Advertisement

International Journal of Earth Sciences

, Volume 99, Issue 4, pp 909–926 | Cite as

Sedimentary processes on the Wilkes Land continental rise reflect changes in glacial dynamic and bottom water flow

  • Andrea Caburlotto
  • R. G. Lucchi
  • L. De Santis
  • P. Macrì
  • R. Tolotti
Review Article

Abstract

Four sediment cores were analysed in order to determine the sedimentary processes associated with the channel-ridge depositional system that characterise the George V Land continental margin on the Wilkes Land. The sedimentary record indicates that the WEGA channel was a dynamic turbiditic system up to M.I.S. 11. After this time, the channel became a lower-energy environment with sediments delivered to the channel through high-density bottom waters that we identify to be the high salinity shelf waters (HSSW) forming on the shelf area. The HSSW entrains the fine-grained sediments of the shelf area and deliver them to the continental rise. The biostratigraphy and facies of the sediments within the WEGA channel indicate that the HSSW down flow was active also during last glacial. The change from a turbiditic system to a low-energy bottom current system within the WEGA channel likely reflects a different ice-flow pattern, with ice-sheet reaching the continental shelf edge only within the ice trough (ice stream).

Keywords

High salinity shelf water Turbidity currents Glacio-marine depositional processes Marine isotopic stage 11 Glacial dynamic changes 

Notes

Acknowledgments

We acknowledge Captain and crew of the R.V. Tangaroa for their skilful support during the WEGA 2000 cruise. We thank G. Kuhn, M. Weber and R. Stein for detailed review that greatly improved the manuscript. This work was funded by the Programma Nazionale delle Ricerche in Antartide (PNRA) under the WEGA Project. The first author benefits from an OGS doctoral fellowship in Polar Science at the University of Siena (Italy). The grain size analysis has been made at the “Laboratorio Antartide” at the Department of Geological, environmental and Marine Sciences of the University of Trieste (Italy).

References

  1. Armand LK, Crosta X, Romero O, Pichon JJ (2005) The biogeography of major diatom taxa in Southern Ocean sediments: 1 Sea ice related species. Paleogeogr Paleoclimatl Paleoecol 223:93–126. doi: 10.1016/j.palaeo.2005.02.015 CrossRefGoogle Scholar
  2. Baines PG, Condie S (1998) Observations and modelling of Antarctic downslope flows: a review. Ocean, Ice and Atmosphere: interactions at the Antarctic Continental Margin. Antarct Res Ser 75:29–49Google Scholar
  3. Barde MF (1981) Les Diatomées des sediments actuels et du Quaternaire supérieur de l’Atlantique nord-oriental. Interet hydrologique et climatique. Bull Inst Geologie Bassin Aquitaine 29:85–111Google Scholar
  4. Barker PF, Camerlenghi A, Acton GD, Ramsay ATS (eds) (2002) In: Proceedings of the ocean drilling program, scientific results, 178 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station, TX 77845–9547, USAGoogle Scholar
  5. Bergamasco A, Defendi V, Del Negro P, Fonda Umani S (2003) Effects of the physical properties of water masses on microbial activity during an Ice Shelf Water overflow in the central Ross Sea. Antarct Sci 15(3):405–411. doi: 10.1017/S0954102003001421 CrossRefGoogle Scholar
  6. Berkman PA, Forman SL (1996) Pre-bomb radiocarbon and the reservoir correction for calcareous marine species in the Southern Ocean. Geophys Res Lett 23(4):363–366. doi: 10.1029/96GL00151 CrossRefGoogle Scholar
  7. Bianchi C, Gersonde R (2004) Climate evolution at the last deglaciation: the role of the Southern Ocean. Earth Planet Sci Lett 228(3–4):407–424. doi: 10.1016/j.epsl.2004.10.003 CrossRefGoogle Scholar
  8. Bindoff NL, Rosenberg MA, Warner MJ (2000) On the circulation and water masses over the Antarctic continental slope and rise between 80 and 150°E. Deep Sea Res Part II Top Stud Oceanogr 47:2299–2326. doi: 10.1016/S0967-0645(00)00038-2 CrossRefGoogle Scholar
  9. Bodén P (1991) Reproducibility in the random settling method for quantitative diatom analysis. Micropaleontology 37(3):313–319. doi: 10.2307/1485893 CrossRefGoogle Scholar
  10. Busetti M, Caburlotto A, Armand L, Damiani D, Giorgetti G, Lucchi RG, Quilty PG, Villa G (2003) Plio-Quaternary sedimentation on the Wilkes Land continental rise: preliminary results. In: Harris PT, Brancolini G, Bindoff N, De Santis L (eds) Recent investigations of the Mertz Polynya and George Vth Land Continental Margin, East Antarctica. Deep-Sea Research II, vol 50 (8–9), pp 1529–1562Google Scholar
  11. Caburlotto A, De Santis L, Zanolla C, Camerlenghi A, Dix JK (2006) New insights into Quaternary glacial dynamic changes on the George V continental margin (East Antarctica). Quat Sci Rev 25:3029–3049. doi: 10.1016/j.quascirev.2006.06.012 CrossRefGoogle Scholar
  12. Cortese G, Gersonde R (2007) Morphometric variability in the diatom Fragilariopsis kerguelensis: Implications for Southern Ocean paleoceanography. Earth Planet Sci Lett 257(3–4):526–544. doi: 10.1016/j.epsl.2007.03.021 CrossRefGoogle Scholar
  13. Cowan EA (2002) Identification of the glacial signal from the Antarctic Peninsula since 30 Ma at Site 1101 in a continental rise sediment drift. In: Proceedings of the Ocean Drilling Program, Scientific Results CD-RomGoogle Scholar
  14. Crosta X, Pichon JJ, Labracherie M (1997) Distribution of Chaetoceros resting spores in modern peri-Antarctic sediments. Mar Micropaleontol 29:283–299. doi: 10.1016/S0377-8398(96)00033-3 CrossRefGoogle Scholar
  15. Crosta X, Romero O, Armand LK, Pichon JJ (2005) The biogeography of major diatom taxa in Southern Ocean sediments: 2 open ocean related species. Paleogeogr Paleoclimatol Paleoecol 223:66–92. doi: 10.1016/j.palaeo.2005.03.028 CrossRefGoogle Scholar
  16. De Santis L, Brancolini G, Donda F (2003) Seismo-stratigraphic analysis of the Wilkes Land continental margin (East Antartica): influence of glacially driver processes on the Cenozoic deposition. In: Harris PT, Brancolini G, Bindoff N, De Santis L (eds) Recent investigations of the Mertz polynya and George Vth Land Continental Margin, East Antarctica. Deep-Sea Research II, vol 50 (8–9), pp 1563–1594Google Scholar
  17. Domack EW (1982) Sedimentology of glacial and glacial marine deposits on the George V-Adelie continental shelf East Antarctica. Boreas 11(1):79–97CrossRefGoogle Scholar
  18. Domack EW (1988) Biogenic facies in the Antarctic glacimarine environment: basis for a polar Glacimarine summary. Paleogeogr Paleoclimatol Paleoecol 63:357–372. doi: 10.1016/0031-0182(88)90105-8 CrossRefGoogle Scholar
  19. Donda F, Brancolini G, De Santis L, Trincardi F (2003) Seismic facies and sedimentary processes on the continental rise off Wilkes Land (East Antartica): evidence of bottom current activity. In: Harris PT, Brancolini G, Bindoff N, De Santis L (eds) Recent investigations of the Mertz Polynya and George Vth Land Continental Margin, East Antarctica. Deep-Sea Research II, vol 50 (8–9), pp 1509–1527Google Scholar
  20. Dunbar R, Anderson JB, Domack EW, Jacobs SS (1985) Oceanographic influences on sedimentation along the Antarctic Continental Shelf. In: Jacobs SS, Stanley S (eds) Oceanology of the Antarctic Continental Shelf. Antarctic Research Series 43, pp 291–312Google Scholar
  21. Eittreim SL, Smith GL (1987) Seismic sequences and their distribution on the Wilkes Land margin. In: Eittreim SL, Hampton MA (eds) The Antarctic continental margin: Geology and Geophysics of Offshore Wilkes Land. Circum Pacific Council for Energy and Mineral Resources. Earth Sciences Series 5A, pp 15–43Google Scholar
  22. Eittreim SL, Gorgon AL, Ewing M, Thorndike EM, Bruchhausen PM (1971) The nepheloid layer and observed bottom currents in the Indian-Pacific Antarctic sea. In: Gordon AL (ed) Studies in physical oceanography: a tribute to George Wüst on his 80th birthday. Gordon and Breach, New York, pp 19–35Google Scholar
  23. Eittreim SL, Cooper AK, Wannesson J (1995) Seismic stratigraphic evidence of icesheet advances on the Wilkes Land margin of Antarctica. Sediment Geol 96:131–156. doi: 10.1016/0037-0738(94)00130-M CrossRefGoogle Scholar
  24. EPICA Community Members (2004) Eight glacials cycles from an Antarctic ice core. Nature 429:623–628CrossRefGoogle Scholar
  25. Escutia C, Eittreim SL, Cooper AK (1997) Cenozoic glaciomarine sequences on the Wilkes Land continental rise, Antarctica. In: Proceedings of international symposium on Antarctic earth sciences VIII, pp 791–795Google Scholar
  26. Escutia C, Eittreim SL, Cooper AK, Nelson CH (2000) Morphology and acoustic character of the Antarctic Wilkes Land turbidite system: ice-sheet sourced versus river-sourced fans. J Sediment Res 70(1):84–93CrossRefGoogle Scholar
  27. Escutia C, Warnke D, Acton GD, Barcena A, Burckle L, Canals M, Frazee CS (2003) Sediment distribution and sedimentary processes across the Antarctic Wilkes Land margin during the Quaternary. In: Harris PT, Brancolini G, Bindoff N, De Santis L (eds) Recent investigations of the Mertz Polynya and George Vth Land Continental Margin, East Antarctica. Deep-Sea Research II, vol 50 (8–9), pp 1481–1508Google Scholar
  28. Folk RL, Ward WC (1978) Brazos river bar: a study in the significance of grain size parameters. J Sediment Petrol 27:3–26Google Scholar
  29. Fryxell GA, Prasad AKSK (1990) Eucampia antarctica var. recta (Mangin) stat. Nov. (Bacillariophyceae): life stages at the Weddell Sea ice edge. Phycologia 29(1):27–38Google Scholar
  30. Gordon AL, Tchernia P (1972) Waters of the continental margin of the Adelie Coast, Antarctica. Antarctic Oceanology. II The Australian-New Zealand Sector. Antarct Res Ser 19:59–70Google Scholar
  31. Grützner J, Rebesco M, Cooper AK, Forsberg CF, Kryc KA, Wefer G (2003) Evidence for orbitally controlled size variations of the East Antarctic Ice Sheet during the late Miocene. Geology 31(9):777–780CrossRefGoogle Scholar
  32. Guyodo Y, Valet J-P (1999) Global changes in intensity of the Earth’s magnetic field during the past 800 ky. Nature (Lond) 399:249–252CrossRefGoogle Scholar
  33. Hampton MA, Eittreim SL, Richmond BM (1987) Geology of sediment cores from the George V continental margin. In: Eittreim SL, Hampton MA (eds) The Antarctic continental margin: Geology and Geophysics of offshore Wilkes Land. Circum Pacific Council for Energy and Mineral Resources Earth Sciences Series 5A, pp 75–88Google Scholar
  34. Harris PT, O’Brien P (1998) Bottom currents, sedimentation and ice-sheet retreat facies succession on the Mac Robertson shelf, East Antarctica. Mar Geol 151:47–72CrossRefGoogle Scholar
  35. Harris PT, Brancolini G, Armand L, Busetti M, Beaman RJ, Giorgetti G, Presti M, Trincardi F (2001) Continental shelf drift deposit indicates non-steady state Antarctic bottom water production in the Holocene. Mar Geol 179:1–8CrossRefGoogle Scholar
  36. Hayes DE, Frakes LA et al (1975) Initial reports of the Deep Sea Drilling Project 28. US Government Printing OfficeGoogle Scholar
  37. Imbrie J, Hays JD, McIntyre A, Mix AC, Morley JJ, Pisias NG, Prell WL, Shackleton NJ (1984) The orbital theory of Pleistocene climate: support from a revised chronology of the marine d18O record. In: Berger A, Imbrie J, Hays J, Kukla GJ, Saltzman E (eds) Milankovitch and cmate. Reidel, Boston, pp 269–305Google Scholar
  38. Ivanov VV, Shapiro GI, Huthnance JM, Aleynik DL, Golovin PN (2003) Cascades of dense water around the World Ocean. Prog Oceanogr 60(1):47–98CrossRefGoogle Scholar
  39. Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and Millennial Antarctic climate variability over the past 800,000 years. Science 317:793–796CrossRefGoogle Scholar
  40. Kuvaas B, Leitchenkov G (1992) Glaciomarine turbidite and current controlled deposits Prydz Bay, Antarctica. Mar Geol 108:365–381CrossRefGoogle Scholar
  41. Lambert F, Delmonte B, Petit JR, Bigler M, Kaufmann PR, Ruth U, Hutterli M, Steffensen JP, Maggi V (2007) New insights on Antarctic Quaternary climate from high-resolution aeolian dust data from the EPICA—Dome C ice core. Geophysical Research Abstracts, vol 9, 07464Google Scholar
  42. Leventer A, Domack EW, Ishman SE, Brachfeld S, McClennen CE, Manley P (1996) Productivity cycles of 200–300 years in the Antarctic Peninsula region: understanding linkages among the sun, atmosphere, oceans, sea ice and biota. GSA Bull 108(12):1626–1644CrossRefGoogle Scholar
  43. Lucchi RG, Rebesco M (2007) Glacial contourites on the Antarctic Peninsula margin: insight for paleoenvironmental and paleoclimatic conditions. In: Viana AR, Rebesco M (eds) Economic and paleoceanographic significance of contourite deposits, vol 276. Geological Society, London, pp 111–127 (special publications)Google Scholar
  44. Lucchi RG, Rebesco M, Camerlenghi A, Busetti M, Tomadin L, Villa G, Persico D, Morigi C, Bonci MC, Giorgetti G (2002) Mid-late Pleistocene glacimarine sedimentary processes of a high latitude, deep-sea sediment drift (Antarctic Peninsula Pacific margin). Mar Geol 189:343–370CrossRefGoogle Scholar
  45. Macrì P, Sagnotti L, Dinares-Turrel J, Caburlotto A (2005) A composite record of Late Pleistocene relative geomagnetic paleointensity from the Wilkes Land Basin (Antarctica) Physics of the Earth and Planetary interiors, vol 151, pp 223–242Google Scholar
  46. Macrì P, Sagnotti L, Lucchi R, Rebesco M (2006) A stacked record of relative geomagnetic paleointensity for the last 270 ka from sedimentary sequences on the western continental rise of the Antarctic Peninsula. Earth Planet Sci Lett 252:162–179CrossRefGoogle Scholar
  47. McGinnis JP, Hayes DE (1995) The roles of down-slope and along-slope depositional processes: southern Antarctic Peninsula margin. In: Cooper AK, Barker PG, Brancolini G (eds) Geology and seismic stratigraphy of the Antarctic margin. Antarctic Research Series 68, pp 141–156Google Scholar
  48. McGinnis JP, Hayes DE, Driscoll NW (1997) Sedimentary processes across the continental rise of the southern Antarctic Peninsula. Mar Geol 141:91–109CrossRefGoogle Scholar
  49. Michels KH, Rogenhagen J, Kuhn G (2001) Recognition of contour-current influence in mixed contourite-turbidite sequences of the western Weddell Sea, Antartica. Mar Geophys Res 22:465–485Google Scholar
  50. Michels KH, kuhn G, Hillenbrand CD, Diekmann B, Futterer DK, Grobe H, Uenzelmann-Neben G (2002) The southern Weddell sea: combined contourite-turbidite sedimentation at the southeastern margin of the Weddell Gyre. In: Stow DAV, Pudsey CJ, Howe JA, Faugeres J-C, Viana AR (eds) Deep-water contourite systems: modern drifts and ancient series, Seismic and sedimentary characteristics, vol 22. Geological Society, London, pp 305–325 Google Scholar
  51. O’Brien PE, Cooper AK, Florindo F, Handwerger DA, Lavelle M, Passchier JJ, Pospichal PG, Quilty PG, Richter C, Theissen KM, Whitehead JM (2004) Prydz Channel fan and the History of Extreme Ice Advances in Prydz Bay. In: Cooper AK, O’Brien PE, Richter C (eds) Proceeding ODP, scientific results, 188, [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station, TX 77845–9547, USAGoogle Scholar
  52. Payne RR, Conolly JR (1972) Turbidite sedimentation off the Antarctic continent. Antarct Res Ser 19:349–364Google Scholar
  53. Presti M, De Santis L, Busetti M, Harris PT (2003) Late Pleistocene and Holocene sedimentation on the Gorge V Continental Shelf, East Antarctica. In: Harris PT, Brancolini G, Bindoff N, De Santis L (eds) Recent investigations of the Mertz Polynya and George Vth Land Continental Margin, East Antarctica. Deep-Sea Research II 50 (8–9), pp 1441–1461Google Scholar
  54. Presti M, De Santis L, Brancolini G, Harris PT (2005) Continental shelf record of the East Antarctic Ice Sheet evolution: seismo-stratigraphic evidence from the George V Basin. Quat Sci Rev 24(10–11):1223–1241CrossRefGoogle Scholar
  55. Pudsey CJ (2000a) Neogene record of Antarctic Peninsula glaciations in continental rise sediments: ODP leg 178, site 1095. In: Barker PF, Camerlenghi A, Acton GD, Ramsay ATS (eds) Proceedings of ODP, science results, vol 178, pp 1–25Google Scholar
  56. Pudsey CJ (2000b) Sedimentation on the continental rise west of the Antarctic Peninsula over the last three glacial cycles. Mar Geol 167:313–338CrossRefGoogle Scholar
  57. Rebesco M, Larter RD, Camerlenghi A, Barker PF (1996) Giant sediment drifts on the Continental Rise West of the Antarctic Peninsula. Geol Mar Lett 16:65–75CrossRefGoogle Scholar
  58. Rebesco M, Larter RD, Barker PF, Camerlenghi A, Vanneste LE (1997) History of Sedimentation on the Continental Rise West of the Antarctic Peninsula. In: Cooper AK and Barker PF (eds) Geology and seismic stratigraphy of the Antarctic Margin, Part 2 AGU. Antarctic Research Series 71, pp 29–49Google Scholar
  59. Rintoul SR (1998) On the origin and influence of Adelie Land bottom water. Ocean, Ice and Atmosphere: Interactions at the Antarctic Continental Margin. American Geophysical Union, Washington, D.C., pp 151–171Google Scholar
  60. Rivaro P, Frache R, Bergamasco A, Hohmann R (2003) Dissolved oxygen, NO and PO as tracers for Ross Sea Ice Shelf Water overflow. Antarct Sci 15(3):399–404CrossRefGoogle Scholar
  61. Schrader HJ, Gersonde R (1978) Diatoms and Silicoflagellates. In: Zachariasse WJ et al (eds) Micropaleontological counting methods and techniques-an exercise on an eight meters section of the Lower Pliocene of Capo Rossello, Sicily, vol 17. Micropaleontological Bulletins, Utrecht, pp 129–176Google Scholar
  62. Shapiro GI, Huthnance JM, Ivanov VV (2003) Dense water cascading off the continental shelf. J Geophys Res Oceans 108 (C12): art. no. 3390Google Scholar
  63. Swan ARH, Sandilands M (1995) Introduction to geological data analysis. Blackwell, London, 446 pGoogle Scholar
  64. Tanahashi M, Eittreim SL, Wannesson J (1994) Seismic stratigraphic sequences of the Wilkes Land margin. Terra Antarct 1(2):391–393Google Scholar
  65. Zielinski U, Bianchi C, Gersonde R, Kunz-Pirrung M (2002) Last occurrence datums of the diatoms Rouxia leventerae and Rouxia constricta: indicators for marine isotope stages 6 and 8 in Southern Ocean sediments. Mar Micropaleontol 46:127–137CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Andrea Caburlotto
    • 1
  • R. G. Lucchi
    • 2
  • L. De Santis
    • 1
  • P. Macrì
    • 3
  • R. Tolotti
    • 4
  1. 1.Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, OGSSgonicoItaly
  2. 2.Department D’Estatrigrafia, P. i Geociénces MarinesUniversitat de BarcelonaBarcelonaSpain
  3. 3.Istituto Nazionale di Geofisica e Vulcanologia, INGVRomeItaly
  4. 4.Dip. Te. Ris.Università degli Studi di GenovaGenoaItaly

Personalised recommendations