International Journal of Earth Sciences

, Volume 99, Issue 5, pp 1007–1025 | Cite as

Deformation mechanisms of deeply buried and surface-piercing Late Pre-Cambrian to Early Cambrian Ara Salt from interior Oman

  • Johannes Schoenherr
  • Zsolt Schléder
  • Janos L. Urai
  • Ralf Littke
  • Peter A. Kukla
Original Paper


We compared microstructures of Late Pre-Cambrian to Early Cambrian Ara Salt diapirs from the deep subsurface (3.5–5 km) of the South Oman Salt Basin and from surface-piercing salt domes of the Ghaba Salt Basin. Laterally, these basins are approximately 500 km apart but belong to the same tectono-sedimentary system. The excellent data situation from both wells and outcrops allows a unique quantification of formation and deformation mechanisms, spanning from sedimentation to deep burial, and via re-activated diapir rise to surface piercement. Microstructures of gamma-irradiated and etched thin sections indicate dislocation creep and fluid-assisted grain boundary migration as the main deformation mechanisms operating in the deep subsurface. Microstructures from the surface are characterised by large ‘old’ subgrain-rich crystals. These ‘old’ grains are partly replaced by ‘new’ subgrain-free and subgrain-poor crystals, which show gamma irradiation-decorated growth bands and fibrous microstructures, indicative of pressure solution creep and static recrystallisation, most likely due to surface piercement and exposure. Using subgrain size piezometry, the maximum differential stresses for the subsurface salt is 1.7 MPa and those for the surface-piercing salt is 3.4 MPa, the latter value displaying the high stress conditions in the diapir ‘stem’ as the salt rises on its way to the surface.


Salt diapirism Oman Recrystallisation Deformation mechanism Rock salt 



The authors are grateful to Petroleum Development Oman LLC (PDO) and to the Ministry of Oil and Gas Oman for granting permission to publish this study. We thank PDO for sponsoring and providing the subsurface samples. Manfred Thomé from the Research Centre Jülich, Germany is acknowledged for gamma-irradiation of the rock salt samples and Michael Siemann from the Technical University of Clausthal-Zellerfeld (Germany) for the bromine measurements. The manuscript benefited from thorough reviews of Anne-Marie Boullier and Oliver Schenk.


  1. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11(7):36–42Google Scholar
  2. Al-Siyabi HA (2005) Exploration history of the Ara intrasalt carbonate stringers in the South Oman Salt Basin. GeoArabia 10(4):39–72Google Scholar
  3. Amthor JE, Grotzinger JP, Schröder S, Bowring SA, Ramezani J, Martin MW, Matter A (2003) Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology 31(5):431–434. doi: 10.1130/0091-7613(2003)031<0431:EOCANA>2.0.CO;2 CrossRefGoogle Scholar
  4. Amthor JE, Ramseyer K, Faulkner T, Lucas P (2005) Stratigraphy and sedimentology of a chert reservoir at the Precambrian-Cambrian Boundary: the Al Shomou Silicilyte, South Oman Salt Basin. GeoArabia 10(2):89–122Google Scholar
  5. Carter NL, Hansen FD (1983) Creep of rocksalt. Tectonophysics 92:275–333. doi: 10.1016/0040-1951(83)90200-7 CrossRefGoogle Scholar
  6. Carter NL, Hansen FD, Senseny PE (1982) Stress magnitudes in natural rock salt. J Geophys Res 87:9289–9300. doi: 10.1029/JB087iB11p09289 CrossRefGoogle Scholar
  7. Carter NL, Handin J, Russell JE, Horseman ST (1993) Rheology of rocksalt. J Struct Geol 15(9/10):1257–1271. doi: 10.1016/0191-8141(93)90168-A CrossRefGoogle Scholar
  8. Drury MR, Urai JL (1990) Deformation-related recrystallization processes. Tectonophysics 172(3–4):235–253. doi: 10.1016/0040-1951(90)90033-5 CrossRefGoogle Scholar
  9. Edgell HS (1991) Proterozoic salt basins of the Persian Gulf area and their role in hydrocarbon generation. Precambrian Res 54:1–14. doi: 10.1016/0301-9268(91)90065-I CrossRefGoogle Scholar
  10. Filbrandt JB, Al-Dhahab S, Al-Habsy A, Harris K, Keating J, Al-Mahruqi S, Ismail Ozkaya S, Richard PD, Robertson T (2006) Kinematic interpretation and structural evolution of North Oman, Block 6, since the Late Cretaceous and implications for timing of hydrocarbon migration into Cretaceous reservoirs. GeoArabia 11(1):97–140Google Scholar
  11. Fleitmann D, Burns SJ, Neff U, Mangini A, Matter A (2003) Changing moisture sources over the last 330, 000 years in Northern Oman from fluid-inclusion evidence in speleothems. Quat Res 60:223–232. doi: 10.1016/S0033-5894(03)00086-3 CrossRefGoogle Scholar
  12. Franssen RCMW (1993) Rheology of synthetic rocksalt with emphasis on the influence of deformation history and geometry on the flow behaviour. PhD thesis, Rijksuniversiteit, UtrechtGoogle Scholar
  13. Garcia Celma A, Donker H (eds) (1996) The effect of gamma radiation in salt. EUR-Report 16743ENGoogle Scholar
  14. Gorin GE, Racz LG, Walter MR (1982) Late Precambrian–Cambrian sediments of Huqf Group, Sultanate of Oman. AAPG Bull 66(12):2609–2627Google Scholar
  15. Gottstein G, Mecking H (1985) Recrystallization. In: Wenk HR (ed) Preferred orientations in deformed metals and rocks. Academic Press, New York, pp 183–218Google Scholar
  16. Guillopé M, Poirier JP (1979) Dynamic recrystallization during creep of single-crystalline halite: an experimental study. J Geophys Res 84:5557–5567. doi: 10.1029/JB084iB10p05557 CrossRefGoogle Scholar
  17. Hughes Clarke MW (1988) Stratigraphy and rock unit nomenclature in the oil-producing area of interior Oman. J Petrol Geol 11(1):5–60. doi: 10.1111/j.1747-5457.1988.tb00800.x CrossRefGoogle Scholar
  18. Hunsche U, Schulze O, Walter F, Plischke I (2003) Projekt Gorleben. Thermomechanisches Verhalten von Salzgestein. 9G2138110000, BGR, Hannover, p 157Google Scholar
  19. Husseini ML, Husseini SI (1990) origin of the infra-Cambrian salt basins of the Middle East. In: Brooks J (ed) Classic petroleum provinces, vol 50. Geological Society Special Publication, 279–292Google Scholar
  20. Looff KM (2000) Geologic and microstructural evidence of differential salt movement at Weeks Island salt dome, Iberia Parish, Louisiana. Gulf Coast Assoc Geol Soc Trans 50:543–555Google Scholar
  21. Loosveld RJH, Bell A, Terken JJM (1996) The tectonic evolution of interior Oman. GeoArabia 1(1):28–51Google Scholar
  22. Lowenstein TK, Hardie LA (1985) Criteria for the recognition of salt-pan evaporites. Sedimentology 32:627–644. doi: 10.1111/j.1365-3091.1985.tb00478.x CrossRefGoogle Scholar
  23. Mattes BW, Conway Morris S (1990) Carbonate/evaporite deposition in the Late Precambrian–Early Cambrian Ara formation of Southern Oman. Geol Soc Spec Publ 49:617–636CrossRefGoogle Scholar
  24. Mohr M, Warren JK, Kukla PA, Urai JL, Irmen A (2007) Subsurface seismic record of salt glaciers in an extensional intracontinental setting (Late Triassic of northwestern Germany). Geology 35(11):963–966. doi: 10.1130/G23378A.1 CrossRefGoogle Scholar
  25. Passchier CW, Trouw RAJ (2005) Microtectonics. Springer, Heidelberg, p 366Google Scholar
  26. Peach C, Spiers CJ (1996) Influence of crystal plastic deformation on dilatancy and permeability development in synthetic salt rock. Tectonophysics 256:101–128. doi: 10.1016/0040-1951(95)00170-0 CrossRefGoogle Scholar
  27. Peach C, Spiers CJ, Trimby PW (2001) Effect of confining pressure on dilatation, recrystallization, and flow of rock salt at 150°C. J Geophys Res 106:13315–13328. doi: 10.1029/2000JB900300 CrossRefGoogle Scholar
  28. Peryt TM, Pierre C, Gryniv SP (1998) Origin of polyhalite deposits in the Zechstein (Upper Permian) Zdrada platform (northern Poland). Sedimentology 45:565–578. doi: 10.1046/j.1365-3091.1998.00156.x CrossRefGoogle Scholar
  29. Peters JM, Filbrandt JB, Grotzinger JP, Newall MJ, Shuster MW, Al-Siyabi HA (2003) Surface-piercing salt domes of interior North Oman, and their significance for the Ara carbonate “stringer” hydrocarbon play. GeoArabia 8(2):231–270Google Scholar
  30. Popp T, Kern H, Schulze O (2001) Evolution of dilatancy and permeability in rock salt during hydrostatic compaction and triaxial deformation. J Geophys Res 106(B3):4061–4078. doi: 10.1029/2000JB900381 CrossRefGoogle Scholar
  31. Przibram K (1954) Irradiation colours in minerals. Endeavour 13(49):37–41Google Scholar
  32. Reuning L, Schoenherr J, Heimann A, Urai JL, Littke R, Kukla P (2009) Constraints on the diagenesis, stratigraphy and internal dynamics of the surface-piercing salt domes in the Ghaba salt basin (Oman): a comparison to the Ara formation in the South Oman salt basin. GeoArabia 14(3):83–120Google Scholar
  33. Schenk O, Urai JL (2004) Microstructural evolution and grain boundary structure during static recrystallization in synthetic polycrystals of Sodium Chloride containing saturated brine. Contrib Mineral Petrol 146(6):671–682. doi: 10.1007/s00410-003-0522-6 CrossRefGoogle Scholar
  34. Schenk O, Urai JL (2005) The migration of fluid-filled grain boundaries in recrystallizing synthetic bischofite: first results of in-situ high-pressure, high-temperature deformation experiments in transmitted light. J Metamorph Geol. doi: 10.1111/j.1525-1314.2005.00604.x
  35. Schenk O, Urai JL, Piazolo S (2006) Structure of grain boundaries in wet, synthetic polycrystalline, statically recrystallizing halite—evidence from cryo-SEM observations. Geofluids 6:93–104. doi: 10.1111/j.1468-8123.2006.00134.x CrossRefGoogle Scholar
  36. Schléder Z (2006) Deformation mechanisms of naturally deformed rocksalt. PhD thesis, RWTH Aachen, p 160Google Scholar
  37. Schléder Z, Urai JL (2005) Microstructural evolution of deformation-modified primary halite from the Middle Triassic Röt Formation at Hengelo, the Netherlads (special issue 5–6: Dynamics of sedimentary basins: the example of the Central European Basin system). Int J Earth Sci 94:941–955Google Scholar
  38. Schléder Z, Urai JL (2007) Deformation and recrystallization mechanisms in mylonitic shear zones in naturally deformed extrusive Eocene–Oligocene rocksalt from Eyvanekey plateau and Garmsar hills (central Iran). J Struct Geol 29:241–255. doi: 10.1016/j.jsg.2006.08.014 CrossRefGoogle Scholar
  39. Schoenherr J, Littke R, Urai JL, Kukla PA, Rawahi Z (2007a) Polyphase thermal evolution in the Infra-Cambrian Ara Group (South Oman Salt Basin) as deduced by solid bitumen maturity. Org Geochem 38(8):1293–1318. doi: 10.1016/j.orggeochem.2007.03.010 CrossRefGoogle Scholar
  40. Schoenherr J, Schléder Z, Urai JL, Fokker PA, Schulze O (2007b) Deformation mechanisms and rheology of Pre-cambrian rocksalt from the South Oman Salt Basin. In: Wallner M, Lux K-H, Minkley W, Hardy H (eds) The mechanical behaviour of salt—understanding of THMC processes in salt. Taylor & Francis, London, pp 167–173Google Scholar
  41. Schoenherr J, Urai JL, Kukla PA, Littke R, Schléder Z, Larroque JM, Newall MJ, Al-Abry N, Al-Siyabi HA, Rawahi Z (2007c) Limits to the sealing capacity of rock salt: a case study of the Infra-Cambrian Ara Salt from the South Oman Salt Basin. AAPG Bull 91(11):1541–1557. doi: 10.1306/06200706122 CrossRefGoogle Scholar
  42. Schoenherr J, Reuning L, Littke R, Urai JL, Kukla PA, Rawahi Z (2009) Halite cementation and carbonate diagenesis of intra-salt reservoirs from the Late Neoproterozoic to Early Cambrian Ara Group (South Oman Salt Basin). Sedimentology 56:567–589. doi: 10.1111/j.1365-3091.2008.00986.x CrossRefGoogle Scholar
  43. Schröder S, Schreiber BC, Amthor JE, Matter A (2003) A depositional model for the terminal Neoproterozoic-Early Cambrian Ara Group evaporites in south Oman. Sedimentology 50:879–898. doi: 10.1046/j.1365-3091.2003.00587.x CrossRefGoogle Scholar
  44. Senseny PE, Hansen FD, Russell JE, Carter NL, Handin J (1992) Mechanical behaviour of rock salt: phenomenology and micromechanisms. Int J Rock Mech Min Sci Geomech Abstr 29(4):363–378. doi: 10.1016/0148-9062(92)90513-Y CrossRefGoogle Scholar
  45. Shearman DJ (1970) Recent halite rock, Baja California, Mexico. Trans Min Metallurgy 79B:155–162Google Scholar
  46. Siemann MG, Schramm M (2000) Thermodynamic modelling of the Br partition between aqueous solutions and halite. Geochim Cosmochim Acta 64:1681–1693. doi: 10.1016/S0016-7037(99)00385-3 CrossRefGoogle Scholar
  47. Spiers CJ, Schutjens P (1990) Densification of crystalline aggregates by fluid-phase diffusional creep. In: Barber DJ, Meredith PD (eds) Deformation processes in minerals, ceramics and rocks. Unwin Hyman, pp 334–353Google Scholar
  48. Spiers CJ, Schujtens PMTM, Brezowski RH, Peach C, Liezenberg JL, Zwart HJ (1990) Experimental determination of constitutive parameters governing creep of rocksalt by pressure solution. In: Knipe RJ, Rutter EH (eds) Deformation mechanisms, rheology and tectonics, vol 24. Geological Society of London Special Publication, pp 215–227Google Scholar
  49. Ter Heege JH, de Bresser JHP, Spiers CJ (2005) Dynamic recrystallization of wet synthetic polycrystalline halite: dependence of grain size distribution on flow stress, temperature and strain. Tectonophysics 396:35–57. doi: 10.1016/j.tecto.2004.10.002 CrossRefGoogle Scholar
  50. Terken JJM, Frewin NL, Indrelid SL (2001) Petroleum systems of Oman: charge timing and risks. AAPG Bull 85(10):1817–1845Google Scholar
  51. Urai JL, Spiers CJ (2007) The effect of grain boundary water on deformation mechanism and rheology of rocksalt during long-term deformation. In: Wallner M, Lux K-H, Minkley W, Hardy H (eds) The mechanical behaviour of salt—understanding of THMC processes in salt. Taylor & Francis, London, pp 149–158Google Scholar
  52. Urai JL, Spiers CJ, Zwart HJ, Lister GS (1986) Weakening of rock salt by water during long-term creep. Nature 324(6097):554–557. doi: 10.1038/324554a0 CrossRefGoogle Scholar
  53. Urai JL, Spiers CJ, Peach C, Franssen RCMW, Liezenberg JL (1987) Deformation mechanisms operating in naturally deformed halite rocks as deduced from microstructural investigations. Geol Mijnb 66:165–176Google Scholar
  54. Valyashko MG (1956) Geochemistry of bromine in the processes of salt deposition and the use of bromine content as a genetic and prospecting criterion. Geokhimiya 6:570–589Google Scholar
  55. Wardlaw NC, Schwerdtner WM (1966) Halite-Anhydrite seasonal layers in the Middle Devonian Prairie Evaporite Formation, Saskachewan, Canada. Bull Geol Soc Am 77:331–342. doi: 10.1130/0016-7606(1966)77[331:HSLITM]2.0.CO;2 CrossRefGoogle Scholar
  56. Warren JK (2006) Evaporites: sediments, resources and hydrocarbons. Springer, Heidelberg, p 1035Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Johannes Schoenherr
    • 1
    • 5
  • Zsolt Schléder
    • 1
    • 2
  • Janos L. Urai
    • 1
  • Ralf Littke
    • 3
  • Peter A. Kukla
    • 4
  1. 1.Lehr- und Forschungsgebiet Geologie, Endogene Dynamik RWTH AachenGermany
  2. 2.Midland Valley Exploration Ltd.GlasgowUK
  3. 3.Lehrstuhl für GeologieGeochemie und Lagerstätten des Erdöls und der KohleRWTH AachenGermany
  4. 4.Geologisches Institut RWTH AachenGermany
  5. 5.ExxonMobil Exploration CompanyHoustonUSA

Personalised recommendations