International Journal of Earth Sciences

, Volume 99, Issue 4, pp 891–907 | Cite as

Bottom to top lithosphere structure and evolution of western Eger Rift (Central Europe)

  • Vladislav Babuška
  • Jiří Fiala
  • Jaroslava Plomerová
Original Paper


We present model of the structure and development of the entire lithosphere beneath the western Eger Rift (ER). Its crustal architecture and paths of volcanic products are closely related to sutures/boundaries of uppermost mantle domains distinguished by different orientations of olivine fabric, derived from 3-D analysis of seismic anisotropy. Three different fabrics of the mantle lithosphere belong to the Saxothuringian (ST), Teplá-Barrandian (TB) and Moldanubian (MD) microplates assembled during the Variscan orogeny. Dipping fossil (pre-assembly) olivine orientations, consistent within each unit, do not support any voluminous mantle delamination. The variable rift structure and morphology depend on the character of the pre-rift suture between the northern ST unit and the TB/MD units in the southern rift flank. The proper rift with typical graben morphology has developed above the steep lithosphere-scale suture between the ST and TB units. This subduction-related boundary originated from the closure of the ST Ocean. Parts of the crust and mantle lithosphere were dragged there into asthenospheric depths and then rapidly uplifted. The suture is marked by abrupt change in the mantle fabric and sharp gradients in regional gravity field and in metamorphic grade. The secular TB-side-down normal movement is reflected in deep sedimentary basins, which developed since the Carboniferous to Cenozoic and in topography. The graben morphology of the ER terminates above the “triple junction” of the ST, TB and MD mantle lithospheres. The junction is characterized by offsets of surface boundaries of the tectonic units from their mantle counterparts indicating a detachment of the rigid upper crust from the mantle lithosphere. The southwest continuation of the rift features in Bavaria is expressed in occurrences of Cenozoic sediments and volcanics above an inclined broad transition zone between the ST and MD lithospheres. Schematic scenario of evolution of the region consists mainly of a subduction of the ST lithosphere to depths around 140 km, exhumation of HP-HT rocks and the post-tectonic granitoid plutonism.


Western Bohemian Massif Eger (Ohře) Rift Lithosphere structure and development Mantle seismic anisotropy 



We are grateful to G. Zulauf and V. Kachlík for critical comments on an early version of the manuscript and especially to J. Kotková and K. Schulmann for their thorough reviews and expert advice, which substantially improved the paper. This work was supported by the Grant Agency of the Czech Republic under project 205/07/1088 and by project IAA300120709 of the Grant Agency of the Academy of Sciences of the Czech Republic.


  1. Babuška V, Plomerová J (2001) Subcrustal lithosphere around the Saxothuringian–Moldanubian Suture Zone—a model derived from anisotropy of seismic wave velocities. Tectonophysics 332:85–199Google Scholar
  2. Babuška V, Plomerová J (2003) BOHEMA seismic experiment: search for an active magmatic source in the deep lithosphere of central Europe. EOS, Trans Am Geophys Union 84:409–417Google Scholar
  3. Babuška V, Plomerová J (2006) European mantle lithosphere assembled from rigid microplates with inherited seismic anisotropy. Phys Earth Planet Inter 158:264–280. doi: 10.1016/j.pepi.2006.01.010 CrossRefGoogle Scholar
  4. Babuška V, Plomerová J (2008) Control of paths of Quaternary volcanic products in western Bohemian Massif by rejuvenated Variscan triple junction of ancient microplates. Studia Geophys Geod 52:607–629CrossRefGoogle Scholar
  5. Babuška V, Plomerová J, Vecsey L, Granet M, Achauer U (2002) Seismic anisotropy of the French Massif Central and predisposition of Cenozoic rifting and volcanism by Variscan suture hidden in the mantle lithosphere. Tectonics 21:11-1–11-20Google Scholar
  6. Babuška V, Plomerová J, Fischer T (2007) Intraplate seismicity in the western Bohemian Massif (central Europe): a possible correlation with a paleoplate junction. J Geodyn 44:149–159. doi: 10.1016/j.jog.2007.02.004 CrossRefGoogle Scholar
  7. Babuška V, Plomerová J, Vecsey L (2008) Mantle fabric of western Bohemian Massif (central Europe) constrained by 3D seismic P and S anisotropy. Tectonophysics. doi: 10.1016/j.tecto.2008.01.020 (in press)
  8. Bailey KD, Wooley AR (1999) Episodic rift magmatism: the need for a new paradigm in global dynamics. Geolines (Prague) 9:15–20Google Scholar
  9. Bankwitz P, Schneider G, Kämpf H, Bankwitz E (2003) Structural characteristics of epicentral areas in Central Europe: study case Cheb Basin (Czech Republic). J Geodyn 35:5–32CrossRefGoogle Scholar
  10. Behr HJ, Conrad W, Miller A, Trzebski R (2002) Compilation, Linsser filtering and interpretation of the gravity map of Germany and adjacent regions at a scale of 1:1,00,000. Z geol Wiss 30:385–402Google Scholar
  11. Bird P (1978) Continental delamination and the Colorado Plateau. J Geophys Res 84:7561–7571Google Scholar
  12. Bräuer K, Kämpf H, Niedermann S, Strauch G (2005) Evidence for ascending upper mantle-derived melt beneath the Cheb basin, central Europe. Geophys Res Lett 32:L08303,1–4 doi: 10.1029/2004GL022205
  13. Cháb J, Žáček V (1994) Metamorphism of the Teplá Crystalline complex, vol 94-3. KTB Report, pp 33–37. HannoverGoogle Scholar
  14. Chemenda AI, Mattauer M, Malavieille J, Bokun AN (1995) A mechanism for syn-collisional rock exhumation and associated normal faulting: results from physical modelling. Earth Planet Sci Lett 132:225–232CrossRefGoogle Scholar
  15. Christensen NI, Medaris LG, Wang HF, Jelínek E (2001) Depth variation of seismic anisotropy and petrology in central European lithosphere: a tectonothermal synthesis from spinel lherzolite. J Geophys Res 106:645–664CrossRefGoogle Scholar
  16. Dallmeyer RD, Franke W, Weber K (eds) (1995) Pre-Permian geology of Central and Eastern Europe. Springer, BerlinGoogle Scholar
  17. DEKORP Research Group (1994) The deep reflection seismic profiles DEKORP 3/MVE-90. Z Geol Wiss 22(6):623–684Google Scholar
  18. Emmermann R, Lauterjung J (1997) The German continental deep drilling program KTB: overview and major results. J Geophys Res 102:18179–18201CrossRefGoogle Scholar
  19. Fiala J, Matějovská O, Vaňková V (1988) Bohemian Massif Granulites: possible representative of anomalous lower crust. Earth Planet Sci Lett 51:125–127Google Scholar
  20. Finger F, Gerde A, Janoušek V, Ren M, Riegler G (2007) Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo–Moldanubian tectonometamorphic phases. J Geosci 52:9–28. doi: 10.3190/jgeosci.005 CrossRefGoogle Scholar
  21. Fischer T, Horálek J (2003) Space-time distribution of earthquake swarms in the principal focal zone of the NW Bohemia/Vogtland seismoactive region: period 1985–2001. J Geodyn 35:125–144CrossRefGoogle Scholar
  22. Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geological Society London Special Publications 179, pp 35–61Google Scholar
  23. Franke W, Stein E (2000) Exhumation of high-grade rocks in the Saxo-Thuringian Belt: geological constraints and geodynamic concepts. In: Franke W, Haak W, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geological Society London Special Publications 179, pp 337–354Google Scholar
  24. Franke W, Dallmeyer RD, Weber K (1995) Geodynamic evolution. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin, pp 579–593Google Scholar
  25. Gebauer D (1991) Two Paleozoic high-pressure events in a garnet-peridotite of northern Bohemia, Czechoslovakia. In: Abstracts of the 2nd eclogite field symposium, Granada. Terra Abstracts 3Google Scholar
  26. Geissler WH, Kampf H, Kind R, Bräuer K, Klinge K, Plenefisch T, Horálek J, Zedník J, Nehybka V (2005) Seismic structure and location of a CO2 source in the upper mantle of the western Eger (Ohře) Rift, central Europe. Tectonics 24:TC5001. doi: 10.1029/2004TC001672 CrossRefGoogle Scholar
  27. Grygar R, Grmela A, Jelínek J, Pöpperl J, Galek R (2006) Tectonic setting of Sokolov basin in relation to prediction of thermal water discharge zones. Geolines (Prague) 20:44–45Google Scholar
  28. Heuer B, Geissler WH, Kind R, Kämpf H (2006) Seismic evidence for asthenospheric updoming beneath the western Bohemian Massif, central Europe. Geoph Res Lett 33:L05311. doi: 10.1029/2005GL025158 CrossRefGoogle Scholar
  29. Horálek J, Fischer T, Boušková A, Jedlička P (2000) The western Bohemia/Vogtland region in the light of the WEBNET network. Stud Geophys Geod 44:107–125CrossRefGoogle Scholar
  30. Horálek J, Šílený J, Fischer T (2002) Moment tensors of the January 1997 earthquake swarm in West Bohemia (Czech Republic). Double-couple vs. non-double-couple events. Tectonophysics 356:65–85CrossRefGoogle Scholar
  31. Hrubcová P, Sroda P, Špičák A, Guterch A, Grad M, Keller GR, Brueckl E, Thybo H (2005) Crustal and uppermost mantle structure of the Bohemian Massif based on CELEBRATION 2000 data. J Geophys Res 110:B11305. doi: 101029/2004JB003080 CrossRefGoogle Scholar
  32. Hurtig E, Čermák V, Haenel R, Zui V (eds) (1992) Geothermal Atlas of Europe. Hermann Haack Verlagsgesellschaft mbH, Geographisch-Kartographische Anstalt, Gotha. Set of 36 maps and Explanatory Note, 156 ppGoogle Scholar
  33. Jelínek E, Štědrá V, Cháb J (1997) The Mariánské Lázně complex. In: Vrána S, Štědrá V (eds) Geological model of western Bohemia related to the KTB borehole in Germany. J Geol Sci (Prague) 47:61–70Google Scholar
  34. Jindřich V (1971) New views in tectonic significance of platform sediments in the Bohemian Massif, Czechoslovakia. Geol Soc Am Bull 82:763–768CrossRefGoogle Scholar
  35. Kachlík V (1997) The Kladská Unit. In: Vrána S, Štědrá V (eds) Geological model of western Bohemia related to the KTB borehole in Germany. J Geol Sci (Prague) 47:70–80Google Scholar
  36. Kachlík V (1994) The Kladská unit—petrological and structural evidence for Variscan thrusting of the Mariánské Lázně complex over the Saxothuringian terrane (West Bohemia). KTB Report 94–3:19–31 HannoverGoogle Scholar
  37. Kämpf H, Peterek A, Rohrmüller J, Kümpel HJ, Geissler WH (2005) The KTB Deep Crustal Laboratory and the western Eger Graben. In: Koch R, Röhling HG (eds) GeoErlangen 2005 System Earth—Biosphere Coupling, Regional Geology of Central Europe, Exkursionsführer. Schriftenreihe Deutsche Gesellschaft für Geowissenschaften, H 40, pp 37–107, Hannover (ISBN-3-932537-35-1)Google Scholar
  38. Klápová H, Konopásek J, Schulmann K (1998) Eclogites from the Czech part of the Erzgebirge: multi-stage metamorphic and structural evolution. J Geol Soc Lond 155:567–583CrossRefGoogle Scholar
  39. Konopásek J, Schulmann K (2005) Contrasting Early Carboniferous field geotherms: evidence for accretion of a thickened orogenic root and subducted Saxothuringian crust (Central European Variscides). J Geol Soc Lond 162:463–470CrossRefGoogle Scholar
  40. Konopásek J, Schulmann K, Lexa O (2001) Structural evolution of the central part of the Krušné hory (Erzgebirge) Mountains in Czech Republic—evidence for changing stress regime during Variscan compression. J Struct Geol 23:1373–1392CrossRefGoogle Scholar
  41. Kopecký L (1978) Neoidic taphrogenic evolution and young alkaline volcanism of the Bohemian Massif. Sbor geol věd, Geol (Prague) 31:91–107Google Scholar
  42. Kopecký L, Sattran V (1966) Buried occurrences of pyrope-peridotite and the structure of the crystalline basement in the extreme SW of the České středohoří mountains. Krystalinikum (Prague) 4:65–86Google Scholar
  43. Kotková J (1993) Tectonometamorphic history of lower crust in the Bohemian Massif—examples of north Bohemian granulites. Spec Pap Czech Geol Survey (Prague) 2:1–42Google Scholar
  44. Kotková J (2007) High-pressure granulites of the Bohemian Massif: recent advances and open questions. J Geosci 52:45–71CrossRefGoogle Scholar
  45. Kotková J, Kröner A, Todt W, Fiala J (1996) Zircon dating of North Bohemian granulites, Czech Republic: further evidence for the Lower Carboniferous high-pressure event in the Bohemian Massif. Geol Rundsch 85:154–161CrossRefGoogle Scholar
  46. Kováříková P, Siebel W, Jelínek E, Štemprok M, Kachlík V, Holub FV, Blecha V (2007) Petrology, geochemistry and zircon age for redwitzite at Abertamy, NW Bohemian Massif (Czech Republic): tracing the mantle component in Late Variscan intrusions. Chemie der Erde 67:151–174CrossRefGoogle Scholar
  47. Kreuzer H, Vejnar Z, Schüssler U, Okrusch M, Seidel E (1992) K–Ar dating on the Teplá–Domažlice Zone at the western margin of the Bohemian Massif. In: Kukal Z (ed) Proceedings of the first international conference on the Bohemian Massif, Czech Geological Survey, Prague 168–175Google Scholar
  48. Kröner A, Willner AP (1998) Time of formation and peak of Variscan HP-HT metamorphism of quartz–feldspar rocks in the central Erzgebirge, Saxony, Germany. Contrib Mineral Petrol 132:1–20CrossRefGoogle Scholar
  49. Kröner A, Hegner E, Willner AP, Fischbutter A, Hofmann J, Bergner R (1995) Latest Precambrian (Cadomian) zirkon ages and Nb isotopic systematics for granitoid orthogneisses of the Erzgebirge, Saxony and Czech Republic. Geol Rundsch 84:437–456CrossRefGoogle Scholar
  50. Lenoir X, Garrido CJ, Bodinier J-L, Dautria J-M (2000) Contrasting lithospheric mantle domains beneath the Massif Central (France) revealed by geochemistry of peridotite xenoliths. Earth Planet Sci Lett 181:359–375CrossRefGoogle Scholar
  51. Linnemann U, Gemmlich M, Tichomirowa M, Buschmann B, Nasdala L, Jonas P, Lützner H, Bombach K (2000) From Cadomian subduction to Early Palaeozoic rifting: the evolution of Saxo-Thuringia at the margin of Gondwana in the light of single zircon geochronology and basin development (Central European Variscides, Germany). In: Franke W, Haak W, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geological Society London Special Publications 179, pp 131–153Google Scholar
  52. Málek J, Horálek J, Janský J (2005) One-dimensional qP-wave velocity model of the upper crust for the West Bohemia/Vogtland earthquake swarm region. Stud Geophys Geod 49:501–524CrossRefGoogle Scholar
  53. Massonne HJ (2001) Origin of microdiamond-bearing quartzofeldspathic rocks (saidenbachites) from the Erzgebirge, Germany: a progress report. UHPM Workshop 2001 at Waseda University. Abstract 1A03:11–15Google Scholar
  54. Massonne HJ (2003) A comparison of the evolution of diamondiferous quartz-rich rocks from the Saxonian Erzgebirge and the Kokchetav Massif: are so called diamondiferous gneisses magmatic rocks? Earth Planet Sci Lett 216:347–364CrossRefGoogle Scholar
  55. Massonne HJ (2005) Involvement of crustal material in delamination of the lithosphere after continent–continent collision. Int Geol Rev 47:792–804CrossRefGoogle Scholar
  56. Massonne HJ, Kennedy A, Nasdala L (2007) Dating of zircon and monazite from diamondiferous quartzofeldspathic rocks of the Saxonian Erzgebirge—hints at burial and exhumation velocities. Mineral Mag 71:407–425CrossRefGoogle Scholar
  57. Matte P, Chemenda A (1996) A mechanism for exhumation of High Pressure metamorphic rocks during continental subduction in Southern Urals. C R Acad Sci Paris t 323(série II a):525–530Google Scholar
  58. Mazur S, Aleksandrowski P (2001) The Tepla(?)/Saxothuringian suture in the Karkonosze-Izera massif, western Sudetes, central European Variscides. Int J Earth Sci 90:341–360CrossRefGoogle Scholar
  59. Michon L, Merle O (2001) The evolution of the Massif central rift: Spatio-temporal distribution of the volcanism. Bull Soc Geol Fr 172:201–211CrossRefGoogle Scholar
  60. Milnes AG, Koyi HA (2000) Ductile rebound of an orogenic root: case study and numerical model of gravity tectonics in the Western Gneiss Complex, Caledonides, southern Norway. Terra Nova 12:1–7CrossRefGoogle Scholar
  61. Mlčoch B (ed) (2001) Investigation of crystalline formations in deep basement structures of the Doupov Complex and its broad surroundings (in Czech). Final Report, Czech Geological Survey, Prague, 121 ppGoogle Scholar
  62. Mlčoch B (2003) Character of the contact between the Saxothuringian and Teplá-Barrandian unit. Geolines (Prague) 16:75Google Scholar
  63. Müller B, Wehrle V, Zeyen H, Fuchs K (1997) Short-scale variations of tectonic regimes in the western European stress province north of the Alps and Pyrenees. Tectonophysics 275:199–219CrossRefGoogle Scholar
  64. O’Brien P (2000) The fundamental Variscan problem: high-temperature metamorphism at different depths and high-pressure metamorphism at different temperatures. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geological Society London Special Publications 179, pp 35–61Google Scholar
  65. O’Brien PJ (2008) Challenges in high-pressure granulite metamorphism: reaction, textures, compositional zoning, ages and tectonic interpretation with examples from the Bohemian Massif. J Metamorphic Geol 26:235–251CrossRefGoogle Scholar
  66. Oncken O (1997) Transformation of a magmatic arc and an orogenic root during obligue collision and it’s consequences for the evolution of the European Variscides (Mid-German Crystalline Rise). Geol Rundsch 86:2–20CrossRefGoogle Scholar
  67. Patočka F, Štorch P (2004) Evolution of geochemistry and depositional settings of Early Paleozoic siliciclastics of the Barrandian (Teplá-Barrandian unit, Bohemian Massif, Czech Republic. Int J Earth Sci 93:728–741CrossRefGoogle Scholar
  68. Pedersen T, Almaas IJ (2007) The Oslo Graben: a magmatic rift that “failed”. Geoph Res Abstr 9:10330, SRef-ID: 1607-7962/gra/EGU2007-A-10330Google Scholar
  69. Pharaoh TC (1999) Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): a review. Tectonophysics 314:17–41CrossRefGoogle Scholar
  70. Plomerová J, Babuška V, Šílený J, Horálek J (1998) Seismic anisotropy and velocity variations in the mantle beneath the Saxothuringicum–Moldanubicum contact in central Europe. Pure Appl Geophys 151:365–394CrossRefGoogle Scholar
  71. Plomerová J, Achauer U, Babuška V, Granet M, BOHEMA WG (2003) Passive seismic experiment to study lithosphere-asthenosphere system in the western part of the Bohemian Massif. Stud Geophys Geod 47:691–701CrossRefGoogle Scholar
  72. Plomerová J, Vecsey L, Babuška V, Granet M, Achauer U (2005) Passive seismic experiment MOSAIC—a pilote study of mantle lithosphere anisotropy of the Bohemian Massif. Stud Geophys Geod 49:541–560CrossRefGoogle Scholar
  73. Plomerová J, Achauer U, Babuška V, Vecsey L, BOHEMA WG (2007) Upper mantle beneath the Eger Rift (Central Europe): plume or asthenosphere upwelling? Geophys J Int 169:675–682. doi: 10.1111/j.1365-246X.2007.03361.x CrossRefGoogle Scholar
  74. Prodehl C, Mueller S, Haak V (1995) The European Cenozoic rift system. In: Olsen KH (ed) Continental rifts: evolution, structure, tectonics. Elsevier, Amsterdam, pp 133–212Google Scholar
  75. Rajchl M, Uličný D, Hubatka F (2003) Syn and post-sedimentary tectonics of the Most Basin (Ohře Rift, Czech Republic); insights from seismic reflection data. Abstract, Proceedings of 8th Meeting of the Czech Tectonic Studies Group. Geolines (Prague) 16:86–87Google Scholar
  76. Regenauer-Lieb K, Weinberg RF, Rosenbaum G (2006) The effect of energy feedbacks on continental strength. Nature 442:67–70. doi: 10.1038/nature04868 CrossRefGoogle Scholar
  77. Rötzler J, Romer RL (2001) PTt evolution of ultrahigh-temperature granulites from the Saxon Granulite Massif, Germany. Part I: petrology. J Petrol 42:1995–2013CrossRefGoogle Scholar
  78. Sattran V, Váně M (1954) Phyllite series with metabasites at eastern rim of the Ohře crystalline complex near Kadaň (in Czech) Čas. Mineral Geol (Prague) 9:281–286Google Scholar
  79. Schmädicke E, Okrusch M, Schmidt W (1992) Eclogite-facies rocks in the Saxonian Erzgebirge, Germany: high pressure metamorphism under contrasting PT conditions. Contrib Mineral Petrol 110:226–241CrossRefGoogle Scholar
  80. Schreyer W (1965) Metamorpher Übergang Saxothuringikum–Moldanubikum östlich Tirschenreuth/Opf., nachgewiesen durch phasenpetrologische Analyse. Geol Rundsch 55:491–509CrossRefGoogle Scholar
  81. Schulmann K, Lexa O, Štípská P, Racek M, Tajčmanová L, Konopásek J, Edel JB, Peschler A, Lehmann J (2008) Vertical extrusion and horizontal chanel flow of orogenic lower crust: key exhumation mechanisms in large hot orogens? J Metamorphic Geol 26:273–297CrossRefGoogle Scholar
  82. Špičáková L, Uličný D, Koudelková G (2000) Tectonosedimentary evolution of the Cheb Basin (NW Bohemia, Czech Republic) between Late Oligocene and Pliocene: a preliminary note. Stud Geophys Geod 44:556–580CrossRefGoogle Scholar
  83. Šrámek J (2001) Gravimetry. In: Mlčoch B (ed) Investigation of crystalline formations in deep basement structures of the Doupov complex and a broader surroundings (in Czech). Czech Geological Survey, Prague, pp 1–10 (attachment)Google Scholar
  84. Štipská P, Powell R (2005) Constraining the PT path of a MORB-type eclogite using pseudosections, garnet zoning and garnet-clinopyroxene thermometry: an example from the Bohemian Massif. J Metamorphic Geol 23:725–743CrossRefGoogle Scholar
  85. Švancara J, Havíř J, Conrad W (2008) Derived gravity field of the seismogenic upper crust of SE Germany and West Bohemia and its comparison with seismicity. Stud Geophys Geod 52:567–588CrossRefGoogle Scholar
  86. Tichomirowa M, Whitehouse MJ, Nasdala L (2005) Resorption, growth, solid state recrystallisation, and annealing of granulite facies zircon—a case study from the Central Erzgebirge, Bohemian Massif. Lithos 82:25–50CrossRefGoogle Scholar
  87. Tikoff B, Teyssier Ch, Waters Ch (2002) Clutch tectonics and the partial attachment of lithospheric layers, vol 1. EGS St. Mueller Spec Publ Ser, pp 93–117Google Scholar
  88. Timmermann H, Štědrá V, Gerdes A, Noble SR, Parrish RR, Dörr W (2004) The problem of dating high-pressure metamorphism: a U–Pb isotope and geochemical study of eclogites and related rocks of the Mariánské Lázně Complex, Czech Republic. J Petrol 45:1311–1338CrossRefGoogle Scholar
  89. Tomek Č, Dvořáková V, Vrána S (1997) Geological interpretation of the 9HR and 503M seismic profiles in western Bohemia. In: Vrána S, Štědrá V (eds) Geological model of western Bohemia related to the KTB borehole in Germany. J Geol Sci, Prague, 47:43–50Google Scholar
  90. Ulrych J, Pivec E (1997) Age-controlled Contrasting Alkaline Volcanics Series in North Bohemia. Chem Erde 57:311–336Google Scholar
  91. Ulrych J, Cajz V, Pivec E, Novák JK, Nekovařík Č (2000) Cenozoic intraplate alkaline volcanism of western Bohemia. Stud Geophys Geod 44:346–351CrossRefGoogle Scholar
  92. Ulrych J, Cajz V, Adamovič J, Bosák P (eds) (2002) Hibsch 2002 symposium. Excursion guide and abstracts. Czech Geological Survey, PragueGoogle Scholar
  93. Vrána S (1997) Geology and petrology of the Moldanubian Zone. In: Vrána S, Štědrá V (eds) Geological model of western Bohemia related to the KTB borehole in Germany. J Geolog Sci, Prague 47:109–123Google Scholar
  94. Wagner GA, Coyle DA, Duyster J, Henjest-Kunst F, Peterek A, Schröder B, Stöckert B, Wemmer K, Zulauf G, Ahrendt H, Bischoff R, Hejl E, Jacobs J, Menzwl D, Lal N, Van den Haute P, Vercoutere C, Welzel B (1997) Post-Variscan thermal and tectonic evolution of the KTB site and its surroundings. J Geophys Res 102(B8):18221–18232CrossRefGoogle Scholar
  95. Wagner GA, Gögen K, Jonckheere R, Wagner I, Woda C (2002) Dating of the Quaternary volcanoes Komorní Hůrka (Kammerbühl) and Železná Hůrka (Eisenbühl), Czech Republic, by TL, ESR, alpha-recoil and fission track chronometry. Z Geol Wiss 30:191–200Google Scholar
  96. Weinlich FH, Brauer K, Kampf H, Strauch G, Tesař J, Weise SM (1999) An active subcontinental mantle volatile system in the western Eger rift, Central Europe: Gas flux, isotopic (He, C, and N) and compositional fingerprints. Geochim Cosmochim Acta 63:3653–3671CrossRefGoogle Scholar
  97. Wendt JI, Kröner A, Fiala J, Todt W (1993) Evidence from zircon dating for existence of approximately 2.1 Ga old crystalline basement in southern Bohemia, Czech Republic. Geol Rundsch 82:42–50CrossRefGoogle Scholar
  98. Willner AP, Rötzler K, Maresch WV (1997) Pressure-temperature and fluid evolution of quartzo-feledspathic metamorphic rocks with a relic high-pressure, granulite facies history from the central Erzgebirge (Saxony/Germany). J Petrol 38:307–336CrossRefGoogle Scholar
  99. Willner AP, Sebazungu E, Gerya TV, Maresch WV, Krohe A (2002) Numerical modeling of PT-paths related to rapid exhumation of high pressure rocks from the crustal root in the Variscan Erzgebirge Dome (Saxony, Germany). J Geodyn 33:281–314CrossRefGoogle Scholar
  100. Wilson M, Downes H (2006) Tertiary-Quaternary intra-plate magmatism in Europe and its relationship to mantle dynamics. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geol Soc Lond Memoirs 32:147–166Google Scholar
  101. Žáček V (2001) Petrology of samples from borehole Tř-1 Třtěno from depths 609.9–697.0 m. In: Mlčoch B (ed) Investigation of crystalline formations in deep basement structures of the Doupov complex and a broader surroundings (in Czech). Czech Geol Survey, Prague, pp 70–73Google Scholar
  102. Ziegler PA (1992) European Cenozoic rift system. Tectonophysics 208:91–111CrossRefGoogle Scholar
  103. Zulauf G (1993) The Moldanubian/Saxothuringian boundary at the western border of the Bohemian Massif—a polyphase strike-slip zone. Zeitschrift der Deutschen geologischen Gesellschaft 144:68–87Google Scholar
  104. Zulauf G (1997) Constriction due to subduction: evidence for slab pull in the Mariánské Lázně complex (central European Variscides). Terra Nova 9:232–236CrossRefGoogle Scholar
  105. Zulauf G (2001) Structural style, deformation mechanisms and paleodifferential stress along an exposed crustal section: constraints on the rheology of quartzofeldpathic rocks at supra- and infrastructural levels (Bohemian Massif). Tectonophysics 332:211–237CrossRefGoogle Scholar
  106. Zulauf G, Vejnar Z (2003) Variszische Fahrstultektonik und cadomisches Basement im Westteil der Böhmischen Masse (Exkursion I am 25 April 2003). Jber Mitt oberrhein geol Ver (Stuttgart) NF85:295–315Google Scholar
  107. Zulauf G, Dörr W, Fiala J, Vejnar Z (1997) Late Cadomian crustal tilting and Cambrian transtension in the Teplá-Barrandian unit (Bohemian Massif, Central European Variscides). Geol Rundsch 86:571–584CrossRefGoogle Scholar
  108. Zulauf G, Schitter F, Riegler G, Finger F, Fiala J, Vejnar Z (1999) Age constrains on the Cadomian evolution of the Teplá-Barrandian unit (Bohemian Massif) through electron microprobe dating of metamorphic monazite. Zeitschr deutschen geol Gesellschaft 150:627–639Google Scholar
  109. Zulauf G, Buess C, Dörr W, Vejnar Z (2002a) 10 km Minimum throw along the West Bohemian shear zone: Evidence for dramatic crustal thickening and high topography in the Bohemian Massif (European Variscides). Int J Earth Sci 91:850–864CrossRefGoogle Scholar
  110. Zulauf G, Dörr W, Fiala J, Kotková J, Maluski H, Valverde-Vaquero P (2002b) Evidence for high-temperature diffusional creep preserved by rapid cooling of lower crust (North Bohemian shear zone, Czech Republic). Terra Nova 14:343–354CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Vladislav Babuška
    • 1
  • Jiří Fiala
    • 2
  • Jaroslava Plomerová
    • 1
  1. 1.Institute of GeophysicsAcademy of Sciences of the Czech RepublicPrague 4Czech Republic
  2. 2.Institute of GeologyAcademy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations