International Journal of Earth Sciences

, Volume 99, Issue 2, pp 459–471 | Cite as

The middle to late Miocene climatic development of Southwest Africa derived from the sedimentological record of ODP Site 1085A

  • Bastian RotersEmail author
  • Rüdiger Henrich
Original Paper


Sediments from the ODP Site 1085A were studied to investigate the impacts of global cooling in the Middle and Late Miocene on the climate in Southwestern Africa. The size composition of the sediment was analysed emphasising the silt fraction. A comparison with the modern grain size distribution and suitable transport processes made it possible to assign specific transport processes to the grain size composition. Three processes are considered for transport of terrigeneous silt: while there was no evidence found for (1) transport by ocean currents, the analyses showed signals of (2) wind transport indicating dry conditions associated with a cool climate and (3) fluvial transport that points to humid and warm conditions. Three climatic phases were defined. The first phase from 13.8 to 11.8 Myr reveals a stable humid climate in Southwest Africa independent of the Antarctic glaciations. During the second phase from 11.8 to 10.4 Myr the regional climate cooled considerably but was not drier. Additionally, the climate during this phase reacted to the Antarctic glaciations. This cooling-trend continued during phase 3 from 10.4 to 9.0 Myr with a significant increase in dust input, pointing to overall drier conditions. However, fluvial transport still remained as the main source.


South West Africa Middle and late Miocene Climate cooling Aridification Grain size analysis 



We are thankful for various comments from the colleagues in the SedPal working group. David Heslop is thanked for additional comments and proofreading. Critical reviews by Dan Bosence and an anonymus reviewer improved the quality of this paper. Helga Heilmann and Brit Kockisch are thanked for laboratory assistance. Dorothee Koch is thanked for work on sample preparation. This research used samples and/or data provided by the International Ocean Drilling Program (IODP). This study was funded through the DFG Research Center/Excellence Cluster “The Ocean in the Earth System”.


  1. Bemis BE, Spero HJ, Bijma J, Lea DW (1998) Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations. Paleoceanography 13(2):150–160. doi: 10.1029/98PA00070 CrossRefGoogle Scholar
  2. Boven KL, Rea DK (1998) Partioning of eolian and hemipelagic sediment in Eastern Equatorial Pacific core TR 163–31B and the Late Quaternary paleoclimate of the Northern Andes. J Sediment Res 68(5):850–855Google Scholar
  3. Billups K, Schrag DP (2002) Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/16O measurements on benthic foraminifera. Paleoceanography 17(1):3-1–3-11Google Scholar
  4. Bremner JM, Willis JP (1993) Mineralogy and geochemistry of the fraction of sediments from the Namibian continental margin and the adjacent hinterland. Mar Geol 115:85–116. doi: 10.1016/0025-3227(93)90076-8 CrossRefGoogle Scholar
  5. Burckle LH, Mortlock R, Rudolph S (1996) No evidence for extreme, long term warming in early Pliocene sediments of the Southern Ocean. Mar Micropaleontol 27:215–226. doi: 10.1016/0377-8398(95)00061-5 CrossRefGoogle Scholar
  6. Diekmann B, Petschick R, Gingele FX, Fütterer DK, Abelmann A, Brathauer U, Gersonde R, Mackensen A (1996) Clay mineral fluctuations in late Quaternary sediments of the Southeastern South Atlantic: implications for past changes of deep water advection. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) The South Atlantic: present and past circulation. Springer, Berlin, pp 621–644Google Scholar
  7. Diekmann B, Fälker M, Kuhn G (2003) Environmental history of the south-eastern South Atlantic since the middle Miocene: evidence from the sedimentological records of ODP Sites 1088 and 1092. Sedimentology 50:511–529. doi: 10.1046/j.1365-3091.2003.00562.x CrossRefGoogle Scholar
  8. Diekmann B, Fütterer DK, Grobe H, Hillenbrand CD, Kuhn G, Michels K, Petschick R, Pirrung M (2004) Terrigeneous sediment supply in the polar to temperate South Atlantic: land–ocean links of environmental changes during the late Quaternary. In: Wefer G, Mulitza S, Ratmeyer V (eds) The South Atlantic in the late Quaternary––reconstruction of material budgets and current systems. Springer, Berlin, pp 375–399Google Scholar
  9. Diester-Haass L, Meyers PA, Rothe P (1990) Miocene history of the Benguela current and antarctic ice volumes: evidence from rhythmic sedimentation and current growth across the Walvis Ridge (deep sea drilling project sites 362 and 532). Paleoceanography 5(5):685–707. doi: 10.1029/PA005i005p00685 CrossRefGoogle Scholar
  10. Diester-Haass L, Meyers PA, Rothe P (1992) The Benguela current and associated upwelling on the southwest African margin: a synthesis of the Neogene-Quaternary sedimentary record at DSDP Sites 362 and 532. In: Prell CP, Meister KC (eds) Upwelling systems: evolution since the early Miocene. Geol Soc Spec Publications, London, pp 331–342Google Scholar
  11. Diester-Haass L, Meyers PA, Vidal L (2002) The late Miocene onset of high productivity in the Benguela current upwelling system as part of a global pattern. Mar Geol 180(1–4):87–103. doi: 10.1016/S0025-3227(01)00207-9 CrossRefGoogle Scholar
  12. Diester-Haass L, Meyers PA, Bickert T (2004) Carbonate crash and biologic bloom in the late Miocene: evidence from ODP Sites 1085, 1086, and 1087 in the Cape Basin, southeast Atlantic Ocean. Paleoceanography 19(1):PA1007. doi: 10.1029/2003PA000933 CrossRefGoogle Scholar
  13. Fairbanks RG, Matthews RK (1978) The marine oxygen isotope record in Pleistocene corals, Barbados, West Indies. Quat Res 10:181–196. doi: 10.1016/0033-5894(78)90100-X CrossRefGoogle Scholar
  14. Frenz M, Baumann KH, Böckel B, Höppner R, Henrich R (2005) Quantification of foraminifer and coccolith carbonate in South Atlantic surface sediments by means of carbonate grain-size distributions. J Sediment Res 75(3):464–475. doi: 10.2110/jsr.2005.036 CrossRefGoogle Scholar
  15. Gingele FX (1996) Holocene climatic optimum in Southwest Africa––evidence from the marine clay mineral record. Palaeogeogr Palaeoclimatol Palaeoecol 122:77–87. doi: 10.1016/0031-0182(96)00076-4 CrossRefGoogle Scholar
  16. Gradstein FM, Ogg JG, Smith AG (2004) A geologic time scale 2004. Cambridge University Press, Cambridge, 598 pGoogle Scholar
  17. Haq BU, Hardenbol S, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167. doi: 10.1126/science.235.4793.1156 CrossRefGoogle Scholar
  18. Henrich R, Baumann KH, Gerhardt S, Gröger M, Volbers A (2004) Carbonate preservation in deep and intermediate water masses in the South Atlantic: evaluation and geological record (a review). In: Wefer G, Mulitza S, Ratmeyer V (eds) The South Atlantic in the late Quaternary––reconstruction of material budgets and current systems. Springer, Berlin, pp 645–670Google Scholar
  19. Hodell DA, Gersonde R, Blum P (2002) Leg 177 synthesis: insights into Southern Ocean paleoceanography on tectonic to millennial timescales. In: Gersonde R, Hodell DA, Blum P (eds) Proceedings of the ODP, science results, vol 177, pp 1–54. Available at Cited on 4 June, 2007
  20. Höppner R, Henrich R (1999) Kornsortierungsprozesse am argentinischen Kontinentalhang anhand von Siltkornanalysen. Zentralbl Geol Pal 7–9:897–905Google Scholar
  21. Howard WR, Prell WL (1994) Late Quaternary CaCO3 production and preservation in the Southern Ocean: implications for oceanic and atmospheric carbon cycling. Paleoceanography 9(3):453–482. doi: 10.1029/93PA03524 CrossRefGoogle Scholar
  22. John CM, Karner GD, Mutti M (2004) δ18O and Marion Plateau backstripping: combining two approaches to constrain late middle Miocene eustatic amplitude. Geology 32(9):829–832. doi: 10.1130/G20580.1 CrossRefGoogle Scholar
  23. Kastanja MM, Henrich R (2007) Grain-size variations in pelagic carbonate oozes from the Walvis Ridge––SE Atlantic Ocean (ODP Site 1265): a low resolution Miocene record of carbonate sedimentation and preservation. Mar Geol 237(1–2):97–108. doi: 10.1016/j.margeo.2006.10.040 CrossRefGoogle Scholar
  24. Kastanja MM, Diekmann B, Henrich R (2006) Controls on carbonate and terrigenous deposition in the incipient Benguela upwelling system during the middle to the late Miocene (ODP Sites 1085 and 1087). Palaeogeogr Palaeoclimatol Palaeoecol 241:515–530. doi: 10.1016/j.palaeo.2006.05.004 CrossRefGoogle Scholar
  25. Krammer R, Baumann KH, Henrich R (2006) Middle to late Miocene fluctuations in the incipient Benguela upwelling system revealed by calcareous nannofossil assemblages (ODP Site 1085A). Palaeogeogr Palaeoclimatol Palaeoecol 230:319–334. doi: 10.1016/j.palaeo.2005.07.022 CrossRefGoogle Scholar
  26. McCave IN, Manighetti B, Robinson SG (1995) Sortable silt and fine sediment size composition slicing: parameters for paleocurrent speed and paleoceanography. Paleoceanography 10(3):593–610. doi: 10.1029/94PA03039 CrossRefGoogle Scholar
  27. Miller KG, Wright SD, Fairbanks RG (1991) Unlocking the ice-house: Oligocene–Miocene oxygen isotopes, eustacy, and margin erosion. J Geophys Res 96(B4):6829–6848. doi: 10.1029/90JB02015 CrossRefGoogle Scholar
  28. Miller KG, Mountain GS, Browning JV, Kominz M, Sugarman PJ, Christie-Blick N, Katz ME (1998) Cenozoic global sea level, sequences, and the New Jersey transect: results from coastal plain and continental slope drilling. Rev Geophys 36(4):569–601. doi: 10.1029/98RG01624 CrossRefGoogle Scholar
  29. Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME, Sugarman PJ, Cramer BS, Christie-Blick N, Pekar SF (2005) The phanerozoic record of global sea-level change. Science 310:1293–1298. doi: 10.1126/science.1116412 CrossRefGoogle Scholar
  30. Partridge TC (1993) The evidence for Cainozoic aridification in Southern Africa. Quat Int 17:105–110. doi: 10.1016/1040-6182(93)90087-V CrossRefGoogle Scholar
  31. Partridge TC (1997) Cainozoic environmental change in southern Africa with special emphasis on the last 200 000 years. Prog Phys Geogr 21(1):3–22. doi: 10.1177/030913339702100102 CrossRefGoogle Scholar
  32. Rea DK, Hovan SA (1995) Grain size distribution and depositional processes of the mineral components of abyssal sediments: lessons from the North Pacific. Paleoceanography 10(2):251–258. doi: 10.1029/94PA03355 CrossRefGoogle Scholar
  33. Robert C, Diester-Haass L, Paturel J (2005) Clay mineral assemblages, siliciclastic input and paleoproductivity at ODP Site 1085 off Southwest Africa: a late Miocene–early Pliocene history of Orange river discharges and Benguela current activity, and their relation to global sea level change. Mar Geol 216:221–238. doi: 10.1016/j.margeo.2005.02.024 CrossRefGoogle Scholar
  34. Stuut JBW, Lamy F (2004) Climate variability at the southern boundaries of the Namib (southwestern Africa) and the Atacama (northern Chile) coastal deserts during the last 120, 000 yr. Quat Res 62:301–309. doi: 10.1016/j.yqres.2004.08.001 CrossRefGoogle Scholar
  35. Stuut JBW, Prins MYR, Schneider RR, Weltje GJ, Jansen JHF, Postma G (2002) A 300-kyr record of aridity and wind-strength in Southwestern Africa: inferences from grain-size distributions of sediments on Walvis Ridge, SE Atlantic. Mar Geol 180:221–233. doi: 10.1016/S0025-3227(01)00215-8 CrossRefGoogle Scholar
  36. van Andel TH, Heath GR, Moore TC (1975) Cenozoic history and paleoceanography of the Central Equatorial Pacific Ocean. Geol Soc Am BoulderGoogle Scholar
  37. Ward JD, Seely MK, Lancaster IN (1983) On the antiquity of the Namib. S Afr J Sci 79:175–183Google Scholar
  38. Wefer G, Berger WH, Richter C et al (1998) Proceeding of the ocean drilling programme, init. reports, vol 175. Ocean drilling programme, College Station, pp 1–1477Google Scholar
  39. Westerhold T (2005) (Appendix A7) Stable isotope data of ODP Hole175-1085A-42X to -63X (382.40-594.12 mbsf). Available at, cited on 21 May, 2008
  40. Westerhold T, Bickert T, Röhl U (2005) Middle to l Miocene oxygen isotope stratigraphy of ODP Site 1085 (SE Atlantic): new constrains on Miocene climate variability and sea level fluctuations. Palaeogeogr Palaeoclimatol Palaeoecol 217(3–4):205–222. doi: 10.1016/j.palaeo.2004.12.001 CrossRefGoogle Scholar
  41. Wright JD, Miller KG, Fairbanks RG (1992) Early and middle Miocene stable isotopes: implications for deepwater circulation and climate. Paleoceanography 7(3):357–389. doi: 10.1029/92PA00760 CrossRefGoogle Scholar
  42. Zachos J, Pagani M, Sloan C, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Myr to present. Science 292:686–693. doi: 10.1126/science.1059412 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.MARUM, Center for Marine Environmental SciencesUniversity of BremenBremenGermany
  2. 2.Fronterra Geosciences GmbHViennaAustria
  3. 3.Department of GeosciencesUniversity of BremenBremenGermany

Personalised recommendations