International Journal of Earth Sciences

, Volume 99, Issue 4, pp 801–812 | Cite as

Magmatic erosion of the solidification front during reintrusion: the eastern margin of the Tuolumne batholith, Sierra Nevada, California

Original Paper


The Tuolumne batholith, Sierra Nevada, California, consists of several nested granitoid units and is an example of upper-crustal normally zoned intrusions. The two outermost units of the batholith are separated by a wide gradational contact in what is interpreted to represent a large magma chamber. In the Potter Point area near the eastern margin of the batholith, the gradational contact is cross-cut by a network of interconnected mafic–felsic sheets, which grade into zones of magmatic erosion by stoping where the host granodiorite between the sheets was entirely removed and replaced by younger enclave-rich quartz diorite. We interpret these features to record disruption of a steep solidification front, which migrated inwards from the eastern batholith margin and separated the mushy to solidified margin from the remaining active magma chamber. When intersecting the gradational contact, the solidification front started to break up via a network of tectonically driven fractures accompanied by simultaneous injection of localized magma pulses. The solidification front break-up is interpreted here as an initial stage of a “recycling” process, whereby older magma mush is disrupted and incorporated into younger magma batches, a process we propose to have been widespread along internal contacts in the Tuolumne magma chamber.


Granite Magma chamber Magmatic stoping Pluton Sierra Nevada Solidification front 



We gratefully acknowledge Antonio Castro and one anonymous reviewer for their constructive reviews, and Vojtěch Janoušek for discussions and amusing company in the field. This study was completed during post-doctoral research of Jiří Žák supported from post-doctoral grant of the Grant Agency of the Czech Republic No. 205/07/P226 (to Jiří Žák). We also acknowledge financial support from the Czech Academy of Sciences Grant No. KJB3111403 (to Jiří Žák), and the Ministry of Education, Youth and Sports of the Czech Republic Research Plan No. MSM0021620855. Paterson acknowledges support from NSF grants EAR-0212276 and EAR-0739651. Last but not least, the Yosemite National Park Rangers are gratefully acknowledged for their constant support and interest in our work.


  1. Ague JJ, Brimhall GH (1988) Magmatic arc asymmetry and distribution of anomalous plutonic belts in the batholiths of California: effects of asimilation, crustal thickness, and depth of crystallization. Geol Soc Am Bull 100:912–927. doi:10.1130/0016-7606(1988)100<0912:MAAADO>2.3.CO;2 CrossRefGoogle Scholar
  2. Albertz M (2006) Relationships between melt-induced rheological transitions and finite strain: observations from host rock pendants of the Tuolumne Intrusive Suite, Sierra Nevada, California. J Struct Geol 28:1422–1444. doi:10.1016/j.jsg.2006.04.001 CrossRefGoogle Scholar
  3. Anderson JL, Foley B, Ball EN, Paterson SR, Memeti V, Pignotta GS (2007) Upper crustal overturn during magmatic surges—a potential Sierra-wide process. GSA Abstracts with Programs 39:526Google Scholar
  4. Bateman PC (1992) Plutonism in the central part of Sierra Nevada Batholith, California. US Geological Survey Professional Paper 1483:1–186Google Scholar
  5. Bateman PC, Chappell BW (1979) Crystallization, fractionation, and solidification of the Tuolumne Intrusive Series, Yosemite National Park, California. Geol Soc Am Bull 90:465–482. doi:10.1130/0016-7606(1979)90<465:CFASOT>2.0.CO;2 CrossRefGoogle Scholar
  6. Bergantz GW (2000) On the dynamics of magma mixing by reintrusion: implications for pluton assembly processes. J Struct Geol 22:1297–1309. doi:10.1016/S0191-8141(00)00053-5 CrossRefGoogle Scholar
  7. Bracciali L, Paterson SR, Memeti V, Rocchi S, Matzel J, Mundil R (2008) Build-up of the Tuolumne Batholith, California: the Johnson Granite Porphyry. In: LASI III conference abstracts, 17–18Google Scholar
  8. Brook C (1977) Stratigraphy and structure of the Saddlebag Lake roof pendant, Sierra Nevada, California. Geol Soc Am Bull 88:321–334. doi:10.1130/0016-7606(1977)88<321:SASOTS>2.0.CO;2 CrossRefGoogle Scholar
  9. Coleman DS, Gray W, Glazner AF (2004) Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32:433–436. doi:10.1130/G20220.1 CrossRefGoogle Scholar
  10. Economos RC, Erdmann S, Memeti V, Paterson SR, Miller RB (2005) Enigmatic east–west fabrics in the Tuolumne batholith; is there a tectonic significance? GSA Abstracts with Programs 37:71Google Scholar
  11. Fernandez A, Gasquet DR (1994) Relative rheological evolution of chemically contrasted coeval magmas: example of the Tichka plutonic complex (Morocco). Contrib Mineral Petrol 116:316–326. doi:10.1007/BF00306500 CrossRefGoogle Scholar
  12. Fernandez C, Castro A, De la Rosa J, Moreno-Ventas I (1997) Rheological aspects of magma transport inferred from rock structures. In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer, Amsterdam, pp 75–91Google Scholar
  13. Frost TP, Mahood GA (1987) Field, chemical, and physical constraints on mafic-felsic magma interaction, Lamarck Granodiorite, Sierra Nevada, California. Geol Soc Am Bull 99:272–291. doi:10.1130/0016-7606(1987)99<272:FCAPCO>2.0.CO;2 CrossRefGoogle Scholar
  14. Glazner AF, Taylor RZ, Bartley JM, Gray W (2002) Dike assembly of the Tuolumne Intrusive Suite, Yosemite National Park, California. GSA Abstracts with Programs 34:269Google Scholar
  15. Gray W, Glazner AF, Coleman DS, Bartley JM (2008) Long-term geochemical variability of the Late Cretaceous Tuolumne Intrusive Suite, central Sierra Nevada, California. In: Annen C, Zellmer GF (eds) Dynamics of crustal magma transfer, storage and differentiation (special publications), vol 304. Geological Society, London, pp 183–201Google Scholar
  16. Greene DC, Schweickert RA (1995) The Gem Lake shear zone: cretaceous dextral transpression in the northern Ritter Range Pendant, eastern Sierra Nevada, California. Tectonics 14:945–961. doi:10.1029/95TC01509 CrossRefGoogle Scholar
  17. Kistler RW, Chappell BW, Peck DL, Bateman PC (1986) Isotopic variation in the Tuolumne Intrusive Suite, central Sierra Nevada. Contrib Mineral Petrol 94:205–220. doi:10.1007/BF00592937 CrossRefGoogle Scholar
  18. Marsh BD (1989) Magma chambers. Annu Rev Earth Planet Sci 17:439–474. doi:10.1146/annurev.ea.17.050189.002255 CrossRefGoogle Scholar
  19. Marsh BD (1995) Solidification fronts and magmatic evolution. Mineral Mag 60:5–40. doi:10.1180/minmag.1996.060.398.03 CrossRefGoogle Scholar
  20. Matzel J, Mundil R, Miller J, Wooden J, Mazdab F, Paterson S, Memeti V (2007a) Growth of the Tuolumne Batholith: zircon crystallization temperature, age and trace element data. In: Eos Trans. AGU 88 (52), Fall Meet. Suppl., Abstract V44C-08Google Scholar
  21. Matzel J, Mundil R, Miller JS, Wooden J, Mazdab F, Paterson S, Memeti V (2007b) Zircon growth and recycling during the assembly of the Tuolumne batholith, Sierra Nevada, California. In: Goldschmidt conference abstracts, A639Google Scholar
  22. Memeti V, Paterson S, Economos R, Žák J, Erdmann S (2005) Deciphering chamber growth and internal magma chamber processes using magmatic lobes as snapshots of processes during the construction of the Tuolumne batholith, Sierra Nevada. GSA Abstracts with Programs 37:554Google Scholar
  23. Miller JS, Matzel JEP, Miller CF, Burgess SD, Miller RB (2007) Zircon growth and recycling during the assembly of large, composite arc plutons. J Volcanol Geotherm Res 167:282–299. doi:10.1016/j.jvolgeores.2007.04.019 CrossRefGoogle Scholar
  24. Neves SP, Vauchez A (1995) Successive mixing and mingling of magmas in a plutonic complex of Northeast Brazil. Lithos 34:275–299. doi:10.1016/0024-4937(94)00012-Q CrossRefGoogle Scholar
  25. Paterson SR, Vernon RH, Tobisch OT (1989) A review of criteria for identification of magmatic and tectonic foliations in granitoids. J Struct Geol 11:349–363. doi:10.1016/0191-8141(89)90074-6 CrossRefGoogle Scholar
  26. Paterson SR, Fowler TK, Schmidt KL, Yoshinobu AS, Yuan ES, Miller RB (1998) Interpreting magmatic fabric patterns in plutons. Lithos 44:53–82. doi:10.1016/S0024-4937(98)00022-X CrossRefGoogle Scholar
  27. Paterson SR, Pignotta GS, Žák J, Memeti V, Erdmann S, Economos R (2007) Formation and transfer of stoped blocks into magma chambers: the high temperature interplay between cracking, focused porous flow, and unidirectional growth of sheeted complexes. GSA Abstracts with Programs 39:225Google Scholar
  28. Paterson SR, Žák J, Janoušek V (2008) Growth of complex sheeted zones during recycling of older magmatic units into younger: Sawmill Canyon area, Tuolumne batholith, Sierra Nevada, California. J Volcanol Geotherm Res 177:457–484. doi:10.1016/j.jvolgeores.2008.06.024 CrossRefGoogle Scholar
  29. Perugini D, Poli D (2005) Viscous fingering during replenishment of felsic magma chambers by continuous inputs of mafic magmas: field evidence and fluid-mechanics experiments. Geology 33:5–8. doi:10.1130/G21075.1 CrossRefGoogle Scholar
  30. Slaby E, Martin H (2008) Mafic and felsic magma interaction in granites: the Hercynian Karkonosze pluton (Sudetes, Bohemian Massif). J Petrol 49:353–391. doi:10.1093/petrology/egm085 CrossRefGoogle Scholar
  31. Stevens CH, Greene DC (1999) Stratigraphy, depositional history, and tectonic evolution of Paleozoic continental-margin rocks in roof pendants of the eastern Sierra Nevada, California. Geol Soc Am Bull 111:919–933. doi:10.1130/0016-7606(1999)111<0919:SDHATE>2.3.CO;2 CrossRefGoogle Scholar
  32. Vernon RH (2000) Review of microstructural evidence of magmatic and solid-state flow. Electron Geosci 5:1–23Google Scholar
  33. Vernon RH, Paterson SR (2008) How extensive are subsolidus grain-shape changes in cooling granites? Lithos 105:42–50. doi:10.1016/j.lithos.2008.02.004 CrossRefGoogle Scholar
  34. Wada H, Harayama S, Yamaguchi Y (2004) Mafic enclaves densely concentrated in the upper part of a vertically zoned felsic magma chamber: the Kurobegawa granitic pluton, Hida Mountain Range, central Japan. Geol Soc Am Bull 116:788–801. doi:10.1130/B25287.1 CrossRefGoogle Scholar
  35. Webber CE, Candela PA, Piccoli PM, Simon AC (2001) Generation of granitic dikes: can texture, mineralogy, and geochemistry be used as guides to determine the mechanisms of diking? GSA Abstracts with Programs 33:138Google Scholar
  36. Weinberg RF, Sial AN, Pessoa RR (2001) Magma flow within the Tavares pluton, northeastern Brazil: compositional and thermal convection. Geol Soc Am Bull 113:508–520. doi:10.1130/0016-7606(2001)113<0508:MFWTTP>2.0.CO;2 CrossRefGoogle Scholar
  37. Wiebe RA (1994) Silicic magma chambers as traps for basaltic magmas: the Cadillac Mountain Intrusive Complex, Mount Desert Island, Maine. J Geol 102:423–437CrossRefGoogle Scholar
  38. Wiebe RA, Blair KD, Hawkins DP, Sabine CP (2002) Mafic injections, in situ hybridization, and crystal accumulation in the Pyramid Peak granite, California. Geol Soc Am Bull 114:909–920. doi:10.1130/0016-7606(2002)114<0909:MIISHA>2.0.CO;2 CrossRefGoogle Scholar
  39. Žák J, Paterson SR (2005) Characteristics of internal contacts in the Tuolumne Batholith, central Sierra Nevada, California (USA): implications for episodic emplacement and physical processes in a continental arc magma chamber. Geol Soc Am Bull 117:1242–1255. doi:10.1130/B25558.1 CrossRefGoogle Scholar
  40. Žák J, Paterson SR, Memeti V (2007) Four magmatic fabrics in the Tuolumne batholith, central Sierra Nevada, California (USA): implications for interpreting fabric patterns in plutons and evolution of magma chambers in the upper crust. Geol Soc Am Bull 119:184–201. doi:10.1130/B25773.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Faculty of Science, Institute of Geology and PaleontologyCharles UniversityPragueCzech Republic
  2. 2.PragueCzech Republic
  3. 3.Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations