Advertisement

International Journal of Earth Sciences

, Volume 99, Issue 2, pp 327–341 | Cite as

Exhumation processes during post-collisional stage in the Variscan belt revealed by detailed 40Ar/39Ar study (Tanneron Massif, SE France)

  • Michel CorsiniEmail author
  • V. Bosse
  • G. Féraud
  • A. Demoux
  • G. Crevola
Original Paper

Abstract

Detailed 40Ar/39Ar geochronology on single grains of muscovite was performed in the Variscan Tanneron Massif (SE France) to determine the precise timing of the post-collisional exhumation processes. Thirty-two plateau ages, obtained on metamorphic and magmatic rocks sampled along an east–west transect through the massif, vary from 302 ± 2 to 321 ± 2 Ma, and reveal a heterogeneous exhumation of the lower crust that lasted about 20 Ma during late Carboniferous. In the eastern part of the massif, the closure of the K–Ar isotopic system is at 311–315 Ma, whereas in the middle part of the massif it closes earlier at 317–321 Ma. These cooling paths are likely to be the result of differential exhumation processes of distinct crustal blocks controlled by a major ductile fault, the La Moure fault that separates both domains. In the western part of the massif, the ages decrease from 318 to 303 Ma approaching the Rouet granite, which provides the youngest age at 303.6 ± 1.2 Ma. This age distribution can be explained by the occurrence of a thermal structure spatially associated to the magmatic complex. These ages argue in favour of a cooling of the magmatic body at around 15 Ma after the country rocks in the western Tanneron. The emplacement of the Rouet granite in the core of an antiform is responsible for recrystallization and post-isotopic closure disturbances of the K–Ar chronometer in the muscovite from the host rocks. These new 40Ar/39Ar ages clearly outline that at least two different processes may contribute to the exhumation of the lower crust in the later stage of collision. During the first stage between 320 and 310 Ma, the differential motion of tectonic blocks limited by ductile shear zones controls the post-collisional exhumation. This event could be related to orogen parallel shearing associated with crustal-scale strike-slip faults and regional folding. The final exhumation stages at around 300 Ma take place within the tectonic doming associated to magmatic intrusions in the core of antiformal structures. Local ductile to brittle normal faulting is coeval to Upper Carboniferous intracontinental basins opening.

Keywords

Variscan 40Ar/39Ar Thermal doming Exhumation Tanneron Massif 

References

  1. Alexandrov P, Ruffet G, Cheilletz A (2002) Muscovite recrystallization and saddle-shaped 40Ar/39Ar age spectra: example from the blond granite (Massif Central, France). Geochim Cosmochim Acta 66:1793–1807. doi: 10.1016/S0016-7037(01)00895-X CrossRefGoogle Scholar
  2. Arthaud F, Matte P (1966) Contribution à l’étude des tectoniques superposées dans la chaîne hercynienne: étude microtectonique des séries métamorphiques du massif des Maures (Var). C R Acad Sci Paris 262:436–439Google Scholar
  3. Bard JP, Caruba C (1981) Les séries leptyno-amphiboliques à éclogites relictuelles et serpentinites des Maures, marqueurs d’une paléosuture varisque affectant une croûte amincie? C R Acad Sci Paris 292:611–614Google Scholar
  4. Bard JP, Caruba C (1982) Texture et mineralogy d’une eclogite à disthène–saphirine–hyperstène–quartz en inclusion dans les gneiss migmatitites des Cavalières, massif de Ste Maxime (Maures, Var, France). C R Acad Sci Paris 294:103–106Google Scholar
  5. Basso AM (1985) Le Carbonifère de Basse Provence (Sud–Est de la France). Doctorate thesis, University Aix-Marseille 1, France, p 319Google Scholar
  6. Bellot JP, Bronner G, Laverne C (2000) Finite strain analysis and signification of ultramafic lenses from the Western Maures (SE France). Geodynamic implications. C R Acad Sci Paris 331:803–809Google Scholar
  7. Bellot JP, Bronner G, Marchand J, Laverne C, Triboulet C (2002) Thrust and normal faulting in the Western Maures (SE France): evidence for geometric, kinematics and thermobarometry of the Cavalaire shear zone. Geol Fr 1:21–37Google Scholar
  8. Bellot JP, Triboulet C, Laverne C, Bronner G (2003) Evidence for two burial/exhumation stages during the evolution of the Variscan belt, as exemplified by P-T-t-d paths of metabasites in distinct allochtonous units of the Maures Massif (SE France). Int J Earth Sci 92:7–26Google Scholar
  9. Bouloton J, Goncalves P, Pin C (1998) Le pointement de péridotite à grenat-spinelle de La Croix-Valmer (Maures centrales): un cumulat d’affinité océanique impliqué dans la subduction éohercynienne? C R Acad Sci Paris 326:473–477Google Scholar
  10. Burg JP, Podladchikov Y (1999) Lithospheric scale folding: numerical modeling and application to the Himalayan syntaxis. Int J Earth Sci 88:190–200. doi: 10.1007/s005310050259 CrossRefGoogle Scholar
  11. Burg JP, Van den Driessche J, Brun JP (1994) Syn- to post-thickening extension in the Variscan belt of Western Europe: mode and structural consequences. Geol Fr 3:33–51Google Scholar
  12. Burg JP, Nievergelt P, Oberli F, Seward D, Davy P, Maurin JC, Zhizhong D, Meier M (1998) The Namche Barwa syntaxis: evidence for exhumation related to compressional crustal folding. J Asian Earth Sci 16:239–252. doi: 10.1016/S0743-9547(98)00002-6 CrossRefGoogle Scholar
  13. Buscail F (2000) Contribution à la compréhension du problème géologique et géodynamique du massif des Maures : le métamorphisme régional modélisé dans le système KFMASH : analyse paragénétique, chémiographie, thermobarométrie, géochronologie 40Ar/39Ar. Ph.D. thesis, University of Montpellier, FranceGoogle Scholar
  14. Buscail F, Leyreloup AF (1999) The collisional regional metamorphism in the Maures and Tanneron (south of France) area. A critical review. EUG10 meeting, Strasbourg, France, 28 March–1 April, J Conf Abstr, OxfordGoogle Scholar
  15. Caruba C (1983) Nouvelles données pétrographiques, minéralogiques et géochmiques sur le massif métamorphique hercynien des Maures (Var, France): comparaison avec les segments varisques voisins et essais d’interprétation géotectonique. Doctorate thesis, University of Nice, FranceGoogle Scholar
  16. Castonguay S, Ruffet G, Tremblay A, Féraud G (2001) Tectonometamorphic evolution of the southern Quebec Appalachians: 40Ar/39Ar evidence for the Middle Ordovician crustal thickening and Silurian–early Devonian exhumation of the internal Humber zone. Geol Soc Am Bull 113:144–160. doi:10.1130/0016-7606(2001)113<0144:TEOTSQ>2.0.CO;2CrossRefGoogle Scholar
  17. Cheilletz A, Ruffet G, Marignac C, Kolli O, Gasquet D, Féraud G, Bouillin JP (1999) 40Ar/39Ar dating of shear zones in the Variscan basement of Greater Kabilia (Algeria). Evidence of an Eo-Alpine event at 128 Ma (Hauterivian–Barremian boundary): geodynamic consequences. Tectonophysics 306:97–116. doi: 10.1016/S0040-1951(99)00047-5 CrossRefGoogle Scholar
  18. Corsini M, Ruffet G, Caby R (2004a) Alpine and late-Hercynian geochronological constraints in the Argentera Massif (Western Alps). Ecol Geol Helv 97:3–15CrossRefGoogle Scholar
  19. Corsini M, Bosse V, Demoux A, Billo S, Féraud G, Lardeaux JM, Rolland Y, Scharer U (2004b) Late orogenic HT-metamorphism and exhumation during ongoing convergence in the Hercynian Tanneron Massif France. Réunion des Sciences de la Terre, StrasbourgGoogle Scholar
  20. Costa S, Rey P (1995) Lower crustal rejuvenation and growth during post-thickening collapse: insights from a crustal cross section through a Variscan metamorphic core complex. Geology 23:905–908. doi:10.1130/0091-7613(1995)023<0905:LCRAGD>2.3.CO;2CrossRefGoogle Scholar
  21. Crevola G (1977) Etude pétrographique et structurale de la partie orientale du massif du Tanneron (Provence cristalline). Doctorate thesis, University of Nice, FranceGoogle Scholar
  22. Crevola G, Pupin J-P (1994) Crystalline provence: structure and variscan evolution. In: Keppie JD (ed) Pre-mesozoic geology in France and related areas. Springer, Berlin, pp 426–441Google Scholar
  23. Crevola G, Pupin JP, Toutin-Morin N (1991) La Provence varisque: structure et évolution géologique anté-triasique. Sci Geol Bull 44:287–310Google Scholar
  24. Dalrymple GB (1979) Critical tables for conversion of K–Ar ages from old to new constants. Geology 7(11):558–560. doi:10.1130/0091-7613(1979)7<558:CTFCOK>2.0.CO;2CrossRefGoogle Scholar
  25. Del Moro A, Di Simplicio P, Ghezzo C, Guasparri G, Rita F, Sabatini G (1975) Radiometric data and intrusive sequence in northern Sardinian batholith. Neues Jahrb Miner Abh 126:28–44Google Scholar
  26. Demoux A, Scharer U, Corsini M (2008) Variscan evolution of the Tanneron Massif, SE-France, examined through U–Pb monazite ages. J Geol Soc Lond 165:467–478CrossRefGoogle Scholar
  27. Di Vincenzo G, Carosi R, Palmeri R (2004) The relationship between tectono-metamorphism evolution and argon isotope records in white mica: constraints from in situ 40Ar/39Ar laser analysis of the Variscan basement of Sardinia (Italy). J Petrol 45:1013–1043. doi: 10.1093/petrology/egh002 CrossRefGoogle Scholar
  28. Dunlap WJ (1997) Neocrystallization or cooling? 40Ar/39Ar ages of white micas from low-grade mylonites. Chem Geol 143:181–203. doi: 10.1016/S0009-2541(97)00113-7 CrossRefGoogle Scholar
  29. Dunlap WJ, Teyssier C, McDougall I, Baldwin S (1991) Ages of deformation from K–Ar and 40Ar/39Ar dating of white micas. Geology 19:1213–1216. doi:10.1130/0091-7613(1991)019<1213:AODFKA>2.3.CO;2CrossRefGoogle Scholar
  30. Echtler H, Malavielle J (1990) Extensional tectonics, basement uplift and Stephano-Permian collapse basin in a late Variscan metamorphic core complex (Montagne Noire, Southern Massif Central). Tectonophysics 177:125–138. doi: 10.1016/0040-1951(90)90277-F CrossRefGoogle Scholar
  31. Faure JF (1995) Late orogenic Carboniferous extensions in the Variscan French Massif Central. Tectonics 14:132–153. doi: 10.1029/94TC02021 CrossRefGoogle Scholar
  32. Faure M, Monié P, Pin C, Maluski H, Leloix C (2002) Late Visean thermal event in the northern part of the French Massif Central: new 40Ar/39Ar and Rb–Sr isotopic constraints on the Hercynian syn-orogenic extension. Int J Earth Sci 91:53–75. doi: 10.1007/s005310100202 CrossRefGoogle Scholar
  33. Ferrara G, Ricci CA, Rita F (1978) Isotopic ages and tectonometamorphic history of the metamorphic basement of North-eastern Sardinia. Contrib Miner Petrol 68:99–106. doi: 10.1007/BF00375451 CrossRefGoogle Scholar
  34. Gardien V, Lardeaux JM, Ledru P, Allemand P, Guillot S (1997) Metamorphism during the late orogenic extension: insights from the French Variscan belt. Bull Soc Geol Fr 168(3):271–286Google Scholar
  35. Harrison TM, Clarke GKC (1979) A model of the thermal effects of igneous intrusion and uplift as supplied to Quottoon pluton, British Columbia. Can J Earth Sci 6:411–420CrossRefGoogle Scholar
  36. Innocent C, Michard A, Guerrot C, Hamelin B (2003) U–Pb zircon age of 548 Ma for the leptynites (high-grade felsic rocks) of the central part of the Maures Massif. Geodynamic significance of the so-called leptyno-amphibolitic complexes of the Variscan belt of western Europe. Bull Soc Geol Fr 174:585–594. doi: 10.2113/174.6.585 CrossRefGoogle Scholar
  37. Jerabek P, Faryadi WS, Schulmann K, Lexa O, Tajcmanova L (2008) Alpine burial and heterogeneous exhumation of Variscan crust in the West Carpathians: insight from thermodynamic and argon diffusion modelling. J Geol Soc Lond 165:479–498CrossRefGoogle Scholar
  38. Le Marrec A (1976) Reconnaissance pétrographique et structurale des formations cristallophylliennes catazonales du Massif de Sainte-Maxime (quart NE du massif varisque des Maures, Var, France). Thesis, University of Aix-Marseille IIIGoogle Scholar
  39. Mahéo G, Pêcher A, Guillot S, Rolland Y, Delacourt C (2004) Exhumation of Neogene gneiss domes between oblique crustal boundaries in south Karakorum (northwest Himalaya, Pakistan). Geol Soc Am Special paper 380:141–154Google Scholar
  40. Malavieille J (1993) Late orogenic extension in mountain belts: insights from the Basin and Range and the late Paleozoic Variscan belt. Tectonics 12:1115–1130. doi: 10.1029/93TC01129 CrossRefGoogle Scholar
  41. Maluski H (1972) Etude 87Rb/87Sr du massif granitique de Plan-de-la-Tour (Maures). C R Acad Sci Paris 274:520–523Google Scholar
  42. Maquil R (1976) Contribution à l’étude pétrographique et structurale de la région SE du massif des Maures (Var, France). Ann Soc Geol Belg 99:601–613Google Scholar
  43. Matte P (2001) The variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova 13:117–121. doi: 10.1046/j.1365-3121.2001.00327.x CrossRefGoogle Scholar
  44. McDougall M, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/39Ar method. Oxford University Press, New YorkGoogle Scholar
  45. Monié P, Maluski H (1983) Données géochronologiques Ar39–Ar40 sur le socle anté-Permien du massif de l’Argentera-Mercantour (Alpes-Maritimes, France). Bull Soc Geol Fr 7:247–257Google Scholar
  46. Morillon AC (1997) Etude thermo-chronométrique appliquée aux exhumations et contexte orogénique: le Massif des Maures (France) et Les Cordillères Bétiques (Espagne). Thesis, University of Nice, pp 289Google Scholar
  47. Morillon AC, Féraud G, Sosson M, Ruffet G, Crévola G, Lerouge G (2000) Diachronous cooling on both side of a major strike-slip fault in the Variscan Maures Massif (SE France), as deduced from a detailed 40Ar/39Ar study. Tectonophysics 321:103–126. doi: 10.1016/S0040-1951(00)00076-7 CrossRefGoogle Scholar
  48. Moussavou M (1998) Contribution à l’histoire thermo-tectonique Varisque du Massif des Maures, par la typologie du zircon et la géochronologie U/Pb sur minéraux accessoires. Thesis, Montpellier, 179Google Scholar
  49. Mulch A, Cosca MA, Handy MR (2002) In-situ UV-laser 40Ar/39Ar geochronology of a micaceous mylonite : an example of defect-enhanced argon loss. Contrib Miner Petrol 142:738–752Google Scholar
  50. Odin C, Odin GS (1990) Echelle numérique des temps géologiques, Géochronique 35Google Scholar
  51. Onezime J, Faure M, Crevola G (1999) Petro-structural analysis of the Rouet–Plan-de-la-Tour granitic complex (Maures and Tanneron Massifs, Var, France). C R Acad Sci 328(11):773–779Google Scholar
  52. Paquette JL, Ménot RP, Peucat JJ (1989) REE, Sm–Nd and U–Pb zircon study of eclogites from the Alpine external Massifs (Western Alps): evidence for crustal contamination. Earth Planet Sci Lett 96:181–189. doi: 10.1016/0012-821X(89)90131-3 CrossRefGoogle Scholar
  53. Paquette JL, Ménot RP, Pin C, Orsini JB (2003) Episodic and short-lived granitic pulses in a post-collisional setting: evidence from precise U–Pb zircon dating through a crustal cross-section in Corsica. Chem Geol 198:1–20. doi: 10.1016/S0009-2541(02)00401-1 CrossRefGoogle Scholar
  54. Roddick JC (1983) High precision intercalibration of 40Ar/39Ar standards. Geochim Cosmochim Acta 47:887–898. doi: 10.1016/0016-7037(83)90154-0 CrossRefGoogle Scholar
  55. Roubault MP, Bordet FL, Sonet J, Zimmermann JL (1970) Ages absolus des formations cristallophylliennes des Massifs des Maures et du Tanneron. C R Acad Sci 271:1067–1070Google Scholar
  56. Rubatto D, Schaltegger U, Lombardo B, Colombo F, Compagnoni R (2001) Complex Paleozoic magmatic and metamorphic evolution in the Argentera Massif (Western Alps) resolved with U–Pb dating. Schweizerische Minér Petrogr 81:213–228Google Scholar
  57. Ruffet G, Féraud G, Amouric M (1991) Comparison of 40Ar/39Ar conventional and laser dating of biotites from the North Tregor Batholith. Geochim Cosmochim Acta 55:1675–1688. doi: 10.1016/0016-7037(91)90138-U CrossRefGoogle Scholar
  58. Seyler M (1975) Pétrologie et lithostratigraphie des formations cristallophylliennes dans la chaîne de la Sauvette (Maures, Var, France). Thesis, Université of NiceGoogle Scholar
  59. Seyler M (1982) Caractères pétrographiques et chimiques des métagabbros de la partie centrale du massif des Maures (Var). Bull Soc Geol Fr 24:717–725Google Scholar
  60. Sleep NH (1979) A thermal constraint on the duration of folding with references to Acadian geology, New England (USA). J Geol 87:583–589CrossRefGoogle Scholar
  61. Soula JC, Debat P, Brusset S, Bessière G, Christophoul F, Déramond J (2001) Thrust-related, diapiric, and extensional doming in a frontal orogenic wedge: example of the Montagne Noire, Southern French Hercynian belt. J Struct Geol 23:1677–1699. doi: 10.1016/S0191-8141(01)00021-9 CrossRefGoogle Scholar
  62. Steiger RH, Jäger E (1977) Submission on geochronology: convention in the use of decay constants in geo and cosmochronology. Earth Planet Sci Lett 36:359–362. doi: 10.1016/0012-821X(77)90060-7 CrossRefGoogle Scholar
  63. Toutin-Morin N, Crevola G, Giraud JD, Brocard C, Dardeau G, Bulard PF, Dubar M, Meinesz A, Bonijoly D(1994) Carte géologique Fréjus-Cannes à 1/50 000, 2ème édn (1024) carte et notice. BRGM OrléansGoogle Scholar
  64. Turner G, Huneke JC, Podosek FA, Wasserburg GJ (1971) 40Ar/39Ar ages and cosmic ray exposure ages of Apollo 14 samples. Earth Planet Sci Lett 12:19–35. doi: 10.1016/0012-821X(71)90051-3 CrossRefGoogle Scholar
  65. Vauchez A, Bufalo M (1985) La limite Maures occidentales-Maures orientales (Var, France): un décrochement majeur entre deux provinces structurales très contrastées. C R Acad Sci Paris 301(14):1059–1062Google Scholar
  66. Vauchez A, Bufalo M (1988) Charriage crustal, anatexie, et décrochements ductiles dans les Maures orientales (Var, France) au cours de l’orogenèse varisque. Geol Rundsch 77:45–62. doi: 10.1007/BF01848675 CrossRefGoogle Scholar
  67. Villa IM (1998) Isotopic closure. Terra Nova 10:42–47. doi: 10.1046/j.1365-3121.1998.00156.x CrossRefGoogle Scholar
  68. Whitney DL, Teyssier C, Heizler MT (2007) Gneiss domes, metamorphic core complexes, and wrench zones: thermal and structural evolution of the Nigde Massif, central Anatolia. Tectonics 26:1–23. doi: 10.1029/2006TC002040 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Michel Corsini
    • 1
    Email author
  • V. Bosse
    • 2
  • G. Féraud
    • 1
  • A. Demoux
    • 3
  • G. Crevola
    • 4
  1. 1.Géosciences Azur (UMR-CNRS 6526)Nice-Sophia Antipolis UniversityNice CedexFrance
  2. 2.Laboratoire Magmas Volcans (UMR-CNRS 6524)Blaise Pascal UniversityClermont-FerrandFrance
  3. 3.Institut für Geowissenschaften Mainz UniversityMainzGermany
  4. 4.Institut EGIDBordeaux III UniversityPessacFrance

Personalised recommendations