International Journal of Earth Sciences

, Volume 99, Issue 3, pp 545–565 | Cite as

Dioritic intrusions of the Slavkovský les (Kaiserwald), Western Bohemia: their origin and significance in late Variscan granitoid magmatism

  • Pavla Kováříková
  • Wolfgang Siebel
  • Emil Jelínek
  • Miroslav Štemprok
  • Václav Kachlík
  • František V. Holub
  • Vratislav Blecha
Original Paper


Mafic and intermediate intrusions occur in the Slavkovský les as dykes, sills and minor tabular bodies emplaced in metamorphic rocks or enclosed in late Variscan granites near the SW contact of the Western Krušné hory/Erzgebirge granite pluton. They are similar in composition and textures to the redwitzites defined in NE Bavaria. Single zircon Pb-evaporation analyses constrain the age of a quartz monzodiorite at 323.4 ± 4.4 Ma and of a granodiorite at 326.1 ± 5.6 Ma. The PT range of magma crystallization is estimated at ~1.4–2.2 kbar and ~730–870°C and it accords with a shallow intrusion level of late Variscan granites but provides lower crystallization temperatures compared to the Bavarian redwitzites. We explain the heterogeneous composition of dioritic intrusions in the Slavkovský les by mixing between mafic and felsic magmas with a minor effect of fractional crystallization. Increased K, Ba, Rb, Sr and REE contents compared to tholeiitic basalts suggest that the parental mafic magma was probably produced by melting of a metasomatised mantle, the melts being close to lamprophyre or alkali basalt composition. Diorites and granodiorites originated from mixed magmas derived by addition of about 25–35 and 50 vol.%, respectively, of the acid end-member (granite) to lamprophyre or alkali-basalt magma. Our data stress an important role of mafic magmas in the origin of late Variscan granitoids in NW Bohemian Massif and emphasize the effect of mantle metasomatism on the origin of K-rich mafic igneous rocks.


Diorite Redwitzite Slavkovský les Variscan magmatism Zircon dating Gravity measurements Magma mixing 



The work was done under the financial support of the projects 205/02/0458, 205/05/0156 of the Grant Agency of the Czech Republic and Scientific Project of Ministry of Education, Youth and Sports ČR No. 0021620855. David Dolejš is gratefully thanked for helpful discussion. We appreciate the comments of three anonymous reviewers who significantly improved the original version of the manuscript.


  1. Basaltic Volcanism Study Project (1981) Basaltic volcanism on the terrestrial planets. Pergamon Press Inc., New York, pp 1–1286Google Scholar
  2. Blecha V, Kachlík V, Štemprok M, Gaždová R (2004) Magnetic and gravity survey of amphibole-biotite diorite body on the Uhlířský vrch, SE of Sokolov town (Karlovy Vary Pluton, Slavkovský les Mts). Geosci Res Rep for 2003, Czech Geol Survey, pp 126–128 (in Czech with English abstract)Google Scholar
  3. Boynton WV (1984) Cosmochemistry of the rare earth elements: meteoritic studies. In: Henderson P (ed) Rare earth elements geochemistry. Elsevier, Amsterdam, pp 63–114Google Scholar
  4. Cháb J, Stráník Z, Eliáš M (2007) Geological map of the Czech Republic 1:500 000. Czech Geoogical Survey, PrahaGoogle Scholar
  5. Cocherie A, Guerrot C, Rossi P (1992) Single-zircon dating by step-wise Pb evaporation: comparison with other geochronological techniques applied to the Hercynian granites of Corsica. Chem Geol 101:131–141Google Scholar
  6. Fiala F (1961a) Annual report on the geological study in the northern part of the Císařský (Slavkovský) les. Unpublished report, Archive of the Czech Geological Survey, Prague, pp 1–80 (in Czech)Google Scholar
  7. Fiala F (1961b) Geological study of the southwestern part of the Císařský (Slavkovský) les. Geosci Res Rep 1960:19–20 (in Czech)Google Scholar
  8. Fiala F (1968) Granitoids of the Slavkovský (Císařský) les Mountains. Sb Geol Věd Geol 14:93–160 (in Czech)Google Scholar
  9. Förster HJ, Tischendorf G, Trumbull RB, Gottesmann B (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. J Petrol 40:1613–1645. doi: 10.1093/petrology/40.11.1613 CrossRefGoogle Scholar
  10. Fourcade S, Allègre JC (1981) Trace elements behavior in granite genesis: a case study. The calc-alkaline pluton association from Querigut Complex (Pyrénées, France). Contrib Mineral Petrol 76:177–195. doi: 10.1007/BF00371958 CrossRefGoogle Scholar
  11. Franke W (1989) Tectonostratigraphic units in the Variscan belt of Central Europe. Geol Soc Am Spec Pap 230:67–97Google Scholar
  12. Fraser KJ, Hawkesworth CJ, Erlank AJ, Mitchel RH, Scott-Smith BH (1985) Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites. Earth Planet Sci Lett 76:57–70. doi: 10.1016/0012-821X(85)90148-7 CrossRefGoogle Scholar
  13. Freiberger R, Hecht L, Cuney M, Morteani G (2001) Secondary Ca–Al silicates in plutonic rocks: implications for their cooling history. Contrib Mineral Petrol 141:415–429Google Scholar
  14. Gerdes A, Wörner G, Finger F (2000) Hybrids, magma mixing and enriched mantle melts in post-collisional Variscan granitoids: the Rastenberg Pluton, Austria. Geol Soc Lond Spec Pub 179:415–431CrossRefGoogle Scholar
  15. Guo F, Fan W, Wang Y, Zhang M (2004) Origin of early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastern China: implications for enrichment processes beneath continental collisional belt. Lithos 78:291–305. doi: 10.1016/j.lithos.2004.05.001 CrossRefGoogle Scholar
  16. Hammarstrom JM, Zen E (1986) Aluminium in hornblende: an empirical igneous geobarometer. Am Mineral 71:1297–1313Google Scholar
  17. Harrison TM, Watson EB (1984) The behaviour of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim Cosmochim Acta 48:1467–1477. doi: 10.1016/0016-7037(84)90403-4 CrossRefGoogle Scholar
  18. Holl PK, Drach VV, Müller-Sohnius D, Köhler H (1989) Caledonian ages in Variscan rocks: Rb–Sr and Sm–Nd isotope variations in dioritic intrusives from the northwestern Bohemian Massif, West Germany. Tectonophysics 157:179–194. doi: 10.1016/0040-1951(89)90349-1 CrossRefGoogle Scholar
  19. Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116:433–447. doi: 10.1007/BF00310910 CrossRefGoogle Scholar
  20. Hollister LS, Grisson GC, Peters EK, Stowell HH, Sisson VB (1987) Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Am Mineral 72(34):231–239Google Scholar
  21. Holub FV (1997) Ultrapotassic plutonic rocks of the durbachite series in the Bohemian Massif: petrology, geochemistry and petrogenetic interpretation. Sb Geol Věd Lozisk Geol 31:5–26Google Scholar
  22. Janečka J, Absolonová E, Bernard J, Jarchovský T, Lomozová V, Pavlú D, Píšová J, Roos E, Strnad J, Štemprok M (1973) Final report on the geological study of the Sn–W deposits of the Bohemian massif. Unpublished report, Archive of the Czech Geological Survey Praha, pp 1–335 (in Czech)Google Scholar
  23. Janoušek V, Bowes DR, Rogers G, Farrow CM, Jelínek E (2000) Modelling diverse processes in the petrogenesis of a composite batholith: the Central Bohemian Pluton, Central European Hercynides. J Petrol 41:511–543. doi: 10.1093/petrology/41.4.511 CrossRefGoogle Scholar
  24. Janoušek V, Farrow CM, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J Petrol 47:1255–1259. doi: 10.1093/petrology/egl013 CrossRefGoogle Scholar
  25. Jargalan S, Fujimaki H, Ohba T (2007) Petrologic characteristics and Rb–Sr age dating of lamprophyre dikes of Tsagaan Tsahir Uul gold deposit, Mongolia. J Mineral Petrol Sci 102:163–173. doi: 10.2465/jmps.060322b Google Scholar
  26. Johnson MC, Rutherford MJ (1989) Experimental calibration of the aluminium-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology 17:837–841. doi:10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2CrossRefGoogle Scholar
  27. Kachlík V (1993) The evidence for Late Variscan nappe thrusting of the Mariánské Lázně Complex over the Saxothuringian terrane (West Bohemia). J Czech Geol Soc 38(1–2):43–58Google Scholar
  28. Kachlík V (1997) The Kladská unit. In: Vrána S, Štědrá V (eds) Geological model of western Bohemia related to the KTB borehole in Germany. Sb Geol Věd Geol, vol 47, pp 15–23Google Scholar
  29. Kelemen PB, Hanghoj K, Greene AR (2004) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3. Elsevier, Amsterdam, pp 593–659Google Scholar
  30. Kempe U, Bombach K, Matukov D, Schlothauer T, Hutschenreuter J, Wolf D, Segeev S (2004) Pb/Pb and U/Pb zircon dating of subvolcanic rhyolite as a time marker for Hercynian granite magmatism and Sn mineralization in the Eibenstock granite, Erzgebirge, Germany: considering effects of zircon alteration. Miner Depos 39:646–669Google Scholar
  31. Keskin M (2002) FC-Modeler: a Microsoft Excel spreadsheet program for modeling Rayleigh fractionation vectors in closed magmatic systems. Comp Geosci 28(8):919–928. doi: 10.1016/S0098-3004(02)00010-9 CrossRefGoogle Scholar
  32. Kober B (1986) Whole-grain evaporation for 207Pb/206Pb age investigations on single zircons using a double-filament thermal ion source. Contrib Mineral Petrol 93:481–490. doi: 10.1007/BF00371718 CrossRefGoogle Scholar
  33. Kober B (1987) Single-zircon evaporation combined with Pb+ emitter-bedding for 207Pb/206Pb-age investigations using thermal ion mass spectrometry, and implications to zirconology. Contrib Mineral Petrol 96:63–71. doi: 10.1007/BF00375526 CrossRefGoogle Scholar
  34. Kováříková P, Jelínek E, Štemprok M, Kachlík V, Holub FV, Blecha V (2005) Petrochemical comparison of redwitzites from the NW part of the Bohemian massif. Geosci Res Rep 2004:103–106 (in Czech)Google Scholar
  35. Kováříková P, Siebel W, Jelínek E, Štemprok M, Kachlík V, Holub FV, Blecha V (2007) Petrology, geochemistry and zircon age for redwitzite at Abertamy, NW Bohemian Massif (Czech Republic): tracing the mantle component in Late Variscan intrusions. Chem Erde 67(2):151–174. doi: 10.1016/j.chemer.2007.04.002 CrossRefGoogle Scholar
  36. Kratochvíl F (1959) Report on geological mapping in the Císařský les. Unpublished report, Archive of the Czech Geological Survey, pp 1–25 (in Czech)Google Scholar
  37. Lange H, Tischendorf G, Pälchen W, Klemm I, Ossenkopf W (1972) Zur Petrographie und Geochemie der Granite des Erzgebirges. Geologie 21:457–493Google Scholar
  38. Laube G (1876) Geologie des böhmischen Erzgebirges. Archiv Naturwiss Landesforschung Böhmen. Prag Teil 1:1–208Google Scholar
  39. LeMaitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sørensen H, Streckeisen A, Wooley AR, Zanettin B (1989) A classification of igneous rocks and glassary of terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous rocks. Blackwell, Oxford, pp 1–193Google Scholar
  40. Ludwig K (1999) Isoplot/Ex, version 206: a geochronological tool-kit for Microsoft Excel. Berkeley Geochronology Center (Spec Pub), vol 1a, pp 1–49Google Scholar
  41. Mendes AC, Dias G (2004) Mantle-like Sr-Nd isotope composition of Fe–K subalkaline granites: the Peneda-Geres Variscan massif (NW Iberian Peninsula). Terra Nova 16:109–115. doi: 10.1111/j.1365-3121.2004.00537.x CrossRefGoogle Scholar
  42. Miessler C, Propach G (1987) Genese der Redwitzite von Marktredwitz. Fortschr Mineral 65(1):137Google Scholar
  43. Mísař Z, Dudek A, Havlena V, Weiss J (1983) Geology of ČSSR I, Bohemian massif. State pedagogical publisher, Praha, pp 1–333 (in Czech)Google Scholar
  44. Najman K, Novák JK, Kozubek P (1988) New reserves of tin-tungsten ores at the Hub and Schnöd stocks. Geol Průzk 30:129–133 (in Czech)Google Scholar
  45. Nelson DR (1992) Isotopic characteristics of potassic rocks: evidence for the involvement of subducted sediments in magma genesis. Lithosphere 28:403–420. doi: 10.1016/0024-4937(92)90016-R Google Scholar
  46. Polanský J, Racková H, Šťovíčková N (1973) Detail gravity mapping with scale of 1: 25,000: Slavkovský les Mountains with parts of Cheb and Sokolov basins. Research report, Geofyzika np, Brno, pp 1–211 (in Czech)Google Scholar
  47. René M (2000) Petrogenesis of the Variscan granites in the western part of the Bohemian Massif. Acta Mont A 15(116):67–83Google Scholar
  48. Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Longman, UK, pp 1–325Google Scholar
  49. Romer RL, Thomas R, Stein HJ (2007) Dating multiply overprinted Sn-mineralized granites—examples from the Erzgebirge, Germany. Miner Depos 42:337–359. doi: 10.1007/s00126-006-0114-2 CrossRefGoogle Scholar
  50. Schmidt MW (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib Mineral Petrol 110:304–310. doi: 10.1007/BF00310745 CrossRefGoogle Scholar
  51. Schovánek P, Straka J, Breiter K, Hradecký P, Kopecký L Jr (2001) Geological map. Sheet 11–23 Sokolov. Czech Geological Survey, PrahaGoogle Scholar
  52. Siebel W (1993) Der Leuchtenberger Granit und seine assoziierten magmatischen Gesteine: Zeitliche und stoffliche Entwicklungsprozesse im Verlauf der Enstehung des Nordoberpfalz-Plutons. PhD thesis Ruprechts Karls Universität, Heidelberg, pp 1–305Google Scholar
  53. Siebel W (1994) Inferences about magma mixing and thermal events from isotopic variations in redwitzites near the KTB site. KTB report 94-3, pp 157–164Google Scholar
  54. Siebel W, Höhndorf A, Wendt I (1995) Origin of late Variscan granitoids from NE Bavaria, Germany, exemplified by REE and Nd isotope systematics. Chem Geol 125:249–270. doi: 10.1016/0009-2541(95)00083-X CrossRefGoogle Scholar
  55. Siebel W, Trzebski R, Stettner G, Hecht L, Casten U, Höhndorf A, Müller P (1997) Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept. Geol Rundsch Suppl 86:45–63. doi: 10.1007/PL00014665 CrossRefGoogle Scholar
  56. Siebel W, Chen F, Satir M (2003) Late-Variscan magmatism revisited: new implications from Pb-evaporation zircon ages on the emplacement of redwitzites and granites in NE Bavaria. Int J Earth Sci 92:36–53. doi: 10.1007/s00531-003-0348-5 CrossRefGoogle Scholar
  57. Solgadi F, Moyen J-F, Vanderhaeghe O, Sawyer EW, Reisberg L (2007) The role of crustal anatexis and mantle-derived magmas in the genesis of synorogenic Hercynian granites of the Livradois area, French Massif Central. Can Mineral 45:581–606. doi: 10.2113/gscanmin.45.3.581 CrossRefGoogle Scholar
  58. Spiegel W, Propach G (1991) Die Genese basischer und intermediäter Intrusivgesteine im Westteil des Vorderen Bayerischen Waldes. Geol Bavarica 96:159–178Google Scholar
  59. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two stage model. Earth Planet Sci Lett 26:207–221. doi: 10.1016/0012-821X(75)90088-6 CrossRefGoogle Scholar
  60. Štemprok M (1959) Report of the revision of geological documentation in the shaft Barbora (shaft 3 and 4) of the Jáchymov mines in Horní Slavkov. Archive of the Czech Geological Survey, Prague, pp 1–18 (in Czech)Google Scholar
  61. Štemprok M (1971) Geochemistry of granites of the Slavkovský les. Unpublished report, Archive of the Czech Geological Survey, Prague, pp 1–56 (in Czech)Google Scholar
  62. Štemprok M (1986) Petrology and geochemistry of the Czechoslovak part of the Krušné hory Mts. granite pluton. Sbor Geol Věd Lož Min 27:111–156Google Scholar
  63. Taubald H (2000) 207Pb/206Pb zircon ages, geochemical and isotope (Sr, Nd, O) data from Redwitzites in the Fichtelgebirge, NE Bavaria. Münchner Geol Hefte A 28:53–59Google Scholar
  64. Taylor SR, McLennan SM (1986) The chemical composition of the Archaean crust. In: Dawson JB et al (eds) The nature of the lower continental crust. Geol Soc Lond (Spec Pub), vol 24, pp 173–178Google Scholar
  65. Tomek Č, Dvořáková V, Vrána S (1994) Geological intepretation of the 9HR and 503 M seismis profiles in Western Bohemia. In: Vrána S, Štědrá V (eds) Geological model of western Bohemia related to the KTB borehole in Germany. Sb Geol Věd Geol, vol 47, pp 43–50Google Scholar
  66. Troll G (1968) Gliederung der redwitzitischen Gesteine Bayerns nach Stoff- und Gefügemerkmalen. Teil I (ed) Die Typlokalitaet von Marktredwitz in Oberfranken. Bayerische Akad Wiss Abh 133, München, pp 1–86Google Scholar
  67. Trzebski R, Behr HJ, Conrad W (1997) Subsurface distribution and tectonic setting of the late-Variscan granites in the northwestern Bohemian Massif. Geol Rundsch Suppl 86:64–78. doi: 10.1007/PL00014666 CrossRefGoogle Scholar
  68. Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in variety of crustal magma types. Earth Planet Sci Lett 61:346–358. doi: 10.1016/0012-821X(82)90065-6 CrossRefGoogle Scholar
  69. Watson EB, Harrison TM (1984) Accessory minerals and the geochemical evolution of crustal magmatic systems: a summary and prospectus of experimental approaches. Phys Earth Planet Inter 35:19–30. doi: 10.1016/0031-9201(84)90031-1 CrossRefGoogle Scholar
  70. Willmann K (1920) Die Redwitzite, eine neue Gruppe von granitischen Lamprophyren. Dtsch Geol Ges 71(1/2):1–33Google Scholar
  71. Yavuz F (1999) A revised program for microprobe-derived amphibole analyses using the IMA rules. Comput Geosci 25:909–927. doi: 10.1016/S0098-3004(99)00055-2 CrossRefGoogle Scholar
  72. Zoubek V (ed) (1963) The annotation to the general geological map of CSSR, scale 1:200000 M-33-XIII Karlovy Vary. CSAV, PrahaGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Pavla Kováříková
    • 1
    • 3
  • Wolfgang Siebel
    • 2
  • Emil Jelínek
    • 1
  • Miroslav Štemprok
    • 1
  • Václav Kachlík
    • 1
  • František V. Holub
    • 1
  • Vratislav Blecha
    • 1
  1. 1.Faculty of ScienceCharles University in PraguePrague 2Czech Republic
  2. 2.Universität TübingenTübingenGermany
  3. 3.Czech Geological SurveyPrague 5 - BarrandovCzech Republic

Personalised recommendations