Advertisement

International Journal of Earth Sciences

, Volume 99, Issue 3, pp 593–621 | Cite as

Review of post-collisional volcanism in the Central Anatolian Volcanic Province (Turkey), with special reference to the Tepekoy Volcanic Complex

  • Gonca Gencalioglu Kuscu
  • Fatma Geneli
Original Paper

Abstract

Neogene-Quaternary post-collisional volcanism in Central Anatolian Volcanic Province (CAVP) is mainly characterized by calc-alkaline andesites-dacites, with subordinate tholeiitic-transitional-mildly alkaline basaltic volcanism of the monogenetic cones. Tepekoy Volcanic Complex (TVC) in Nigde area consists of base surge deposits, and medium to high-K andesitic-dacitic lava flows and basaltic andesitic flows associated with monogenetic cones. Tepekoy lava flows petrographically exhibit disequilibrium textures indicative of magma mixing/mingling and a geochemisty characterized by high LILE and low HFSE abundances, negative Nb–Ta, Ba, P and Ti anomalies in mantle-normalized patterns. In this respect, they are similar to the other calc-alkaline volcanics of the CAVP. However, TVC lava flows have higher and variable Ba/Ta, Ba/Nb, Nb/Zr, Ba/TiO2 ratios, indicating a heterogeneous, variably fluid-rich source. All the geochemical features of the TVC are comparable to orogenic andesites elsewhere and point to a sub-continental lithospheric mantle source enriched in incompatible elements due to previous subduction processes. Basaltic monogenetic volcanoes of CAVP display similar patterns, and HFS anomalies on mantle-normalized diagrams, and have incompatible element ratios intermediate between orogenic andesites and within-plate basalts (e.g. OIB). Accordingly, the calc-alkaline and transitional-mildly alkaline basaltic magmas may have a common source region. Variable degrees of partial melting of a heterogeneous source, enriched in incompatible elements due to previous subduction processes followed by fractionation, crustal contamination, and magma mixing in shallow magma chambers produced the calc-alkaline volcanism in the CAVP. Magma generation in the TVC, and CAVP in general is via decompression melting facilitated by a transtensional tectonic regime. Acceleration of the extensional regime, and transcurrent fault systems extending deep into the lithosphere favoured asthenospheric upwelling at the base of the lithosphere, and as a consequence, an increase in temperature. This created fluid-present melting of a fluid-enriched upper lithospheric mantle or lower crustal source, but also mixing with asthenosphere-derived melts. These magmas with hybrid source characteristics produced the tholeiitic-transitional-mildly alkaline basalts depending on the residence times within the crust. Hybrid magmas transported to the surface rapidly, favored by extensional post-collision regime, and produced mildly alkaline monogenetic volcanoes. Hybrid magmas interacted with the calc-alkaline magma chambers during the ascent to the surface suffered slight fractionation and crustal contamination due to relatively longer residence time compared to rapidly rising magmas. In this way they produced the mildly alkaline, transitional, and tholeiitic basaltic magmas. This model can explain the coexistence of a complete spectrum of q-normative, ol-hy-normative, and ne-normative monogenetic basalts with both subduction and within-plate signatures in the CAVP.

Keywords

Post-collisional volcanism Calc-alkaline Andesite Residence time Central Anatolian Volcanic Province Turkey 

Notes

Acknowledgments

Part of the data in this work is from the MSc Thesis by the second author Fatma Geneli. Constructive reviews by Dr. Ercan Aldanmaz are gratefully acknowledged. Dr. Peter A. Floyd kindly reviewed an earlier version of the manuscript. Prof. Wolf-Christian Dullo, and Dr. James D.L. White are thanked for editorial handling.

References

  1. Aldanmaz E, Pearce JA, Thirlwall MF, Mitchell JG (2000) Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. J Volcanol Geotherm Res 102:67–95. doi: 10.1016/S0377-0273(00)00182-7 CrossRefGoogle Scholar
  2. Alici Sen P, Temel A, Gourgaud A (2004) Petrogenetic modelling of quaternary post-collisional volcanism: a case study of central and eastern Anatolia. Geol Mag 141:81–98. doi: 10.1017/S0016756803008550 CrossRefGoogle Scholar
  3. Avanzinelli R, Elliott T, Tommasini S, Conticelli S (2008) Constraints on the genesis of potassium-rich Italian volcanic rocks from U/Th disequilibrium. J Petrol 49:195–223. doi: 10.1093/petrology/egm076 CrossRefGoogle Scholar
  4. Aydar E, Gourgaud A (1993) Evolution of magma chambers and related petrogenetic processes of the Hasandag stratovolcano (in Turkish with English abstract). Yerbilimleri 16:101–113Google Scholar
  5. Aydar E, Gourgaud A (1998) The geology of Mount Hasan stratovolcano, central Anatolia, Turkey. J Volcanol Geotherm Res 85:129–152. doi: 10.1016/S0377-0273(98)00053-5 CrossRefGoogle Scholar
  6. Aydar E, Gourgaud A (2002) Garnet-bearing basalts: an example from Mt. Hasan, central Anatolia, Turkey. Mineral Petrol 75:185–201. doi: 10.1007/s007100200023 CrossRefGoogle Scholar
  7. Aydar E, Gourgaud A, Deniel C, Lyberis N, Gündogdu N (1995) Le volcanisme quaternaire d’Anatolie centrale (Turquie): association de magmatismes calco-alcalin et alcalin en domaine de convergene. Can J Earth Sci 32:1058–1069Google Scholar
  8. Aydin F (2008) Contrasting complexities in the evolution of calc-alkaline and alkaline melts of the Nigde volcanic rocks, Turkey: textural, mineral chemical and geochemical evidence. Eur J Mineral 20(1):101–118. doi: 10.1127/0935-1221/2008/0020-1784 CrossRefGoogle Scholar
  9. Batum I (1978) Geology and petrography of Acigol and Golludag volcanics at the SW of Nevsehir Central Anatolia, Turkey. Yerbilimleri 4:50–69Google Scholar
  10. Beccaluva L, Di Girolamo P, Serri G (1991) Petrogenesis and tectonic setting of the Roman Volcanic Province, Italy. Lithos 26:191–221. doi: 10.1016/0024-4937(91)90029-K CrossRefGoogle Scholar
  11. Beekman PH (1966) The Pliocene and quaternary volcanism in the Hasan Dag-Melendiz Dag region. Bull Miner Res Explor Inst Ankara 66:90–105Google Scholar
  12. Besang C, Eckhardt FJ, Harre W, Kreuzer H, Müller P (1977) Radiometrische alterbestimmungen an neogenen eruptivgesteinen der Türkei. Geol J B25:3–36Google Scholar
  13. Boari E, Conticelli S (2007) Mineralogy and petrology of associated Mg-rich ultrapotassıc, shoshonitic, and calc-alkaline rocks: the Middle Latin Valley monogenetıc volcanos, Roman Magmatic Province, Southern Italy. Can Min 45:1443–1469. doi: 10.3749/canmin.45.6.1443 CrossRefGoogle Scholar
  14. Boztug D, Harlavan Y, Arehart GB, Satir M, Anvi N (2007) K–Ar age, whole-rock and isotope geochemistry of A-type granitoids in the Divrigi–Sivas region, eastern-central Anatolia, Turkey. Lithos. doi: 10.1016/j.lithos.2006.12.014
  15. Buyuksarac A, Jordanova D, Ates A, Karloukovski V (2005) Paleomagnetic study of ignimbrites and volcanites from Cappadocia (Turkey)—a contribution towards interpretation of magnetic anomalies (in Turkish with English abstract). Istanbul Univ Muh Fak Yerbilimleri Derg 18(2):199–218Google Scholar
  16. Cabanis B, Lecolle M (1989) Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination des series volcaniques et la mise en evidence des procesus de melange et/ou de contamination crutale: Comptes Rendus de’l Academie des Sci, ser. II, 309:2023–2029Google Scholar
  17. Castro A, Moreno-Ventas I, De La Rosa IDJD (1991) Multistage crystallization of tonalitic enclaves in granitoid rocks (Hercynian belt, Spain): implications for magma mixing. Geo Rund 80:109–120. doi: 10.1007/BF01828770 CrossRefGoogle Scholar
  18. Comin-Chiaramonti C, Cundari A, Piccirillo EM, Gomes CB, Castorina F, Censi P, De Min A, Marzoli A, Speziale S, Velazquez VF (1997) Potassic and sodic igneous rocks from Eastern Paraguay: their origin from the lithospheric mantle and genetic relationships with the associated Parana flood tholeiites. J Petrol 38:495–528. doi: 10.1093/petrology/38.4.495 CrossRefGoogle Scholar
  19. Coulon C, Megartsi M, Fourcade S, Maury RC, Bellon H, Louni-Hacini A, Cotten J, Coutelle A, Hermitte D (2002) Post-collisional transition from calc-alkaline to alkaline volcanism during the Neogene in Oranie (Algeria): magmatic expression of a slab breakoff. Lithos 62:87–110. doi: 10.1016/S0024-4937(02)00109-3 CrossRefGoogle Scholar
  20. Deniel C, Aydar E, Gourgaud A (1998) The Hasandag stratovolcano (central Anatolia, Turkey): evolution from calc-alkaline to alkaline magmatism in a collision zone. J Volcanol Geotherm Res 87:275–302. doi: 10.1016/S0377-0273(98)00097-3 CrossRefGoogle Scholar
  21. Dewey JF, Pitman WC, Ryan WBF, Bonnin J (1973) Plate tectonics and the evolution of the Alpine system. GSA Bull 84:3137–3180CrossRefGoogle Scholar
  22. Dhont D, Chorowicz J, Yurur T, Froger J-L, Kose O, Gundogdu N (1998) Emplacement of volcanic vents and geodynamics of Central Anatolia, Turkey. J Volcanol Geotherm Res 85:33–54. doi: 10.1016/S0377-0273(98)00048-1 CrossRefGoogle Scholar
  23. Dirik K (2001) Neotectonic evolution of the northwestward arched segment of the Centran Anatolian Fault Zone, central Anatolia, Turkey. Geodin Acta 14(1–3):147–158. doi: 10.1016/S0985-3111(00)01056-1 CrossRefGoogle Scholar
  24. Dirik K, Goncuoglu MC (1996) Neotectonic characteristics of Central Anatolia. Int Geol Rev 38:807–817CrossRefGoogle Scholar
  25. Duggen S, Hoernle K, van den Bogaard P, Garbe-Schonberg D (2005) Post-collisional transition from subduction- to intraplatetype magmatism in the westernmost Mediterranean: evidence for continental-edge delamination of subcontinental lithosphere. J Petrol 46:1155–1201. doi: 10.1093/petrology/egi013 CrossRefGoogle Scholar
  26. Dungan MA, Rhodes JM (1978) Residual glasses and melt inclusions in basalts from DSDP Legs 45 and 46: evidence for magma mixing. Contrib Mineral Petrol 67:417–431. doi: 10.1007/BF00383301 CrossRefGoogle Scholar
  27. Ercan T, Yildirim T, Akbaşli A (1987) Gelveri (Nigde)-Kizilcin (Nevsehir) arasindaki volkanizmanin özellikleri [Characteristics of volcanism between Gelveri (Nigde)-Kizilcin (Nevsehir)]. Jeomorfoloji Derg 15:7–36Google Scholar
  28. Ercan T, Tokel S, Matsuda JI, Ui T, Notsu K, Fujitani T (1992) New geochemical, isotopic and radiometric data of the quaternary volcanism of Hasandagi-Karacadag (Central Anatolia) (in Turkish with English abstract). TJK Bulteni 7:8–21Google Scholar
  29. Ercan T, Tokel S, Matsuda JI, Ui T, Notsu K, Fujitani T (1994) New geochemical, isotopic and radiometric data on the Plio-Quaternary Erciyes (central Anatolia) volcanism, and its significance in terms of geothermal energy. Proceedings of the 6th Energy Congress of Turkey, 17–22 October 1994, Izmir, Turkey (in Turkish)Google Scholar
  30. Erol O (2001) Geomorphology of the Sultansazlıgı Basin and the Erciyes Mountain at the northeastern end of the Ecemis Corridor. Pro Ecemis Fault Zone Worksh 1:9–19Google Scholar
  31. Fan WM, Guo F, Wang YJ, Lin G (2003) Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, northeastern China. J Volcanol Geotherm Res 121:115–135. doi: 10.1016/S0377-0273(02)00415-8 CrossRefGoogle Scholar
  32. Feeley TC, Sharp ZD (1996) Chemical and hydrogen isotope evidence for in situ dehydrogenetion of biotite in silicic magma chambers. Geology 24:1021–1024. doi:10.1130/0091-7613(1996)024<1021:CAHIEF>2.3.CO;2CrossRefGoogle Scholar
  33. Floyd PA, Castillo PR (1992) Geochemistry and petrogenesis of Jurassic ocean crust basalts, ODP leg 129, site 801. In: Larson R, Launcelot Y et al (eds) Proc ocean drill program sci results, vol 129. College Station, Texas, pp 361–388Google Scholar
  34. Garcia MO, Jacobson SS (1979) Crystal clots, amphibole fractionation, and the evolution of calc-alkaline magmas. Contrib Mineral Petrol 69:319–327. doi: 10.1007/BF00372257 CrossRefGoogle Scholar
  35. Gencalioglu-Kuscu G, Atilla C, Cas RAF, Kuscu I (2007) Eruption history, vent development and depositional processes of a wet phreatomagmatic volcano in central Anatolia (Cora Maar). J Volcanol Geotherm Res 159(1–3):198–209. doi: 10.1016/j.jvolgeores.2006.06.013 CrossRefGoogle Scholar
  36. Geneli F (2003) Petrochemistry of Tepekoy (Nigde) Volcanism, Unpublished M. Sc. Thesis (in Turkish), Nigde University, Nigde-Turkey, p 81Google Scholar
  37. Geneli F, Gencalioglu-Kuscu G (2003) Geological and Petrological Characteristics of the Tepeköy (Nigde) Volcanics. Mersin Universitesi Jeoloji Muhendisligi Bolumu 10. Yil Sempozyumu, 15–18th October 2003, Mersin, Turkey, Abstracts, p 44 (in Turkish)Google Scholar
  38. Geneli F, Gencalioglu-Kuscu G (2004) Geochemistry of the Tepekoy (Nigde) Volcanics. 1. Ulusal Jeokimya Sempozyumu, 18–21st November 2004, Bursa, Turkey, Abstracts, p 31 (in Turkish)Google Scholar
  39. Gill JB (1981) Orogenic andesites and plate tectonics. Springer, New York, p 385Google Scholar
  40. Gmeling K, Nemeth K, Martin U, Eby N, Varga Z (2007) Boron concentration of volcanic fields in different volcanic settings. J Volcanol Geotherm Res 159:70–84. doi: 10.1016/j.jvolgeores.2006.06.009 CrossRefGoogle Scholar
  41. Goncuoglu MC, Toprak V (1992) Neogene and quaternary volcanism of central Anatolia: a volcano-structural evaluation. Bull Sec Volcanol Soc Geol Fr 26:1–6Google Scholar
  42. Goncuoglu MC, Toprak V, Kuscu I, Erler A, Olgun E (1991) Orta Anadolu Masifinin Bati Bolumunun Jeolojisi, Bolum I: Guney Kesim. Turkish Petroleum Corporation Report No. 2909 (in Turkish)Google Scholar
  43. Harangi Sz, Downes H, Kosa L, Szabo Cs, Thirlwall MF, Mason PRD, Mattey D (2001) Almandine garnet in calc-alkaline volcanic rocks of the northern Pannonian Basin (eastern-central Europe): geochemistry, petrogenesis and geodynamic implications. J Petrol 42:1813–1843. doi: 10.1093/petrology/42.10.1813 CrossRefGoogle Scholar
  44. Harangi Sz, Downes H, Seghedi I (2006) Tertiary-Quaternary subduction processes and related magmatism in the Alpine-Mediterranean region. In: Gee D, Stephenson R (eds) European lithosphere dynamics. Geol Soc Lond Memoirs 32:167–190Google Scholar
  45. Harangi Sz, Downes H, Thirlwall MF, Gmeling K (2007) Geochemistry, petrogenesis and geodynamic relationships of Miocene calc-alkaline volcanic rocks in the western Carpathian Arc, eastern central Europe. J Petrol 48:2261–2287. doi: 10.1093/petrology/egm059 CrossRefGoogle Scholar
  46. Hawkesworth CJ, Turner S, Gallagher K, Hunter A, Bradshaw T, Rogers N (1995) Calc-alkaline magmatism, lithospheric thinning and extension in the basin and range. J Geophys Res 100:10271–10286. doi: 10.1029/94JB02508 CrossRefGoogle Scholar
  47. Innocenti F, Mazzuoli G, Pasquare F, Radicati Di Brozola F, Villari L (1975) The Neogene calc-alkaline volcanism of Central Anatolia: geochronological data on Kayseri-Nigde area. Geol Mag 112:349–360CrossRefGoogle Scholar
  48. Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548Google Scholar
  49. Jaffey N, Robertson AHF (2001) New sedimentological and structural data from the Ecemis Fault Zone southern Turkey: implications for its timing and offset and the Cenozoic tectonic escape of Anatolia. J Geol Soc London 158:367–378CrossRefGoogle Scholar
  50. Jahangiri A (2007) Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications. J Asian Earth Sci 30:433–447. doi: 10.1016/j.jseaes.2006.11.008 CrossRefGoogle Scholar
  51. Kabeto K, Sawada Y, Iizumi S, Wakatsuki T (2001) Mantle sources and magma-crust interactions in volcanic rocks from the northern Kenya rift: geochemical evidence. Lithos 56:111–139. doi: 10.1016/S0024-4937(00)00063-3 CrossRefGoogle Scholar
  52. Kaymakci N, Kuscu I (2007) Late Cretaceous to Recent Kinematic Evolution of Turkey, European Geosciences Union 2007 Geophysical research abstracts, vol 9, 05426, 2007. SRef-ID: 1607-7962/gra/EGU2007-A-05426Google Scholar
  53. Kaymakci N, Inceoz M, Ertepinar P (2006) 3D-architecture and neogene evolution of the Malatya Basin: inferences for the kinematics of the Malatya and Ovacik Fault Zones. Turk J Earth Sci 15:123–154Google Scholar
  54. Kaymakci N, Kuscu I, Peynircioglu A, Langereis C, van Hinsbergen DJJ, Inceoz M (2008) Kinematic evolution of Eastern Anatolia, ISES/Solid earth. 9th Nederlands Aardwetenschappelijk Congress (NAC9), 18–19 March, 2008, Vedhoven, The NederlandsGoogle Scholar
  55. Keller J (1974) Quaternary maar volcanism near Karapinar in central Anatolia. Bull Volcanol 38:378–396. doi: 10.1007/BF02599413 CrossRefGoogle Scholar
  56. Kocyigit A, Beyhan A (1998) A new intracontinental transcurrent structure: the Central Anatolian Fault Zone, Turkey. Tectonophysics 284:317–336. doi: 10.1016/S0040-1951(97)00176-5 CrossRefGoogle Scholar
  57. Kurkcuoglu B, Sen E, Aydar E, Gourgaud A, Gündogdu N (1998) Geochemical approach to magmatic evolution of Mt. Erciyes stratovolcano Central Anatolia, Turkey. J Volcanol Geotherm Res 85:473–494. doi: 10.1016/S0377-0273(98)00067-5 CrossRefGoogle Scholar
  58. Kurkcuoglu B, Sen E, Temel A, Aydar E, Gourgaud A (2001) Trace element modelling and source constraints for tholeiitic and calc-alkaline basalts from a depleted asthenospheric mantle source, Mt. Erciyes Stratovolcano, Turkey. Int Geol Rev 43:508–522CrossRefGoogle Scholar
  59. Kurkcuoglu B, Sen E, Temel A, Aydar E, Gourgaud A (2004) Interaction of asthenospheric and lithospheric mantle: the genesis of calc-alkaline volcanism at Erciyes Volcano, Central Anatolia, Turkey. Int Geol Rev 46:243–258. doi: 10.2747/0020-6814.46.3.243 CrossRefGoogle Scholar
  60. Kuscu İ, Gencalioglu-Kuscu G, Tosdal RM, Ullrich T, Friedman R (2008) Magmatism in the southeastern Anatolian orogenic belt: transition from arc to post-collisional setting in an evolving orogen. In: Sosson M, Kaymakci N (eds) Basins and tectonics evolution of the Caucasus and the Eastern Anatolia regions Geol Soc Lond Sp Pub (in press)Google Scholar
  61. Le Pennec JL, Bourdier JL, Froger JL, Temel A, Camus G, Gourgaud A (1994) Neogene ignimbrites of the Nevsehir plateau (central Turkey): stratigraphy, distribution and source constraints. J Volcanol Geotherm Res 63:59–87. doi: 10.1016/0377-0273(94)90018-3 CrossRefGoogle Scholar
  62. Leterrier J, Maury RC, Thonon P, Gerard D, Marschal M (1982) Clinopyroxenes compositions as method of identification of the magmatic affinities of paleovolcanic series. Earth Planet Sci Lett 59:139–154. doi: 10.1016/0012-821X(82)90122-4 CrossRefGoogle Scholar
  63. Lustrino M, Wilson M (2007) The circum-mediterranean anorogenic Cenozoic igneous province. Earth Sci Rev 81:1–65. doi: 10.1016/j.earscirev.2006.09.002 CrossRefGoogle Scholar
  64. Lustrino M, Morra V, Fedele L, Serracino M (2007) The transition between ‘orogenic’ and ‘anorogenic’ magmatism in the western mediterranean area: The Middle Miocene volcanic rocks of Isola del Toro (SW Sardinia, Italy). Terra Nova 19:148–159. doi: 10.1111/j.1365-3121.2007.00730.x CrossRefGoogle Scholar
  65. MacLean WH, Barrett TJ (1993) Lithochemical techniques using immobile elements. J Geochem Explor 48:109–133. doi: 10.1016/0375-6742(93)90002-4 CrossRefGoogle Scholar
  66. Maury RC, Defant MJ, Joron J-L (1992) Metasomatism of the sub-arc mantle inferred from trace elements in Philippine xenoliths. Nature 360:661–663. doi: 10.1038/360661a0 CrossRefGoogle Scholar
  67. Maury RC, Pubellier M, Rangin C, Wulput L, Cotten J, Socquet A, Bellon H, Guillaud J-P, Htun HM (2004) Quaternary calc-alkaline and alkaline volcanism in an hyper-oblique convergence setting, central Myanmar and western Yunan. Bull Soc Géol Fr.,t 175, no 5:461–472Google Scholar
  68. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253. doi: 10.1016/0009-2541(94)00140-4 CrossRefGoogle Scholar
  69. Meschede M (1986) A method discriminating between different type of Mid Oceanic Ridge basalts and continental tholeites with Nb–Zr–Y diagram. Chem Geol 56:207–218. doi: 10.1016/0009-2541(86)90004-5 CrossRefGoogle Scholar
  70. Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274:321–355Google Scholar
  71. Niu Y, Regelous M, Wendt JI, Batiza R, O’Hara MJ (2002) Geochemistry of near-EPR seamounts: Importance of source versus process and the origin of enriched mantle component. Earth Planet Sci Lett 199:327–345. doi: 10.1016/S0012-821X(02)00591-5 CrossRefGoogle Scholar
  72. Notsu K, Fujitani T, Ui T, Matsuda J, Ercan T (1995) Geochemical features of collision-related volcanic rocks in central and eastern Anatolia, Turkey. J Volcanol Geotherm Res 64:171–192. doi: 10.1016/0377-0273(94)00077-T CrossRefGoogle Scholar
  73. Ocakoglu F (2004) Mio-Pliocene basin development in the eastern part of the Cappadocian Volcanic Province (Central Anatolia, Turkey) and its implications for regional tectonics. Int J Earth Sci 93:314–328. doi: 10.1007/s00531-004-0390-y CrossRefGoogle Scholar
  74. Ormerod DS, Rogers NW, Hawkesworth CJ (1991) Melting in the lithospheric mantle: inverse modelling of alkali-olivine basalts from the Big Pine Volcanic Field, California. Contrib Mineral Petrol 108:305–317. doi: 10.1007/BF00285939 CrossRefGoogle Scholar
  75. Pasquare G (1968) Geology of Cenozoic volcanic area of Central Anatolia. Atti Accad Naz Lincei 9:53–204Google Scholar
  76. Pasquare G, Ferrari L (1993) Rifting and spreading of Cappadocia volcanic plateau, Turkey. Am Geophys Union Fall Meet, San Francisco, V22F–10Google Scholar
  77. Pasquare G, Poli S, Vezzoli L, Zanchi A (1988) Continental arc volcanism and tectonic setting in central Anatolia, Turkey. Tectonophysics 146:17–230Google Scholar
  78. Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Orogenic andesites. Wiley, London, pp 525–548Google Scholar
  79. Pearce JA (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva, Nantwich, pp 230–249Google Scholar
  80. Pearce JA (1996) Sources and settings of granitic rocks. Episodes 19:120–125Google Scholar
  81. Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Sci Lett 19:290–300. doi: 10.1016/0012-821X(73)90129-5 CrossRefGoogle Scholar
  82. Pearce JA, Bender JF, de Long SE, Kidd WSF, Low PJ, Guner Y, Saroglu F, Yilmaz Y, Moorbath S, Mitchell JG (1990) Genesis of collision volcanism in eastern Anatolia, Turkey. J Volcanol Geotherm Res 44:189–229. doi: 10.1016/0377-0273(90)90018-B CrossRefGoogle Scholar
  83. Peccerillo A, Taylor SR (1976) Geochemistry of eocene calc-alkaline volcanics rocks from Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81. doi: 10.1007/BF00384745 CrossRefGoogle Scholar
  84. Piper JDA, Gursoy H, Tatar O (2002) Palaeomagnetism and magnetic properties of the Cappadocian ignimbrite succession, central Turkey and Neogene tectonics of the Anatolian collage. J Volcanol Geotherm Res 117:237–262. doi: 10.1016/S0377-0273(02)00221-4 CrossRefGoogle Scholar
  85. Reilinger RE, McClusky SC, Oral MB (1997) Global Positioning System measurements of present day crustal movements in the Arabian-African-Eurasian plate collision zone. J Geophys Res 102:9983–9999. doi: 10.1029/96JB03736 CrossRefGoogle Scholar
  86. Rosu E, Seghedi I, Downes H, Alderton DHM, Szakacs A, Pecskay Z, Panaiotu C, Panaiotu CE , Nedelcu L (2004) Extension related Miocene calc-alkaline magmatism in the Apuseni Mountains, Romania: origin of magmas. Schweizerische Min Pet Mitteilungen 84:153–172Google Scholar
  87. Rudnick RL, Gao S (2004) Composition of the continental crust. In: Holland HD Turekian KK (eds) Treatise on geochemistry. Elsevier, Amsterdam, 3: pp 1–64Google Scholar
  88. Schumacher R, Keller J, Bayhan H (1990) Depositional characteristics of ignimbrites in Cappadocia central Anatolia Turkey In: Savascin MY, Eronat AFI (eds) Proceedings of the international Earth science congress on Aegean regions (IESCA 1990) 2:435–449Google Scholar
  89. Seghedi I, Downes H, Szakacs A, Mason PRD, Thirlwall MF, Rosu E, Pecskay Z, Marton E, Panaiotu C (2004) Neogene-Quaternary magmatism and geodynamics in the Carpathian-Pannonian region: a synthesis. Lithos 72:117–146. doi: 10.1016/j.lithos.2003.08.006 CrossRefGoogle Scholar
  90. Shaw HR (1980) The fracture mechanisms of magma transport from the mantle to the surface. In: Hargraves RB (ed) Physics of magmatic processes. Princeton University Press, Princeton, pp 201–264Google Scholar
  91. Smith AG (1971) Alpine deformation and the oceanic areas of the Tethys Mediterranean and Atlantic. Bull Geol Soc Am 82:2039–2070. doi: 10.1130/0016-7606(1971)82[2039:ADATOA]2.0.CO;2 CrossRefGoogle Scholar
  92. Stimac JA, Pearce TH (1992) Textural evidence of mafic–felsic magma interaction in dacite lavas, Clear Lake, California. Am Mineral 77:795–809Google Scholar
  93. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes. In: Saunders, AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc Lond Spec Publ 42:313–345Google Scholar
  94. Tatar O, Gursoy H, Piper DD (2002) Differential neotectonic rotations in Anatolia and the Tauride Arc: palaeomagnetic investigation of the Erenlerdag Volcanic Complex and Isparta volcanic district, south–central Turkey. J Geol Soc London 159:281–294. doi: 10.1144/0016-764901-035 CrossRefGoogle Scholar
  95. Taylor SR, McLennan SM (1985) The Continental crust: its composition and evolution. Blackwell, Oxford, p 312Google Scholar
  96. Temel A, Gundogdu MN, Gourgaud A, Le Pennec J-L (1998) Ignimbrites of cappadocia (Central Anatolia Turkey): petrology and geochemistry. J Volcanol Geotherm Res 85:447–471. doi: 10.1016/S0377-0273(98)00066-3 CrossRefGoogle Scholar
  97. Tokel S, Ercan T, Akbaşli A, Yildirim T, Fisekci A, Selvi Y, Olmez M, Can B (1988) Neogene tholeiitic province of central Anatolia: implication for magma genesis and post-collision lithospheric dynamics. Tokay Symposium, METU J Pure and applied sciences, 21:461–477Google Scholar
  98. Toprak V (1998) Vent distribution and its relation to regional tectonics, Cappadocian volcanics. Turk J Volcanol Geotherm Res 85:55–67. doi: 10.1016/S0377-0273(98)00049-3 CrossRefGoogle Scholar
  99. Toprak V, Goncuoglu MC (1993) Tectonic control on the evolution of the neogene-quaternary Central Anatolian volcanic Province, Turkey. Geol J 28:357–369. doi: 10.1002/gj.3350280314 CrossRefGoogle Scholar
  100. Toprak V, Keller J, Schumacher R (1994) Volcano-tectonic features of the Cappadocian Volcanic Province, IAVCEI International Volcanological Congress, Ankara, Special Publication No:7 58 pGoogle Scholar
  101. Tsuchiyama A (1985) Dissolution kinetics of plagioclase in the melt of the system diopside-albite-anorthite, and the origin of dusty plagioclase in andesites. Contrib Mineral Petrol 89:1–16. doi: 10.1007/BF01177585 CrossRefGoogle Scholar
  102. Turkecan A, Akçay AE, Satir M, Donmez M, Ercan T (2003) Melendiz daglari (Nigde) volkanizmasi. 56th Geological Congress of Turkey, Extended abstracts, Ankara, 16–17 (in Turkish with English abstract)Google Scholar
  103. Ussler W III, Glazner AF (1987) Origin of augite coronas around quartz xenocrysts in basalts and andesites. Geol Soc Am Abst Programs 19:874Google Scholar
  104. Varnell A (2006) Petrology and geochemistry of the Big Pine Volcanic Field, Inyo County, CA. Senior Thesis, California State Polytechnic University, Pomona, CA, 36 pGoogle Scholar
  105. Wang Q, McDermott F, Xu J, Bellon H, Zhu Y (2005) Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting. Geol Soc Am Bull 33:465–468Google Scholar
  106. Wilson M (1989) Igneous petrogenesis. Kluwer, Dordrecht, p 450CrossRefGoogle Scholar
  107. Wilson M, Tankut A, Gulec N (1997) Tertiary volcanism of the Galatia Province, Central Anatolia, Turkey. Lithos 42:105–121. doi: 10.1016/S0024-4937(97)00039-X CrossRefGoogle Scholar
  108. Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343. doi: 10.1016/0009-2541(77)90057-2 CrossRefGoogle Scholar
  109. Yilmaz Y (1990) Comparison of young volcanic associations of western and eastern Anatolia formed under a compressional regime: a review. In: LeFort P, Pearce JA, Pecher A (eds) Collision magmatism, J Volcan Geotherm Res (Special issue) 44:69–87Google Scholar
  110. Yurtmen S, Rowbotham G (2002) Geochemistry, mineralogy and petrogenesis of the northeast Nigde volcanics, central Anatolia, Turkey. Geol J 37:189–215. doi: 10.1002/gj.908 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Geological EngineeringMugla UniversityMuglaTurkey
  2. 2.Department of Geological EngineeringMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations