Advertisement

International Journal of Earth Sciences

, Volume 99, Issue 2, pp 299–325 | Cite as

Elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zone

  • W. Dörr
  • G. Zulauf
Original Paper

Abstract

Variscan collision of peri-Gondwanan terranes led to a doubly vergent crustal wedge that was thicker than 55 km in the area of the Bohemian Massif. This crustal thickness resulted in a highly elevated Bohemian plateau with a topographic height >3–4 km. The Bohemian plateau was covered with unmetamorphic Paleozoic strata, all of which are today well preserved in the Tepla–Barrandian unit because of crustal-scale vertical slip along the Bohemian shear zone (BSZ). The BSZ forms a subvertical, ca. 500-km long and up to 2-km wide belt of dip–slip mylonites which show several 90° deflections in map view. Tepla-Barrandian-down movements were active under retrograde metamorphic conditions, starting with granulite and ceasing with greenschist facies conditions. As slip along the BSZ was largely vertical and led to a minimum throw of 10 km, this type of crustal-scale deformation is referred to as elevator tectonics. The elevator-style movements caused the juxtaposition of the supracrustal Tepla–Barrandian lid (the “elevator”) against high-grade rocks of the extruding orogenic root. The BSZ has further governed the foci of mantle-derived plutonism. New U–Pb zircon and monazite TIMS dating of six plutons suggest that emplacement of mantle-derived melts along the BSZ lasted for at least 20 m.y., starting with the emplacement of the Klatovy granodiorite at 347 +4/−3 Ma and ceasing with the emplacement of the Drahotin pluton at 328 ± 1 Ma. When taking into account the new ages of synkinematic plutons, the simultaneous vertical slip along the individual segments of the BSZ (North, West, and Central Bohemian shear zone) is bracketed to the period 343–337 Ma. Elevator tectonics was probably controlled by delamination of thickened mantle lithosphere that caused a dramatic thermal turnover and heating-up of the orogenic root. The overheated lower crust was thermally softened by anatexis and diffusion creep resulting in channel flow, vertical extrusion, fast uplift, and exhumation of the orogenic root.

Keywords

Elevator tectonics Orogenic plateau Rheological collapse Bohemian plateau Variscides Tepla–Barrandian unit Moldanubian unit Channel flow 

Notes

Acknowledgments

We thank Z. Vejnar and J. Fiala for help in the field and J. Schastok for laboratory assistance. Helpful comments by F. Finger, S. Johnston, W. Siebel and A. Zelazniewicz are gratefully acknowledged. This work was supported by Deutsche Forschungsgemeinschaft (grants Zu 73-1 and Zu 73-3).

References

  1. Ahrendt H, Clauer N, Hunzicker JC, Weber K (1983) Migration of folding and metamorphism in the Rheinisches Schiefergebirge deduced from K/Ar and Rb/Sr age determinations. In: Martin H, Eder FW (eds) Intracontinental fold belts. Springer, Berlin, pp 323–338Google Scholar
  2. Aftalion M, Bowes DR, Vrána S (1989) Early Carboniferous U–Pb zircon age for garnetiferous, perpotassic granulites, Blansky les massif, Czechoslovakia. N Jb Min Mh 4:145–152Google Scholar
  3. Alsdorf D, Nelson D (1999) Tibetan satellite magnetic low: evidence for widespread melt in the Tibetan crust? Geology 27:943–946. doi:10.1130/0091-7613(1999)027<0943:TSMLEF>2.3.CO;2Google Scholar
  4. Andrusov D, Corna O (1976) Über das Alter des Moldanubikums nach mikrofloristischen Untersuchungen. Geol Prace Spravy 65:81–89Google Scholar
  5. Arnaud NO, Vidal P, Tapponnier P, Matte P, Deng WM (1992) The high-K2O volcanism of northwestern Tibet: geochemistry and tectonic implications. Earth Planet Sci Lett 111:351–367. doi: 10.1016/0012-821X(92)90189-3 Google Scholar
  6. Arnold J, Jacoby WR, Schmeling H, Schott B (2001) Continental collision and the dynamic and thermal evolution of the Variscan orogenic crustal root—numerical models. J Geodyn 31:273–291. doi: 10.1016/S0264-3707(00)00023-5 Google Scholar
  7. Artmann E, Bues C, Scheuvens D, Zulauf G (2003) Zur tektonometamorphen Entwicklung der Zentralböhmischen Scherzone zwischen Svatá Kateřina und Rittsteig unter besonderer Berücksichtigung der Forschungsbohrung Rittsteig (Böhmische Masse). Geol Bavarica 107:63–94Google Scholar
  8. Beard BL, Medaris LG, Johnson CM, Brueckner HK, Mísař Z (1992) Petrogenesis of Variscan high-temperature group A eclogites from the Moldanubian Zone of the Bohemian Massif, Czechoslovakia. Contrib Mineral Petrol 111:468–483. doi: 10.1007/BF00320902 Google Scholar
  9. Beard BL, Medaris LG, Johnson CM, Jelínek E, Tonika J, Riciputi LR (1995) Geochronology and geochemistry of eclogites from the Mariánské Láznì Complex, Czech Republic: implications for Variscan orogenesis. Geol Rundsch 84:552–567. doi: 10.1007/s005310050024 Google Scholar
  10. Beaumont C, Jamieson RA, Nguyen MH, Lee B (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–742Google Scholar
  11. Becker H, Altherr R (1992) Evidence from ultra-high-pressure marbles for recycling of sediments into the mantle. Nature 358:745–748. doi: 10.1038/358745a0 Google Scholar
  12. Becq-Giraudon JF, Montenat C, Vand den Driesche J (1996) Hercynian high-altitude phenomena in the French Massif Central: tectonic implications. Palaeogeogr Palaeoclimatol Palaeoecol 122:227–241. doi: 10.1016/0031-0182(95)00081-X Google Scholar
  13. Berthelsen A (1992) Mobile Europe. In: Blundell D (ed) A continent revealed: the European geotraverse. Cambridge University Press, Reading, MA 1: 11–32Google Scholar
  14. Bird P (1979) Continental delamination and the Colorado Plateau. J Geophys Res 84:7561–7571Google Scholar
  15. Bittner D, Schmeling H (1995) Numerical modelling of melting processes and induced diapirism in the lower crust. Geophys J Int 123:59–70Google Scholar
  16. Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis C (2003a) TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem Geol 200:155–170. doi: 10.1016/S0009-2541(03)00165-7 Google Scholar
  17. Black LP, Kamo SL, Williams IS, Mundil R, Davis DW, Korsch RJ, Foudoulis C (2003b) The application of SHRIMP to Phanerozoic geochronology; a critical appraisal of four zircon standards. Chem Geol 200:171–188. doi: 10.1016/S0009-2541(03)00166-9 Google Scholar
  18. Blümel P, Schreyer W (1976) Progressive regional low-pressure metamorphism in Moldanubian metapelites of the northern Bavarian Forest, Germany. Krystalinikum 12:7–30Google Scholar
  19. Brown RL, Beaumont C, Willett SD (1993) Comparison of the Selkirk fan structure with mechanical models: implications for interpretations of the southern Canadian Cordillera. Geology 21:1015–1018. doi:10.1130/0091-7613(1993)021<1015:COTSFS>2.3.CO;2Google Scholar
  20. Bruguier O, Becq-Giraudon JF, Clauer N, Maluski H (2003) From late Visean to Stephanian: pinpointing a two-stage basinal evolution in the Variscan belt: a case study from the Bosmoreau basin (French Massif Central) and its geodynamic implications. Int J Earth Sci 92:338–347. doi: 10.1007/s00531-003-0321-3 Google Scholar
  21. Bues C, Zulauf G (2000) Microstructural evolution and geologic significance of garnet pyriclasites in the Hoher-Bogen shear zone (Bohemian Massif, Germany). Int J Earth Sci 88:803–813. doi: 10.1007/s005310050307 Google Scholar
  22. Bues C, Dörr W, Fiala J, Vejnar Z, Zulauf G (2002) Emplacement depth and radiometric ages of Paleozoic plutons of the Neukirchen-Kdyně massif: differential uplift and exhumation of Cadomian basement due to Carboniferous orogenic collapse (Bohemian Massif). Tectonophysics 352:225–243. doi: 10.1016/S0040-1951(02)00198-1 Google Scholar
  23. Burchfiel BC, Zhiliang C, Hodges KV, Yuping L, Royden LH, Changrong D, Jiene X (1992) The south Tibetan detachment system, Himalayan Orogen. Geol Soc Am Spec Pap 269:1–41Google Scholar
  24. Burg JP, Brunel M, Gapais D, Chen GM, Liu GH (1984) Deformation of leucogranites of the crystalline Main Central Sheet in southern Tibet (China). J Struct Geol 6:535–542. doi: 10.1016/0191-8141(84)90063-4 Google Scholar
  25. Burg JP, van den Driessche J, Brun JP (1994) Syn- to post-thickening extension: mode and consequences. C R Acad Sci Paris 319:1019–1032Google Scholar
  26. Büttner S, Kruhl JH (1995) The evolution of a late-Variscan high-T low-P region: the south-eastern margin of the Bohemian Massif. J Czech Geol Soc 40(3):4–5Google Scholar
  27. Cháb J, Suk M (1978) The metamorphic development of the Bohemian Massif on the Czechoslovak territory. Sborník geologických věd. Geologie 31:109–124Google Scholar
  28. Cháb J, Suchý V, Vejnar Z (1995) Metamorphic evolution. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin, pp 404–410Google Scholar
  29. Chen F, Siebel W (2004) Zircon and titanite geochronology of the Fürstenstein granite massif, Bavarian Forest, NW Bohemian Massif: pulses of the late Variscan magmatic activity. Eur J Mineral 16:777–788. doi: 10.1127/0935-1221/2004/0016-0777 Google Scholar
  30. Chen F, Siebel W, Satir M (2003) Geochemical and isotopic composition and inherited zircon ages as evidence for lower crustal origin of two Variscan S-type granites in the NW Bohemian massif. Int J Earth Sci 92:173–184Google Scholar
  31. Chlupáč I (1993) Geology of the Barrandian. A field trip guide. Waldemar-Kramer, Frankfurt a.M., p 163Google Scholar
  32. Chlupáč I, Havlíček V, Kříž J, Kukal Z, Štorch P (1998) Palaeozoic of the Barrandian (Cambrian to Devonian). Czech Geological Survey, Prague, p 183Google Scholar
  33. Chung S-L, Liu D, Ji J, Chu M-F, Lee H-Y, Wen D-J, Lo C-H, Lee T-Y, Qian Q, Zhang Q (2003) Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology 31:1021–1024. doi: 10.1130/G19796.1 Google Scholar
  34. Cílek V, Dobeš P, Žák K (1994) Formation conditions of calcite veins in the quarry “V Kozle (Hostim I, Alkazar)” in the Bohemian Karst. J Czech Geol Soc 39(4):313–318Google Scholar
  35. Coney PJ, Harms TA (1984) Cordilleran metamorphic core complexes: Cenozoic extensional relics of Mesozoic compression. Geology 12:550–554. doi:10.1130/0091-7613(1984)12<550:CMCCCE>2.0.CO;2Google Scholar
  36. Dallmeyer RD, Urban M (1998) Variscan versus Cadomian tectonothermal activity in northwestern sectors of the Teplá–Barrandian zone, Czech Republic: constraints from 40Ar/39Ar ages. Geol Rundsch 87:94–106. doi: 10.1007/s005310050192 Google Scholar
  37. Dallmeyer RD, Neubauer F, Höck V (1990) 40Ar/39Ar mineral age controls on the chronology of late Paleozoic tectonothermal activity in the southeastern Bohemian Massif, Austria (Moldanubian and Moravo–Silesian zones). IGCP meeting Terranes in the Circum-Atlantic Paleozoic orogens: Göttingen-Giessen, Field guide Bohemian Massif, pp 87–96Google Scholar
  38. Dallmeyer RD, Neubauer F, Höck V (1992) Chronology of late Paleozoic tectonothermal activity in the southeastern Bohemian Massif, Austria (Moldanubian and Moravo–Silesian zones): 40Ar/39Ar mineral age controls. Tectonophysics 210:135–153. doi: 10.1016/0040-1951(92)90132-P Google Scholar
  39. Davies JH, von Blankenburg F (1995) Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett 129:85–102. doi: 10.1016/0012-821X(94)00237-S Google Scholar
  40. Dewey JF (1988) Extensional collapse of orogens. Tectonics 7:1123–1139. doi: 10.1029/TC007i006p01123 Google Scholar
  41. Dewey JF, Hempton MR, Kidd WSF, Saroglu F, Şengör AMC (1986) Shortening of continental lithosphere: the neotectonics of Eastern Anatolia—a young collision zone. In: Coward MP, Ries AC (eds) Collision tectonics. Geol Soc Spec Publ 19:3–36Google Scholar
  42. Dörr W, Fiala J, Vejnar Z, Zulauf G (1998) U–Pb zircon ages and structural development of metagranitoids of the Teplá crystalline complex—evidence for pervasive Cambrian plutonism within the Bohemian massif (Czech Republic). Geol Rundsch 87:135–149. doi: 10.1007/s005310050195 Google Scholar
  43. Dörr W, Zulauf G, Fiala J, Franke W, Vejnar Z (2002) Neoproterozoic to Early Cambrian history of an active plate margin in the Tepl Barrandian unit—a correlation of U–Pb isotopic-dilution-TIMS ages (Bohemia, Czech Republic). Tectonophysics 352:65–85. doi: 10.1016/S0040-1951(02)00189-0 Google Scholar
  44. Dvořak J (1982) The Devonian and lower Carboniferous in the basement of the Carpathians, south and southeast of Ostrava (Upper Silesian coal basin, Moravia, Czechoslovakia). Z Dtsch Geol Ges 133:551–570Google Scholar
  45. Echtler H, Malavielle J (1990) Extensional tectonics, basement uplift and Stephano–Permian collapse basin in a late Variscan metamorphic core complex (Montagne Noire, Southern Massif Central). Tectonophysics 177:125–138. doi: 10.1016/0040-1951(90)90277-F Google Scholar
  46. Edel JB, Schulmann K, Holub FV (2003) Anticlockwise rotations of the Eastern Variscides accommodated by dextral lithospheric wrenching: paleomagnetic and structural evidence. J Geol Soc London 160:209–218. doi: 10.1144/0016-764902-035 Google Scholar
  47. Elington BM, Harmer RE (1991) Geodate division of earth, marine and atmospheric science and technology, PretoriaGoogle Scholar
  48. England P (1993) Convective removal of thermal boundary layer of thickened continental lithosphere: a brief summary of causes and consequences with special reference to the Cenozoic tectonics of the Tibetan Plateau and surrounding regions. Tectonophysics 223:67–73. doi: 10.1016/0040-1951(93)90158-G Google Scholar
  49. England P, Houseman GA (1989) Extension during continental convergence, with application to the Tibetan Plateau. J Geophys Res 94:17,561–17579. doi: 10.1029/JB094iB12p17561 Google Scholar
  50. Faure M, Grolier J, Pons J (1993) Extensional ductile tectonics of the Sioule metamorphic series (Variscan French Massif Central). Geol Rundsch 82:461–474. doi: 10.1007/BF00212410 Google Scholar
  51. Faure M, Monié P, Pin C, Maluski H, Leloix C (2002) Late Visean thermal event in the northern part of the French Massif Central: new 40Ar–39Ar and Rb–Sr isotopic constraints on the Hercynian syn-orogenic extension. Int J Earth Sci 91:53–75. doi: 10.1007/s005310100202 Google Scholar
  52. Fielding EJ (1996) Tibet uplift and erosion. Tectonophysics 260:55–84. doi: 10.1016/0040-1951(96)00076-5 Google Scholar
  53. Finger F, Gerdes A, Janousek V, René M, Riegler G (2007) Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo–Moldanubian tectonometamorphic phases. J Geosci (Prague) 52:9–28. doi: 10.3190/jgeosci.005 Google Scholar
  54. Franců E, Mann U, Suchý V, Volk H (1998) Model of burial and thermal history of the Tobolka-1 borehole profile in the Prague basin. Acta Univ Carol Geol 42:248–249Google Scholar
  55. Franěk J, Schulmann K, Lexa O (2006) Kinematic and rheological model of exhumation of high pressure granulites in the Variscan orogenic root: example of the Blanský les granulite, Bohemian Massif, Czech Republic. Min Petrol 86:253–276. doi: 10.1007/s00710-005-0114-4 Google Scholar
  56. Frasl G, Finger F (1991) Geologisch-Petrographische Exkursion in den österreichischen Teil des Südböhmischen Batholiths. Eur J Mineral 3(2):23–40Google Scholar
  57. Friedl G (1997) U/Pb-Datierungen an Zirkonen und Monaziten aus Gesteinen vom österreichischen Anteil der Böhmischen Masse. Dissertation, University of Salzburg, p 242Google Scholar
  58. Friedl G, von Quadt A, Finger F (1994) 340 Ma U/Pb-Monazitalter aus dem niederösterreichischen Moldanubikum und ihre geologische Bedeutung. Terra Nostra 3(94):43–46Google Scholar
  59. Friedl G, Finger F, Paquette J-L, von Quadt A, McNaughton NJ, Fletcher IR (2004) Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U–Pb zircon ages. Int J Earth Sci 93:802–823. doi: 10.1007/s00531-004-0420-9 Google Scholar
  60. Fritz H, Dallmeyer RD, Neubauer F (1996) Thick-skinned versus thin-skinned thrusting: rheology controlled thrust propagation in the Variscan collisional belt (the southeastern Bohemian Massif, Czech Republic, Austria). Tectonics 15:1389–1413. doi: 10.1029/96TC01098 Google Scholar
  61. Froidevaux C, Ricard Y (1987) Tectonic evolution of high plateaus. Tectonophysics 134:227–238. doi: 10.1016/0040-1951(87)90259-9 Google Scholar
  62. Fuchs G, Matura A (1976) Zur Geologie des Kristallins der südlichen Böhmischen Masse. Jb Geol Bundesanst 119:1–43Google Scholar
  63. Gebauer D (1991) Two Paleozoic high-pressure events in a garnet-peridotite of northern Bohemia, Czechoslovakia. Abstract of the 2nd Eclogite Field Symposium, Granada. Terra Abstract, Terra Nova 3Google Scholar
  64. Gebauer D, Williams IS, Compston W, Grünenfelder M (1989) The development of the Central European continental crust since the Early Archaean based on conventional and ion-microprobe dating of up to 384 by old detrital zircons. Tectonophysics 157:81–96. doi: 10.1016/0040-1951(89)90342-9 Google Scholar
  65. Gerdes A, Wörner G, Finger F (2000) Hybrids, magma mixing and enriched mantle melts in post-collisional Variscan granitoids: the Rastenberg pluton, Austria. Geol Soc Lond Spec Publ 179:415–431Google Scholar
  66. Gerdes A, Finger F, Parrish RR (2006) Southwestward progression of a late-orogenic heat front in the Moldanubian zone of the Bohemian Massif and formation of the Austro-Bavarian anatexite belt. Geophys Res Abstr 8:10698Google Scholar
  67. Gerya T, Stöckhert B (2006) Two-dimensional numerical modeling of tectonic and metamorphic histories at active continental margins. Int J Earth Sci 95:250–274. doi: 10.1007/s00531-005-0035-9 Google Scholar
  68. Glasmacher UA, Mann U, Wagner GA (2002) Thermotectonic evolution of the Barrandian, Czech Republic, as revealed by apaptite fission-track analysis. Tectonophysics 359:381–402. doi: 10.1016/S0040-1951(02)00538-3 Google Scholar
  69. Glodny J, Grauert B, Fiala J, Vejnar Z, Krohe A (1998) Metapegmatites in the western Bohemian massif: ages of crystallization and metamorphic overprint, as constrained by U–Pb zircon, monazite, garnet, columbite and Rb–Sr muscovite data. Geol Rundsch 87:124–134. doi: 10.1007/s005310050194 Google Scholar
  70. Grauert B, Hänny R, Soptrajanova G (1974) Geochronology of a polymetamorphic and anatectic gneiss region: the Moldanubicum of the area Lam–Deggendorf, Eastern Bavaria, Germany. Contrib Mineral Petrol 45:37–63. doi: 10.1007/BF00371136 Google Scholar
  71. Hartley AJ, Otava J (2001) Sediment provenance and dispersal in a deep marine foreland basin: the Lower Carboniferous Culm Basin, Czech Republic. J Geol Soc London 158:137–150CrossRefGoogle Scholar
  72. Henk A, von Blanckenburg F, Finger F, Schaltegger U, Zulauf G (2000) Syn-convergent high-temperature metamorphism and magmatism in the Variscides—a discussion of potential heat sources. Geol Soc Spec Publ 179:387–399Google Scholar
  73. Heuer B, Geissler WH, Kind R, Kämpf H (2006) Seismic evidence for asthenospheric updoming beneath the western Bohemian Massif, central Europe. Geophys Res Lett 33:L05311. doi: 10.1029/2005GL025158 Google Scholar
  74. Heuer B, Kämpf H, Kind R, Geissler WH (2007) Seismic evidence for whole lighosphere separation between Saxothuringian and Moldanubian tectonic units in central Europe. Geophys Res Lett 34:L09304. doi: 10.1029/2006GL029188
  75. Hodges KV, Parrish RR, Housh TB, Lux DR, Burchfield BC, Royden LH, Chen Z (1992) Simultaneous Miocene extension and shortening in the Himalayan orogen. Science 258:1466–1470. doi: 10.1126/science.258.5087.1466 Google Scholar
  76. Hodges KV, Hurtado JM, Whipple KX (2001) Southward extrusion of Tibetan crust and its effect on Himalayan tectonics. Tectonics 20:799Google Scholar
  77. Holub FV, Klečka M, Matějka D (1995) Igneous activity. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of central and eastern Europe. Springer, Berlin, pp 444–452Google Scholar
  78. Holub F, Cocherie A, Rossi Ph (1997) Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex (Czech Republic): constraints on the chronology of thermal and tectonic events along the Moldanubian–Barrandian boundary: C R Académie des Sciences Paris, Sciences de la terre et des planetes/. Earth Planet Sci 325:19–26Google Scholar
  79. Houseman GA, McKenzie DP, Molnar P (1981) Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J Geophys Res 86:6115–6132. doi: 10.1029/JB086iB07p06115 Google Scholar
  80. Inger S (1998) Timing of an extensional detachment during convergent orogeny: New Rb–Sr geochronological data from the Zanskar shear zone, northwest Himalaya. Geology 26:223–226. doi:10.1130/0091-7613(1998)026<0223:TOAEDD>2.3.CO;2Google Scholar
  81. Innocenti F, Mazzuoli R, Pasquare G, Radicati di Brozolo F, Villari L (1976) Evolution of volcanism in the area between the Arabian, Anatolian, and Iranian plates (Lake Van, Eastern Turkey). J Volcanol Geotherm Res 1:103–112. doi: 10.1016/0377-0273(76)90001-9 Google Scholar
  82. Jackson J, McKencie DP (1984) Active tectonics of the Alpine–Himalayan Belt between western Turkey and Pakistan. Geophys J R Astron Soc 77:185–264Google Scholar
  83. Jackson MPA, Vendeville BC (1994) Regional extension as a geologic trigger for diapirism. Geol Soc Am Bull 106:57–73. doi:10.1130/0016-7606(1994)106<0057:REAAGT>2.3.CO;2Google Scholar
  84. Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurements of half-lives and specific activities of 235U and 238U. Phys Rev Ser C4:1889–1906Google Scholar
  85. Janoušek V, Gerdes A (2003) Timing of magmatic activity within the Central Bohemian Pluton, Czech Republic: conventional U-Pb ages for the Sázava and Tábor intrusions and their geotectonic significance. J Czech Geol Soc 48:70–71Google Scholar
  86. Janoušek V, Bowes DR, Rogers G, Farrow CM, Jelinek E (2000) Modelling diverse processes in the petrogenesis of a composite batholith: the Central Bohemian Pluton, Central European Hercynides. J Petrol 41:511–543. doi: 10.1093/petrology/41.4.511 Google Scholar
  87. Janoušek V, Finger F, Roberts MP, Frýda J, Pin C, Dolejš D (2004a) Deciphering petrogenesis of deeply buried granites: whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif. Trans R Soc Edinb Earth Sci 95:141–159. doi: 10.1017/S0263593304000148 Google Scholar
  88. Janoušek V, Braithwaite CJR, Bowes DR, Gerdes A (2004b) Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic. Lithos 78:67–99. doi: 10.1016/j.lithos.2004.04.046 Google Scholar
  89. Janoušek V, Gerdes A, Vrána S, Finger F, Erban V, Friedl G, Braithwaite CJR (2006) Low-pressure granulites of the Lišov Massif, Sothern Bohemia: Viséan metamorphism of late Devonian plutonic arc rocks. J Petrol 47:705–744. doi: 10.1093/petrology/egi091 Google Scholar
  90. Jin Y, Mc Nutt MK, Zhu Y (1994) Evidence from gravity and topography data for folding of Tibet. Nature 371:669–674. doi: 10.1038/371669a0 Google Scholar
  91. Kalt A, Berger A, Blümel P (1999) Metamorphic evolution of cordierite-bearing migmatites from the Bayerischer Wald (Variscan Belt, Germany). J Petrol 40:601–627. doi: 10.1093/petrology/40.4.601 Google Scholar
  92. Kalt A, Corfu F, Wijbrans JR (2000) Time calibration of a P–T path from a Variscan high-temperature low-pressure metamorphic complex (Bayerische Wald, Germany), and the detection of inherited monazite. Contrib Mineral Petrol 138:143–163. doi: 10.1007/s004100050014 Google Scholar
  93. Kay RW, Mahlburg-Kay S (1993) Delamination and delamination magmatism. Tectonophysics 219:177–189. doi: 10.1016/0040-1951(93)90295-U Google Scholar
  94. Kettner R (1917) Versuch einer stratigraphischen Einteilung des böhmischen Algonkiums. Geol Rundsch 8:169–188. doi: 10.1007/BF01800895 Google Scholar
  95. Klein T, Kiehm S, Siebel W, Shang CK, Rohrmüller J, Dörr W, Zulauf G (2008) Age and emplacemant of late Variscan granites of the western Bohemian Massif with main focus on the Hauzenberg granitoids (European Variscides, Germany). Lithos 102:478–507Google Scholar
  96. Konzalová M (1980) Zur mikropaläontologischen Erforschung graphitischer Gesteine im Südteil der Böhmischen Masse. Vest Ustr Ust Geol 55:233–236Google Scholar
  97. Košler J, Aftalion M, Bowes DR (1993) Mid-late Devonian activity in the Bohemian Massif: U–Pb zircon isotopic evidence from the Staré Sedlo and Mirotice gneiss complexes, Czech Republic. N Jb Min Mh 1993(9):417–431Google Scholar
  98. Kotková J, Harley SL, Fišera M (1997) A vestige of very high-pressure (ca 28 kbar) metamorphism in the Variscan Bohemian Massif, Czech Republic. Eur J Mineral 1997(9):1017–1033Google Scholar
  99. Kotková J, Novák M, Leichmann J, Houzar S (2001) Nature and provenance of exotic rock types from Lower Carboniferous conglomerates (Eastern Bohemian Massif). Geolines (Praha) 13:81Google Scholar
  100. Kreuzer H, Seidel E, Schüßler U, Okrusch M, Lenz L-L, Raschka H (1989) K–Ar geochronology of different tectonic units at the northwestern margin of the Bohemian Massif. Tectonophysics 157:149–178. doi: 10.1016/0040-1951(89)90348-X Google Scholar
  101. Kreuzer H, Müller P, Okrusch M, Patzak M, Schüßler U, Seidel E, Šmejkal V, Vejnar Z (1990) Ar–Ar conformation for Cambrian, Early Devonian, and Mid-Carboniferous Tectonic Units at the Western Margin of the Bohemian Massif: 6 Rundgespräch Geodynamik des europäischen Variszikums, 15-18111990, Clausthal-Zellerfeld (abstract)Google Scholar
  102. Kreuzer H, Vejnar Z, Schüssler U, Okrusch M, Seidel E (1992) K–Ar dating on the Teplá–Domažlice Zone at the western margin of the Bohemian Massif. Proceedings of the first international conference on the Bohemian Massif, 269-1101988, Prague, pp 168–175Google Scholar
  103. Krogh TE (1982) Improved accuracy of U–Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochim Cosmochim Acta 46:637–649. doi: 10.1016/0016-7037(82)90165-X Google Scholar
  104. Kröner A, Willner AP (1998) Time of formation and peak of Variscan HP–HT metamorphism of quartz-feldspar rocks in the central Erzgebirge, Saxony, Germany. Contrib Mineral Petrol 132:1–20. doi: 10.1007/s004100050401 Google Scholar
  105. Kröner A, Wendt J, Liew TC, Compston W, Todt W, Fiala J, Vaňková V, Vaněk J (1988) U−Pb zircon and Sm–Nd model ages of high-grade Moldanubian metasediments Bohemian Massif, Czechoslovakia. Contrib Mineral Petrol 99:257–266. doi: 10.1007/BF00371466
  106. Kröner A, O’Brien PJ, Nemchin AA, Pidgeon RT (2000) Zircon ages for high pressure granulites from South Bohemia, Czech Republic, and their connection to Carboniferous high temperature processes. Contrib Mineral Petrol 138:127–142. doi: 10.1007/s004100050013 Google Scholar
  107. Krs M, Pruner P, Man O (2001) Tectonic and paleogeographic interpretation of the paleomagnetism of Variscan and pre-Variscan formations of the Bohemian Massif, with special reference to the Barrandian terrane. Tectonophysics 332:93–114. doi: 10.1016/S0040-1951(00)00251-1 Google Scholar
  108. Ludwig KR (1991) PBDAT version 123 open file US Geological SurveyGoogle Scholar
  109. Ludwig KR (1999) Users manual for Isoplot/EX, version 2 A geochronological toolkit for Microsoft ExcelGoogle Scholar
  110. Martinez-Torres LM, Ramon-Lluch R, Eguiluz L (1994) Tectonic wedges: geometry and kinametic interpretation. J Struct Geol 16:1491–1494Google Scholar
  111. Masch L, Cetin B (1991) Gefüge, Deformationsmechanismen und Kinematik in ausgewählten Hochtemperatur-Mylonitzonen im Moldanubikum des Bayerischen Waldes. Geol Bavarica 96:7–27Google Scholar
  112. Massonne H-J (2001) First find of coesite in the ultrahigh-pressure metamorphic region of the Central Erzgebirge, Germany. Eur J Mineral 13:565–570. doi: 10.1127/0935-1221/2001/0013-0565 Google Scholar
  113. Massonne H-J, Nasdala L (2003) Characterization of an early metamorphic stage through inclusions in zircon of a diamondiferous quartzofeldspathic rock from the Erzgebirge, Germany. Am Mineral 88:883–889Google Scholar
  114. Mattauer M, Brunel M, Matte P (1988) Failles normales ductiles et grands chevauchements Une nouveile analogie entre l’Himalaya et la chaine hercynienne du Massif Central Français. C R Acad Sc Paris 306:671–676Google Scholar
  115. Matte P, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: results of large-scale Variscan shearing. Tectonophysics 177:151–170. doi: 10.1016/0040-1951(90)90279-H Google Scholar
  116. Mc Kenna LW, Walker JD (1990) Geochemistry of crustally derived leucocratic igneous rocks from the Ulugh Muztagh area, northern Tibet, and their implications for the formation of the Tibetan Plateau. J Geophys Res 95:21483–21502Google Scholar
  117. Medaris LG, Beard BL, Johnson CM, Valley JW, Spicuzza MJ, Jelínek E, Mísař Z (1995) Garnet pyroxenite and eclogite in the Bohemian Massif: geochemical evidence for Variscan recycling of subducted lithosphere. Geol Rundsch 84:489–505. doi: 10.1007/s005310050020 Google Scholar
  118. Medaris LG, Ghent ED, Wang HF, Fournelle Jelínek E (2006) The Spačice eclogite: constraints on the P–T–t history of the Gföhl granulite terrane, Moldanubian Zone, Bohemian Massif. Mineral Petrol 86:203–220. doi: 10.1007/s00710-005-0095-3 Google Scholar
  119. Meissner R, Bortfeld RK (1990) DEKORP-Atlas. Results of Deutsches Kontinentales Reflexionsseismisches Programm, p 19, 80 seismic profiles, 5 figures, Springer, BerlinGoogle Scholar
  120. Ménard G, Molnar P (1988) Collapse of a Hercynian Tibetan Plateau into a late Paleozoic European Basin and Range province. Nature 334:235–237. doi: 10.1038/334235a0 Google Scholar
  121. Mengel K (1992) Integrated lithospheric cross section In: Blundell D (ed) A continent revealed: the European geotraverse. Cambridge University Press, Reading, MA, 1:102–110Google Scholar
  122. Mercier J-L, Armijo R, Tapponnier P, Carey-Gailhardis E, Han TL (1987) Change from Tertiary compression to Quarternary extension in southern Tibet during the India–Asia collision. Tectonics 6:275–304. doi: 10.1029/TC006i003p00275 Google Scholar
  123. Molnar P (1988) A review of geophysical constraints on the deep structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their tectonic implications. Philos Trans R Soc Lond A 326:33–88. doi: 10.1098/rsta.1988.0080 Google Scholar
  124. Molnar P, Taponnier P (1975) Cenozoic tectonics of Asia: effects of a continental collision. Science 189:419–426. doi: 10.1126/science.189.4201.419 Google Scholar
  125. Nakamura D, Svojtka M, Naemura K, Hirajima T (2004) Very high-pressure (>4 Gpa) eclogite associated with the Moldanubian zone garnet peridotite (Nove Dvory, Czech Republic). J Metamorph Geol 22:593–603. doi: 10.1111/j.1525-1314.2004.00536.x Google Scholar
  126. Nelson KD, Zhao W, Brown LD, Kuo J, Che J, Liu X, Klemperer SL, Makovsky Y, Meissner R, Mechie J, Kind R, Wenzel F, Ni J, Nabelek J, Leshou C, Tan H, Wei W, Jones AG, Booker J, Unsworth M et al (1996) Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results. Science 274:1684–1687. doi: 10.1126/science.274.5293.1684 Google Scholar
  127. O’Brien PJ, Rötzler J (2003) High-pressure granulites: formation, recovery of peak conditions and implications for tectonics. J Metamorph Geol 21:3–20. doi: 10.1046/j.1525-1314.2003.00420.x Google Scholar
  128. Pacltová B (1986) Palynology of metamorphic rocks, a methodological study. Rev Palaeobot Palynol 48:347–356. doi: 10.1016/0034-6667(86)90072-2 Google Scholar
  129. Pearce JA, Bender JF, de Long SE, Kidd WSF, Low PJ, Guner Y, Saroglu F, Yilmaz Y, Moorbath S, Mitchell JG (1990) Genesis of collision volcanism in Eastern Anatolia, Turkey. J Volcanol Geotherm Res 44:189–229. doi: 10.1016/0377-0273(90)90018-B Google Scholar
  130. Pešek J (1996) Carboniferous of Central and Western Bohemia. Czech Geological Survey, Prague:1–97Google Scholar
  131. Platt JP, England PC (1994) Convective removal of lithosphere beneath mountain belts: thermal and mechanical consequences. Am J Sci 294:307–336Google Scholar
  132. Propach G, Baumann A, Schulz-Schmalschläger M, Grauert B (2000) Zircon and monazite U–Pb ages of Variscan granitoid rocks and gneisses in the Moldanubian zone of eastern Bavaria, Germany. Neues Jahrb Geol Palaontol Monatsh 2000:345–377Google Scholar
  133. Reitz E (1992) Silurische Mikrosporen aus einem Biotit-Glimmerschiefer bei Rittsteig, Nördlicher Bayerischer Wald. N Jb Geol Paläont Mh: 351–358Google Scholar
  134. Roberts MP, Finger F (1997) Do U–Pb zircon ages from granulites reflect peak metamorphic conditions? Geology 25:319–322. doi:10.1130/0091-7613(1997)025<0319:DUPZAF>2.3.CO;2Google Scholar
  135. Schäfer J, Dörr W (1995) Exhumation and accretion in a Variscan active margin as recorded in synorogenic clastic sediments. Terra Nova 7:119Google Scholar
  136. Schäfer J, Neuroth H, Ahrendt H, Dörr W, Franke W (1997) Accretion and exhumation at a Variscan active margin, recorded in the Saxothuringian flysch. Geol Rundsch 86:599–611. doi: 10.1007/s005310050166 Google Scholar
  137. Schaltegger U (1997) Magma pulses in the Central Variscan Belt: episodic melt generation and emplacement during lithospheric thinning. Terra Nova 9:242–245. doi: 10.1111/j.1365-3121.1997.tb00021.x Google Scholar
  138. Scharbert S, Breiter K, Frank W (1997) The cooling history of the southern Bohemian Massif. J Czech Geol Soc 42:24Google Scholar
  139. Scherer EE, Mezger K, Münker C (2002) Lu–Hf ages of high pressure metamorphism in the Variscan fold belt of southern Germany. Geochim Cosmochim Acta 66(Supplement 1):A677Google Scholar
  140. Scheuvens D (1999) Die tektonometamorphe und kinematische Entwicklung im Westteil der Zentralböhmischen Scherzone (Böhmische Masse)—Evidenz für variszicischen Kollaps. Frankfurter Geowissenschaftliche Arbeiten 18:1–273. Frankfurt aMGoogle Scholar
  141. Scheuvens D (2002) Metamorphism and microstructures along a high-temperature metamorphic field gradient: the north-eastern boundary of the Královský Hvoszd unit (Bohemian Massif, Czech Republic). J Metamorph Geol 20:413–428. doi: 10.1046/j.1525-1314.2002.00377.x Google Scholar
  142. Scheuvens D, Zulauf G (2000) Exhumation, strain localization, and emplacement of granitoids along the western part of the Central Bohemian shear zone (central European Variscides, Czech Republic). Int J Earth Sci 89:617–630. doi: 10.1007/s005310000108 Google Scholar
  143. Schott B, Schmeling H (1998) Delamination and detachment of a lithospheric root. Tectonophysics 296:225–247. doi: 10.1016/S0040-1951(98)00154-1 Google Scholar
  144. Schulmann K, Schaltegger U, Jezek J, Thompson AB, Edel JB (2002) Rapid burial and exhumation during orogeny: thickening and synconvergent exhumation of thermally weakened and thinned crust (Variscan orogen in western Europe). Am J Sci 302:856–879. doi: 10.2475/ajs.302.10.856 Google Scholar
  145. Schulmann K, Melka R, Lobkowicz MZ, Ledru P, Lardeaux J-M, Autran A (1994) Contrasting styles of deformation during progressive nappe stacking at the southeastern margin of the Bohemian Massif (Thaya Dome). J Struct Geol 16:355–370. doi: 10.1016/0191-8141(94)90040-X Google Scholar
  146. Schulmann K, Kröner A, Hegner E, Wendt I, Konopásek J, Lexa O, Štípská P (2005) Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan Orogen, Bohemian Massif, Czech Republic. Am J Sci 305:407–448. doi: 10.2475/ajs.305.5.407 Google Scholar
  147. Şengör AMC, Kidd WSF (1979) Post-collisional tectonics of the Turkish-Iranian plateau and a comparison with Tibet. Tectonophysics 55:361–376. doi: 10.1016/0040-1951(79)90184-7 Google Scholar
  148. Siebel W, Höhndorf A, Wendt I (1995) Origin of late Variscan granitoids from NE Bavaria, Germany, exemplified by REE and Nd isotope systematics. Chem Geol 125:249–270. doi: 10.1016/0009-2541(95)00083-X Google Scholar
  149. Siebel W, Breiter K, Wendt I, Höhndorf A, Henjes-Kunst F, Rene M (1999) Petrogenesis of contrasting granitoid plutons in western Bohemia (Czech Republic). Mineral Petrol 65:207–235. doi: 10.1007/BF01161961 Google Scholar
  150. Siebel W, Blaha U, Chen F, Rohrmüller J (2005) Geochronology and geochemistry of a dyke–host rock association and implications for the formation of the Bavaria Pfahl shear zone, Bohemian Massif. Int J Earth Sci 94:8–23. doi: 10.1007/s00531-004-0445-0 Google Scholar
  151. Siebel W, Thiel M, Chen F (2006) Zircon geochronology and compositional record of late to post-kinematic granitoids associated with the Bavarian Pfahl Zone (Bavarian Forest). Mineral Petrol 86:45–62. doi: 10.1007/s00710-005-0091-7 Google Scholar
  152. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221. doi: 10.1016/0012-821X(75)90088-6 Google Scholar
  153. Štědrá V, Kachlík V, Kryza R (2002) Coronitic metagabbros in the Mariánské Lázně Complex and Tepla Crystalline Unit: inferences for the tectonometamorphic evolution of the western margin of the Tepla–Barrandian Unit, Bohemian Massif. In: Winchester JA Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe. Geological Society London Special Publications 201:217–236Google Scholar
  154. Steiger RH, Jäger E (1977) Subcommission on geochronology: convention of use of decay constants in geo-and cosmo-chronology. Earth Planet Sci Lett 36:359–362. doi: 10.1016/0012-821X(77)90060-7 Google Scholar
  155. Štípská P, Schulmann K, Kröner A (2004) Vertical extrusion and middle crustal spreading of omphacite granulite: a model of syn-convergent exhumation (Bohemian Massif, Czech Republic). J Metamorph Geol 22:179–198. doi: 10.1111/j.1525-1314.2004.00508.x Google Scholar
  156. Stosch H-G, Lugmair GW (1990) Geochemistry and evolution of MORB-type eclogites from the Münchberg Massif, southern Germany. Earth Planet Sci Lett 99:230–249. doi: 10.1016/0012-821X(90)90113-C Google Scholar
  157. Suchý V, Rozkosny I (1996) Diagenesis of clay minerals and organic matter in the Pridoli Formation (Upper Silurian), the Barrandian Basin, Czech Republic: First Systematic Survey. In: Melka K (ed) 13th conference on clay mineralogy and petrology, Praha (1994), Acta Univ Carol Geol 38:401–409Google Scholar
  158. Suchý V, Dobes P, Filip J, Stejskal M, Zeman A (2001) Conditions for veining in the Barrandian Basin (Lower Palaeozoic), Czech Republic: evidence from fluid inclusion and apatite fission track analysis. Tectonophysics 348:25–50. doi: 10.1016/S0040-1951(01)00248-7 Google Scholar
  159. Suess FE (1926) Intrusionstektonik und Wandertektonik im variszischen Grundgebirge. Gebrüder Bornträger, Leipzig, pp 268Google Scholar
  160. Svoboda J (1966) The Barrandian Basin The Železné hory Mountains and the metamorphic ‘islets’ of central Bohemia (Chrudim-Islets zone). In: Svoboda J, Beneš K, Dudek A, Dvořák J, Havlena V, Havlíček V, Holubec J, Horný R, Chalupský J, Chlupáč I, Klein V, Kodym O, Kopecký L, Malecha A, Malkovský M, Odehnal L, Polák A, Pouba Z, Sattran V, Soukup J, Škvor V, Tásler R, Václ J, Weiss J, Žebra K (eds) Regional geology of Czechoslovakia, Part I, the Bohemian Massif. Publishing House of Czechoslovak Academy of Sciences, Prague, pp 281–367Google Scholar
  161. Svojtka M, Košler J, Venera Z (2002) Dating granulite-facies structures and the exhumation of lower crust in the Moldanubian Zone of the Bohemian Massif. Int J Earth Sci 91:373–385. doi: 10.1007/s00531-001-0230-2 Google Scholar
  162. Tapponnier P, Peltzer G, Armijo R (1986) On the mechanics of the collision between India and Asia. In: Coward MP, Riess AC (eds) Collision tectonics. Geol Soc London Spec Publ 19:115–157Google Scholar
  163. Teipel U, Eichhorn R, Loth G, Rohrmüller J, Höll R, Kennedy A (2004) U–Pb SHRIMP and Nd isotopic data from the western Bohemian Massif, Bayerischer Wald, Germany implications for Upper Vendian and Lower Ordovician magmatism. Int J Earth Sci 93:782–801. doi: 10.1007/s00531-004-0419-2 Google Scholar
  164. Teufel S (1988) Vergleichende U-Pb- und Rb-Sr-Altersbestimmungen an Gesteinen des Übergangsbereiches Saxothuringikum/Moldanubikum, NE-Bayern. Gottinger Arbeiten Geologie Palaontologie 35:1–87Google Scholar
  165. Thompson AB, Schulmann K, Jezek J (1997) Extrusion tectonics and elevation of lower crustal metamorphic rocks in convergent orogens. Geology 25:491–494. doi:10.1130/0091-7613(1997)025<0491:ETAEOL>2.3.CO;2Google Scholar
  166. Timmermann H, Štědrá V, Gerdes A, Noble SR, Parrish RR, Dörr W (2004) The problem of dating high-pressure metamorphism: a U–Pb isotope and geochemical study on eclogites and related rocks of the Mariánské Lázně Complex, Czech Republic. J Petrol 45:1311–1338. doi: 10.1093/petrology/egh020 Google Scholar
  167. Timmermann H, Dörr W, Krenn E, Finger F, Zulauf G (2005) Conventional and in-situ Geochronology of the Teplá Crystalline Unit, Bohemian Massif: implications for the processes involving monazite formation. Int J Earth Sci 95:629–648. doi: 10.1007/s00531-005-0060-8 Google Scholar
  168. Tomek Č, Dvořáková, Vrána S (1997) Geological interpretation of the 9HR and 503M seismic profiles in western Bohemia. Sborník geologických věd. Geologie 47:43–50. doi: 10.1016/S0013-7952(96)00118-4
  169. Tonika J (1979) The Mutěnin ferrodiorite ring intrusion, West Bohemia. Krystalinikum 14:195–208Google Scholar
  170. Tropper P, Deibl I, Finger F, Kaindl R (2006) P–T–t evolution of spinel−cordierite−garnet gneisses form the Sauwald Zone (southern Bohemian Massif, Upper Austria): is there evidence for two independent late-Variscan low-P/high-T events in the Moldanubian Unit? Int J Earth Sci 95:1019–1037. doi: 10.1007/s00531-006-0082-x Google Scholar
  171. Van Breemen O, Aftalion M, Bowes DR, Dudek A, Mísa Z, Povondra P, Vrána S (1982) Geochronological studies in the Bohemian Massif, Czechoslovakia, and their significance in the evolution of Central Europe. Trans R Soc Edinb Earth Sci 73:89–108Google Scholar
  172. Van den Driessche J, Brun J-P (1992) Tectonic evolution of the Montagne Noire (French Massif Central): a model of an extensional gneiss dome. Geodin Acta 5:85–101Google Scholar
  173. Ventura B, Lisker F (2003) Long-term landscape evolution of the northeastern margin of the Bohemian massif: apatite fission-track data form the Erzgebirge (Germany). Int J Earth Sci 92:691–700. doi: 10.1007/s00531-003-0344-9 Google Scholar
  174. Vejnar Z (1962) Zum Problem des absoluten Alters der kristallinen Schiefer und der Intrusiva des Westböhmischen Kristallins. Krystalinikum 1:149–159Google Scholar
  175. Vejnar Z (1966) Peridotites and serpentinites of the Česky les mountains. Krystalinikum 4:163–170Google Scholar
  176. Vejnar Z (1973) Petrochemistry of the Central Bohemian Pluton. Geochemie 2:1–116Google Scholar
  177. Vejnar Z (1975) Highly ferrous silicates from the Mutěnin ferrodiorite ring intrusion, West Bohemia. Věstnik Ústředniho Ústavu Geologického 50:265–273Google Scholar
  178. Vejnar Z (1977a) The relationships between the metamorphic grade and composition of silicates in the West-Bohemian greenschists and amphibolites. Krystalinikum 13:129–158Google Scholar
  179. Vejnar Z (1977b) The Babylon granite massif and its contact aureole, South-West Bohemia. Věstnik Ústředniho Ústavu Geologického 52:205–214Google Scholar
  180. Vejnar Z (1980) The spinel- and corundum-bearing basic intrusion of Drahotín, SouthWest Bohemia. Krystalininkum 15:33–54Google Scholar
  181. Vejnar Z (1982) Regionální metamõrfoza psamiticko-pelitických hornin domažlické oblasti. Sborník geologických věd, Prague, Geologie 37:9–70 (in Czech with English abstract)Google Scholar
  182. von Quadt A, Gebauer D (1993) Sm–Nd and U–Pb dating of eclogites and granulites from the Oberpfalz, NE Bavaria, Germany. Chem Geol 109:317–339. doi: 10.1016/0009-2541(93)90078-W Google Scholar
  183. Vrána S, Novák M (2000) Petrology and geochemistry of granulite clasts in the Visean Luleč conclomerate, Kulm in central Moravia, Czech Republic. Věstník Českého Geologického Ústavu 75:405–413Google Scholar
  184. Wagner GA, Coyle DA, Duyster J, Henjes-Kunst F, Peterek A, Schröder B, Stöckhert B, Wemmer K, Zulauf G, Ahrendt H, Bischoff R, Hejl E, Jacobs J, Menzel D, Lal Nand, van den haute P, Vercoutere C, Welzel B (1997) Post-Variscan thermic and tectonic evolution of the KTB site and its surroundings. J Geophys Res 102(B8):18221–18232. doi: 10.1029/96JB02565
  185. Wendt JI, Kröner A, Fiala J, Todt W (1993) Evidence from zircon dating for existence of approximately 2, 1 Ga old crystalline basement in southern Bohemia, Czech Republic. Geol Rundsch 82:42–50. doi: 10.1007/BF00563269 Google Scholar
  186. Wendt JI, Kröner A, Fiala J, Todt W (1994) U–Pb zircon and Sm–Nd dating of Moldanubian HP/HT granulites from South Bohemia, Czech Republic. J Geol Soc London 151:83–90. doi: 10.1144/gsjgs.151.1.0083 Google Scholar
  187. Werner O, Lippolt HJ (2000) White-mica 40Ar/39Ar ages of Erzgebirge metamorphic rocks: simulating the chronological results by a model of Variscan crustal imbrication. Geol Soc Lond Spec Publ 179:323–336Google Scholar
  188. Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace elements and REE analyses. Geostand Newsl 19:1–23. doi: 10.1111/j.1751-908X.1995.tb00147.x Google Scholar
  189. Willet SD, Beaumont C, Fullsack P (1993) Mechanical model for the tectonics of doubly vergent compressional orogens. Geology 21:371–374. doi:10.1130/0091-7613(1993)021<0371:MMFTTO>2.3.CO;2Google Scholar
  190. Willner AP, Sebazungu E, Gerya TV, Maresch WV, Krohe A (2002) Numerical modelling of PT-paths related to rapid exhumation of high-pressure rocks from the crustal root in the Variscan Erzgebirge Dome (Saxony/Germany). J Geodyn 33:281–314. doi: 10.1016/S0264-3707(01)00071-0 Google Scholar
  191. Wulf S (1997) Typologie und Internstrukturen von Zirkonen syntektonischer Granitoide der Westböhmischen und Zentralböhmischen Scherzone. Dissertation, Giessen University, p 132Google Scholar
  192. Wulf S, Dörr W, Zulauf G, Scheuvens D, Vejnar Z (1996) The Teplá–Barrandian/Moldanubian sstr boundary: zircon typology of fault-related alkalic and calc-alkalic plutons. Terra Nostra 96(2):196–205Google Scholar
  193. Yilmaz Y, Saroglu F, Goner Y (1987) Initiation of the neomagmatism in East Anatolia. Tectonophysics 134:177–199. doi: 10.1016/0040-1951(87)90256-3 Google Scholar
  194. Žáček J, Cháb J (1993) Metamorphism in the Tepla upland, Bohemian Massif, Czech Republic (preliminary report). Věstnik Českého Geologického Ústavu 68(3):33–37Google Scholar
  195. Žák J, Holub F, Verner K (2005a) Tectonic evolution of a continental magmatic arc from transpression in the upper crust to exhumation of mid-crustal orogenic root recorded by multiple episodically emplaced plutons: the Central Bohemian Plutonic Complex (Bohemian Massif, Czech Republic). Int J Earth Sci 94:385–400. doi: 10.1007/s00531-005-0482-3 Google Scholar
  196. Žák J, Schulmann K, Hrouda F (2005b) Multiple magmatic fabrics in the Sázava Pluton (Bohemian Massif, Czech Republic): a result of superposition of wrench-dominated regional transpression on final emplacement. J Struct Geol 27:805–822. doi: 10.1016/j.jsg.2005.01.012 Google Scholar
  197. Zulauf G (1994) Ductile normal faulting along the West-Bohemian shear zone (Moldanubian/Teplá–Barrandian boundary). Evidence for late Variscan extensional collapse in the Variscan internides. Geol Rundsch 83:276–292Google Scholar
  198. Zulauf G (1997a) Von der Anchizone bis zur Eklogitfazies: Angekippte Krustenprofile als Folge der cadomischen und variscischen Orogenese im Teplá-Barrandium (Böhmische Masse). Geotektonische Forsch 89:1–302Google Scholar
  199. Zulauf G (1997b) Constriction due to subduction: evidence for slab pull in the Mariánské Lázně complex (central European Variscides). Terra Nova 9:232–236. doi: 10.1111/j.1365-3121.1997.tb00019.x Google Scholar
  200. Zulauf G (2001) Structural style, deformation mechanisms and paleostress along an exposed crustal section: constraints on the rheology of quartzofeldspathic rocks at supra- and infrastructural levels (Tepla–Barrandian unit, Bohemian Massif). Tectonophysics 332:211–237. doi: 10.1016/S0040-1951(00)00258-4 Google Scholar
  201. Zulauf G, Schitter F, Riegler G, Finger F, Fiala J, Vejnar Z (1999) Age constraints on the Cadomian evolution of the Teplá Barrandian unit (Bohemian Massif) through electron microprobe dating of metamorphic monazite. Z Dtsch Geol Ges 150:627–640Google Scholar
  202. Zulauf G, Dörr W, Fiala J, Kotková J, Maluski H, Valverde-Vaquero P (2002a) Evidence for high-temperature diffusional creep preserved by rapid cooling of lower crust (North Bohemian shear zone, Czech Republic). Terra Nova 14:343–354. doi: 10.1046/j.1365-3121.2002.00424.x Google Scholar
  203. Zulauf G, Bues C, Dörr W, Vejnar Z (2002b) 10 km minimum throw along the West Bohemian shear zone: evidence for dramatic crustal thickening and high topography in the Bohemian Massif (European Variscides). Int J Earth Sci 91:850–864. doi: 10.1007/s00531-001-0250-y Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institut für GeowissenschaftenUniversität Frankfurt a.M.Frankfurt am MainGermany

Personalised recommendations