Advertisement

International Journal of Earth Sciences

, Volume 99, Issue 5, pp 955–972 | Cite as

Shear-wave velocity structure of the western part of the Mediterranean Sea from Rayleigh-wave analysis

  • Victor Corchete
  • M. Chourak
Original Paper

Abstract

The lithospheric structure of the western part of the Mediterranean Sea is shown by means of S-velocity maps, for depths ranging from 0 to 35 km, determined from Rayleigh-wave analysis. The traces of 55 earthquakes, which occurred from 2001 to 2003 in and around the study area have been used to obtain Rayleigh-wave dispersion. These earthquakes were registered by 10 broadband stations located on Iberia and the Balearic Islands. The dispersion curves were obtained for periods between 1 and 45 s, by digital filtering with a combination of MFT and TVF filtering techniques. After that, all seismic events were grouped in source zones to obtain a dispersion curve for each source-station path. These dispersion curves were regionalized and after inverted according to the generalized inversion theory, to obtain shear-wave velocity models for rectangular blocks with a size of 1° × 1°. The shear velocity structure obtained through this procedure is shown in the S-velocity maps plotted for several depths. These maps show the existence of lateral and vertical heterogeneity. In these maps is possible to distinguish several types of crust with an average S-wave velocity ranging from 2.6 to 3.9 km/s. The South Balearic Basin (SBB) is more characteristic of oceanic crust than the rest of the western Mediterranean region, as it is demonstrated by the crustal thickness. We also find a similar S-wave velocity (ranging from 2.6 km/s at the surface to 3.2 km/s at 10 km depth) for the Iberian Peninsula coast to Ibiza Island, the North Balearic Basin (NBB) and Mallorca Island. In the lower crust, the shear velocity reaches a value of 3.9 km/s. The base of the Moho is estimated from 15 to 20 km under Iberian Peninsula coast to Ibiza Island, continues towards NBB and increases to 20–25 km beneath Mallorca Island. While, the SBB is characterized by a thinner crust that ranges from 10 to 15 km, and a faster velocity. A gradual increase in velocity from the north to the south (especially in the upper 25 km) is obtained for the western part of the Mediterranean Sea. The base of the crust has a shear-wave velocity value around of 3.9 km/s for the western Mediterranean Sea area. This area is characterized by a thin crust in comparison with the crustal thickness of the eastern Mediterranean Sea area. This thin crust is related with the distensive tectonics that exists in this area. The low S-wave velocities obtained in the upper mantle might be an indication of a serpentinized mantle. The obtained results agree well with the geology and other geophysical results previously obtained. The shear velocity generally increases with depth for all paths analyzed in the study area.

Keywords

FFT Inversion Rayleigh wave Shear velocity Lithosphere Balearic Islands 

Notes

Acknowledgments

The authors are grateful to Instituto Geográfico Nacional (Madrid, Spain), who provided the seismic data used in this study.

References

  1. Abo-Zena A (1979) Dispersion function computations for unlimited frequency values. Geophys J R Astr Soc 58:91–105Google Scholar
  2. Aki K, Richards PG (1980) Quantitative seismology: theory and methods. W. H. Freeman and Company, San FranciscoGoogle Scholar
  3. Ansorge J, Blundell D, Mueller S (1992) Europe’s lithosphere-seismic structure. In: Blundell D, Freeman R, Mueller S (eds) A continent revealed: the European geotraverse. Cambridge University Press, CambridgeGoogle Scholar
  4. Banda E, Ansorge J, Boloix M, Cordoba D (1980) Structure of the crust and upper mantle beneath the Balearic Islands. Earth Planet Sci Lett 49:219–230. doi: 10.1016/0012-821X(80)90066-7 CrossRefGoogle Scholar
  5. Bijwaard H, Spakman W (2000) Non linear global P-wave tomography by iterated linealized inversion. Geophys J Int 141:71–82. doi: 10.1046/j.1365-246X.2000.00053.x CrossRefGoogle Scholar
  6. Calcagnile G, Panza GF (1990) Crustal and upper mantle structure of Mediterranean areas derived from surface-wave data. Phys Earth Planet Inter 60:163–168. doi: 10.1016/0031-9201(90)90259-Z CrossRefGoogle Scholar
  7. Comas MC, Danobeitia JL, Álvarez-Marrón J, Soto JL (1997) Crustal reflections and structure in the Alboran basin: preliminary results of the ESCI Alboran survey. Rev Soc Geol Hispanica 8:529–542Google Scholar
  8. Corchete V, Chourak M, Hussein HM (2007) Shear wave velocity structure of the Sinai Peninsula from Rayleigh wave analysis. Surv Geophys 28:299–324. doi: 10.1007/s10712-007-9027-6 CrossRefGoogle Scholar
  9. Dercourt J, Zonenshain LP, Ricou L-E, Kazmin VG, Le Pichon X, Knipper AL, Grandjacquet C, Sbortshikov IM, Geyssant J, Lepvrier C, Pechersky DH, Boulin J, Sibuet J-C, Savostin LA, Sorokhtin O, Westphal M, Bazhenov ML, Lauer JP, Biju-Duval B (1986) Geological evolution of the Tethys Belt from the Atlantic to the Pamirs since the Lias. Tectonophysics 123:241–315. doi: 10.1016/0040-1951(86)90199-X CrossRefGoogle Scholar
  10. Dewey J, Helman M, Turco E, Hutton D, Knott S (1989) Kinematics of the Western Mediterranean. In: Coward M, Dietrich D, Park R (eds) Alpine tectonics, Special Publication 45, Geological Society, London, pp 265–283Google Scholar
  11. Di Luccio F, Pasyanos ME (2007) Crustal and upper mantle structure in the Eastern Mediterranean from the analysis of surface wave dispersion curves. Geophys J Int 169:1139–1152. doi: 10.1111/j.1365-246X.2007.03332.x CrossRefGoogle Scholar
  12. Dimri V (1992) Deconvolution and inverse theory. application to geophysical problems: methods in geochemistry and geophysics, vol 29. Elsevier, AmsterdamGoogle Scholar
  13. Garfunkel Z (1998) Constraints on the origin and history of the Eastern Mediterranean basin. Tectonophysics 298:5–35. doi: 10.1016/S0040-1951(98)00176-0 CrossRefGoogle Scholar
  14. Gueguen E, Doglioni C, Fernández M (1998) On the post-25 Ma geodynamic evolution of the western Mediterranean. Tectonophysics 298:259–269. doi: 10.1016/S0040-1951(98)00189-9 CrossRefGoogle Scholar
  15. Hyndman RD, Peacock SM (2003) Serpententization of the forearc mantle. Earth Planet Sci Lett 212:417–432. doi: 10.1016/S0012-821X(03)00263-2 CrossRefGoogle Scholar
  16. Jonge MD, Wortel M, Spakman W (1994) Regional scale tectonic evolution and the seismic velocity structure of the lithosphere and upper mantle: the Mediterranean region. J Geophys Res 99:12091–12108. doi: 10.1029/94JB00648 CrossRefGoogle Scholar
  17. Kearey P, Vine FJ (2004) Global tectonics, 2nd edn. Blackwell, OxfordGoogle Scholar
  18. Keilis-Borok VI (1989) Seismic surface waves in a laterally inhomogeneous earth. Kluwer Academic Publishers, LondonGoogle Scholar
  19. Koulakov I, Sobolev SV (2006) Moho depth and three-dimensional P and S structure of the crust and uppermost mantle in the Eastern Mediterranean and Middle East derived from tomographic inversion of local ISC data. Geophys J Int 164:218–235. doi: 10.1111/j.1365-246X.2005.02791.x CrossRefGoogle Scholar
  20. Li A, Fischer KM, Van der Lee S, Wysession ME (2002) Crust and upper mantle discontinuity structure beneath east North America. J Geophys Res 107(B5):2100. doi: 10.1029/2001JB000190 CrossRefGoogle Scholar
  21. Makris J, Yegorova T (2006) A 3D density velocity model between the Cretan Sea and Libya. Tectonophysics 417:201–220. doi: 10.1016/j.tecto.2005.11.003 CrossRefGoogle Scholar
  22. Marone F, van der Mejide M, van der Lee S, Giardini D (2003) Joint inversion of local, regional and teleseismic data for crustal thickness in the Eurasia-Africa plate boundary. Geophys J Int 154:499–514. doi: 10.1046/j.1365-246X.2003.01973.x CrossRefGoogle Scholar
  23. Martínez MD, Lana X, Canas JA, Badal J, Pujades L (2000) Shear-wave velocity tomography of the lithosphere-asthenosphere system beneath the Mediterranean area. Phys Earth Planet Inter 122:33–54. doi: 10.1016/S0031-9201(00)00185-0 CrossRefGoogle Scholar
  24. Martínez MD, Canas JA, Lana X, Badal J (2001) Objective regionalization of Rayleigh wave dispersion data by clustering algorithms: an application to the Mediterranean basin. Tectonophysics 330:245–266. doi: 10.1016/S0040-1951(00)00231-6 CrossRefGoogle Scholar
  25. Mauffret A, Frizon A, Lamotte D, Lallemant S, Gorini C, Maillard A (2004) E–W opening of the Algerian Basin (Western Mediterranean). Terra Nova 16:257–264. doi: 10.1111/j.1365-3121.2004.00559.x CrossRefGoogle Scholar
  26. McClusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, Gurkan O, Hamburger M, Hurst K, Kahle H, Kastens K, Kekelidze G, King R, Kotzev V, Lenk O, Mahmoud S, Mishin A, Nadariva M, Ouzounis A, Paradissis D, Peter Y, Prilepin M, Reilinger R, Sanli I, Seeger H, Tealeb A, Toksöz MN, Veis C (2000) Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res 105:5695–5719Google Scholar
  27. McClusky S, Reilinger R, Mahmoud S, Ben Sari D, Tealeb A (2003) GPS constraints on Africa (Nubia) and Arabia plate motions. Geophys J Int 155:126–138. doi: 10.1046/j.1365-246X.2003.02023.x CrossRefGoogle Scholar
  28. Megna A, Morelli A (1994) Determination of Moho depth and dip beneath MedNet station AQU by analysis of broadband receiver functions. Ann Geofis 37:913–928Google Scholar
  29. Meissner R, Wever T, Flüh E (1987) The Moho in Europe—implications for crustal development. Ann Geophys 5B:357–364Google Scholar
  30. Mooney W, Laske G, Masters T (1998) CRUST 5.1: a global crustal model at 5° × 5°. J Geophys Res 103:727–747. doi: 10.1029/97JB02122 CrossRefGoogle Scholar
  31. Pascal G, Mauffret A, Patriat P (1993) The ocean-continent boundary in the Gulf of Lyon from analysis of expanding spread profiles and gravity modelling. Geophys J Int 113:701–726. doi: 10.1111/j.1365-246X.1993.tb04662.x CrossRefGoogle Scholar
  32. Paulssen H, Visser J (1993) The crustal structure in Iberia inferred from P-wave coda. Tectonophysics 221:111–123. doi: 10.1016/0040-1951(93)90032-F CrossRefGoogle Scholar
  33. Piromallo C, Morelli A (2003) P wave tomography of the mantle under the Alpine-Mediterranean area. J Geophys Res 108, doi: 10.1029:2002JB001757
  34. Sandvol E, Seber D, Calvert A, Barazangi M (1998) Grid search modelling of receiver functions: implications for crustal structure in the Middle East and North Africa. J Geophys Res 103:26899–26917. doi: 10.1029/98JB02238 CrossRefGoogle Scholar
  35. Shapiro N, Ritzwoller M (2002) Monte-Carlo inversion for a global Shear velocity model of crust and mantle. Geophys J Int 151:88–105. doi: 10.1046/j.1365-246X.2002.01742.x CrossRefGoogle Scholar
  36. Spakman W (1991) Delay-time tomography of the upper mantle below Europe, the Mediterranean and Minor Asia. Geophys J Int 107:309–332. doi: 10.1111/j.1365-246X.1991.tb00828.x CrossRefGoogle Scholar
  37. Torné M, Fernández M, Comas M, Soto J (2000) Lithospheric structure beneath the Alboran Basin, results from 3-D gravity modeling and tectonic relevance. J Geophys Res 105:3209–3228. doi: 10.1029/1999JB900281 CrossRefGoogle Scholar
  38. Van der Meijde M, Van der Lee S, Giardini D (2003) Crustal structure beneath broad-band seismic stations in the Mediterranean region. Geophys J Int 152:729–739. doi: 10.1046/j.1365-246X.2003.01871.x CrossRefGoogle Scholar
  39. Wortel M, Spakman W (2000) Subduction and slab detachment in the Mediterranean-Carpathian region. Science 290:1910–1917. doi: 10.1126/science.290.5498.1910 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Higher Polytechnic SchoolUniversity of AlmeriaAlmeriaSpain
  2. 2.Faculté Polidisciplinaire d’ErrachidiaUniversity of Moulay IsmaïlBoutalamineMorocco
  3. 3.NASG (North Africa Seismological Group)GelderlandThe Netherlands

Personalised recommendations