-Germanic Commission (in press)Google Scholar
  46. Sohlenius G, Emeis K-C, Andrén E, Andrén T, Kohly A (2001) Development of anoxia during the Holocene fresh-brackish water transition in the Baltic Sea. Mar Geol 177:221–242CrossRefGoogle Scholar
  47. Stahl PW (1996) The recovery and interpretation of microvertebrate bone assemblages from archaeological contexts. J Archaeol Method Theory 3:31–75CrossRefGoogle Scholar
  48. Terberger T (2006) The mesolithic hunter-fisher-gatherers on the Northern German Plain. In: Møller Hansen K, Buck Petersen K (eds). Across the western Baltic. Proceedings from an archaeological conference in Vordingborg. Sydsjællands Museum, Vordingborg, pp 111–184Google Scholar
  49. Tunnicliffe V, O’Connell JM, McQuoid MR (2001) A Holocene record of marine fish remains from the Northeastern Pacific. Mar Geol 174:197–210CrossRefGoogle Scholar
  50. Wagner CM (1999) Expression of the estuarine species minimum in littoral fish assemblages of the lower Chesapeake Bay tributaries. Estuaries 22:304–312CrossRefGoogle Scholar
  51. Wheeler A, Jones AKG (1989) Cambridge manuals in archaeology: fishes. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Centre for Baltic and Scandinavian ArchaeologySchloss GottorfSchleswigGermany

Personalised recommendations