International Journal of Earth Sciences

, Volume 98, Issue 6, pp 1299–1309 | Cite as

OH in zoned amphiboles of eclogite from the western Tianshan, NW-China

  • Wen Su
  • Ming Zhang
  • Simon A. T. Redfern
  • Jun Gao
  • Reiner Klemd
Original Paper


Chemically-zoned amphibole porphyroblast grains in an eclogite (sample ws24-7) from the western Tianshan (NW-China) have been analyzed by electron microprobe (EMP), micro Fourier-transform infrared (micro-FTIR) and micro-Raman spectroscopy in the OH-stretching region. The EMP data reveal zoned amphibole compositions clustering around two predominant compositions: a glaucophane end-member ( B Na 2 C M2+ 3 M3+ 2 T Si8(OH)2) in the cores, whereas the mantle to rim of the samples has an intermediate amphibole composition ( A 0.5 B Ca1.5Na0.5 C M 2+ 4.5 M 0.5 3+ T Si7.5Al0.5(OH)2) (A = Na and/or K; M 2+ = Mg and Fe2+; M 3+ = Fe3+ and/or Al) between winchite (and ferro-winchite) and katophorite (and Mg-katophorite). Furthermore, we observed complicated FTIR and Raman spectra with OH-stretching absorption bands varying systematically from core to rim. The FTIR/Raman spectra of the core amphibole show three lower-frequency components (at 3,633, 3,649–3,651 and 3,660–3,663 cm−1) which can be attributed to a local O(3)-H dipole surrounded by M(1) M(3)Mg3, M(1) M(3)Mg2Fe2+ and M(1) M(3) Fe2+ 3, respectively, an empty A site and T Si8 environments. On the other hand, bands at higher frequencies (3,672–3,673, 3,691–3,697 and 3,708 cm−1) are observable in the rims of the amphiboles, and they indicate the presence of an occupied A site. The FTIR and Raman data from the OH-stretching region allow us to calculate the site occupancy of the A, M(1)–M(3), T sites with confidence when combined with EPM data. By contrast M(2)- and M(4) site occupancies are more difficult to evaluate. We use these samples to highlight on the opportunities and limitations of FTIR OH-stretching spectroscopy applied to natural high pressure amphibole phases. The much more detailed cation site occupancy of the zoned amphibole from the western Tianshan have been obtained by comparing data from micro-chemical and FTIR and/or Raman in the OH-stretching data. We find the following characteristic substitutions Si(T-site) (Mg, Fe)[M(1)–M(3)-site] → Al(T-site) Al[M(1)–M(3)-site] (tschermakite), Ca(M4-site)□ (A-site) → Na(M4-site) Na + K(A-site) (richterite), and Ca(M4-site) (Mg, Fe) [M(1)–M(3)-site] → Na(M4-site) Al[M(1)–M(3)-site] (glaucophane) from the configurations observed during metamorphism.


Zoned amphibole OH-stretching Infrared spectra Raman EMP Western Tianshan 



This work was supported by the NNSFC (No.40872059, 40572028), National Basic Research Program of China (No.2007CB411302 and 2009CB825001) and the Key Laboratory of Continental Dynamics in Northwest University. We are especially grateful to Dr. T. Zack, Dr. M. Gottschalk, Dr. G. Della Ventura and Dr. G. Iezzi for their constructive and helpful suggestions of this manuscript.


  1. Burns RG, Strens RGJ (1966) Infrared study of the hydroxyl bands in clinoamphiboles. Science 153:890–892. doi: 10.1126/science.153.3738.890 CrossRefGoogle Scholar
  2. Carswell DA (1990) Eclogites and the eclogite facies: definitions and classifications. In: Carswell DA (ed) Eclogite facies rocks. Blackie, New York, pp 1–13Google Scholar
  3. Compagnoni R, Hirajima T, Chopin C (1995) Ultra-high pressure metamorphic rocks in the Western Alps. In: Coleman B, Wang X (eds) Ultra-high pressure metamorphism. Blackie, New York, pp 206–243Google Scholar
  4. Della Ventura G, Robert JL, Hawthorne FC, Raudsepp M, Welch MF (1998) Contrasting patterns of [6]Al order in synthetic pargasite and Co-substituted pargasite. Can Mineral 36:1237–1244Google Scholar
  5. Della Ventura G, Hawthorne FC, Robert JL, Delbove F, Welch MF, Raudsepp M (1999) Short-range order of cations in synthetic amphiboles along the richterite-pargasite join. Eur J Mineral 11:79–94Google Scholar
  6. Della Ventura G, Redhammer GJ, Iezzi G, Hawthorne FC, Papin A, Robert J-L (2005) A Mössbauer and FTIR study of synthetic amphiboles along the magnesioriebeckite-ferri-clinoholmquistite join. Phys Chem Miner 32:103–113. doi: 10.1007/s00269-005-0451-1 CrossRefGoogle Scholar
  7. Gillet P, Reynard B, Tequi C (1989) Thermodynamic properties of glaucophane; new data from calorimetric and spectroscopic measurements. Phys Chem Miner 16:659–667Google Scholar
  8. Ernst WG (1961) Stability regions of glaucophabe. Am J Sci 259:735–765Google Scholar
  9. Ernst WG, Wai CM (1970) Mossbauer, infrared, X-ray and optical study of cation ordering and dehydrogenation in natural and heat-treated sodic amphiboles. Am Mineral 55:1226–1258Google Scholar
  10. Gao J, Klemd R, Zhang L, Wang Z, Xiao X (1999) X P-T path of high-pressure/low-temperature rocks and tectonic implications in the western Tianshan Mountains, NW China. J Metamorph Geol 17:621–636. doi: 10.1046/j.1525-1314.1999.00219.x CrossRefGoogle Scholar
  11. Gao J, Klemd R, John T, Xiong X (2007) Mobilisation of Ti–Nb–Ta during subduction: evidence from rutile-bearing segregations and veins hosted in eclogites, Tianshan, NW China. Geochim Cosmochim Acta 71:4974–4996. doi: 10.1016/j.gca.2007.07.027 CrossRefGoogle Scholar
  12. Gottschalk M, Najorka J, Andrut M (1998) Structural and compositional characterization of synthetic (Ca, Sr)-tremolite and (Ca, Sr)-diopsides. Phys Chem Miner 25:415–428. doi: 10.1007/s002690050131 CrossRefGoogle Scholar
  13. Gottschalk M, Andrut M, Melzer S (1999) The determination of the cummingtonite content of synthetic tremolite. Eur J Mineral 11:967–982Google Scholar
  14. Hawthorne FC, Della Ventura G, Robert J-L (1996a) Short-range order and long-range order in amphiboles: a model for the interpretation of infrared spectra in the principal OH-stretching region. In: Dyar MD, McCammon C, Schaefer MW (eds) Mineral spectroscopy, a tribute to Roger G. Burns, vol 5. Geochemical Society Special Publication, pp 49–54Google Scholar
  15. Hawthorne FC, Della Ventura G, Robert JL, Welch MD, Raudsepp M, Jenkins DM (1997) A Rietveld and infrared study of synthetic amphiboles along the potassium–richterite–tremolite join. Am Mineral 82:708–716Google Scholar
  16. Hawthorne FC, Oberti R, Sardone N (1996b) Ordering at the A site in clinoamphiboles: the effects of composition on patterns of order. Can Mineral 34:577–593Google Scholar
  17. Hawthorne FC, Welch MD, Della Ventura G, Liu S, Robert JL, Jenkins DM (2000) Short-range order in synthetic aluminous tremolites: an infrared and triple-quantum MAS NMR study. Am Mineral 85:1716–1724Google Scholar
  18. Hawthorne FCH (1983) The crystal chemistry of the amphiboles. Can Mineral 21:173–480Google Scholar
  19. Hermann J, Spandler C, Hack A, Korsakov AV (2006) Aqueous fluids and hydrous melts in high-pressure and ultrahigh pressure rocks: implications for element transfer in subduction zones. Lithos 92:399–417. doi: 10.1016/j.lithos.2006.03.055 CrossRefGoogle Scholar
  20. Iezzi G, Della Ventura G, Pedrazzi G, Robert J-L, Oberti R (2003a) Synthesis and characterisation of ferri-clinoferroholmquistite, Li2(Fe2+ 3Fe3+ 2)Si8O22(OH)2. Eur J Mineral 15:321–327. doi: 10.1127/0935-1221/2003/0015-0321 CrossRefGoogle Scholar
  21. Iezzi G, Della Ventura G, Comara F, Pedrazzi G, Robert J-L (2003b) BNa–BLi solid-solution in A-site-vacant amphiboles: synthesis and cation ordering along the ferri-clinoferroholmquistite–riebeckite join. Am Mineral 88:955–961Google Scholar
  22. Iezzi G, Camara F, Della Ventura G, Oberti R, Pedrazzi G, Robert J-L (2004a) Synthesis, crystal structure and crystal-chemistry of ferri-clinoholmquistite Li2Mg3Fe2 3+Si8O22(OH)2. Phys Chem Miner 31:375–385. doi: 10.1007/s00269-004-0402-2 CrossRefGoogle Scholar
  23. Iezzi G, Della Ventura G, Oberti R, Cámara F, Holtz F (2004b) Synthesis and crystal-chemistry of Na(NaMg)Mg5Si8O22(OH)2, a P21/m amphibole. Am Mineral 89:640–646Google Scholar
  24. Iezzi G, Della Ventura G, Hawthorne FC, Pedrazzi G, Robert J-L, November D (2005a) The (Mg, Fe2+) substitution in ferri-clinoholmquistite, □Li2(Mg, Fe2+)3Fe3+ 2O22(OH)2. Eur J Mineral 17:733–740. doi: 10.1127/0935-1221/2005/0017-0733 CrossRefGoogle Scholar
  25. Iezzi G, Tribaudino M, Della Ventura G, Nestola F, Bellatreccia F (2005b) High-T phase transition of synthetic ANaB(LiMg)CMg5Si8O22(OH)2. Phys Chem Miner 32:515–523. doi: 10.1007/s00269-005-0032-3 CrossRefGoogle Scholar
  26. Iezzi G, Gatta GD, Kockelmann W, Della Ventura G, Rinaldi R, Schäfer W, Piccinini M, Gaillard F (2005c) Low-T neutron diffraction and synchrotron-radiation IR study of synthetic amphibole Na(NaMg)Mg5Si8O22(OH)2. Am Mineral 90:695–700. doi: 10.2138/am.2005.1764 CrossRefGoogle Scholar
  27. Iezzi G, Della Ventura G, Bellatreccia F, Lo Mastro S, Bandli BR, Gunter ME (2007) Site occupancy in richterite–winchite from Libby, Montana, USA, by FTIR spectroscopy. Mineral Mag 71:93–104. doi: 10.1180/minmag.2007.071.1.93 CrossRefGoogle Scholar
  28. Ishida K, Hawthorne FC, Ando Y (2002) Fine structure of infrared OHstretching bands in natural and heat-treated amphiboles of the tremolite–ferroactinolite series. Am Mineral 87:891–898Google Scholar
  29. Jenkins DM, Corona JC (2006) The role of water in the synthesis of glaucophane. Am Mineral 91:1055–1068. doi: 10.2138/am.2006.2014 CrossRefGoogle Scholar
  30. Jenkins DM, Sherriff BL, Cramer J, Xu Z (1997) Al, Si, and Mg occupancies in tetrahedrally and octahedrally coordinated sites in synthetic aluminous tremolite. Am Mineral 82:280–290Google Scholar
  31. Jenkins DM, Bozhilov KN, Ishida K (2003) Infrared and TEM characterization of amphiboles synthesized near the tremolite–pargasite join in the ternary system tremolite–pargasite–cummingtonite. Am Mineral 88:1104–1114Google Scholar
  32. John T, Schenk V (2003) Partial eclogitisation of gabbroic rocks in a late Precambrian subduction zone (Zambia): prograde metamorphism triggered by fluid infiltration. Contrib Mineral Petrol 146:174–191. doi: 10.1007/s00410-003-0492-8 CrossRefGoogle Scholar
  33. John T, Scherer EE, Haase KM, Schenk V (2004) Trace element fractionation during fluid-induced eclogitization in a subducting slab: trace element and Lu–Hf–Sm–Nd isotope systematics. Earth Planet Sci Lett 227:441–456. doi: 10.1016/j.epsl.2004.09.009 CrossRefGoogle Scholar
  34. John T, Klemd T, Gao J, Garbe-Schönberg CD (2008) Trace-element mobilization in slabs due to non steady-state fluid-rock interaction: constraints from an eclogite-facies transport vein in blueschist (Tianshan, China). Lithos 103:1–24. doi: 10.1016/j.lithos.2007.09.005 CrossRefGoogle Scholar
  35. Klemd R, Schroter FC, Will TM, Gao J (2002) P-T evolution of glaucophane-omphacite bearing HP-LT rocks in the western Tianshan Orogen, NW China: new evidence for Alpine-type-tectonics. J Metamorph Geol 20:239–254. doi: 10.1046/j.1525-1314.2002.00347.x CrossRefGoogle Scholar
  36. Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino J, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles: report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Mineral Mag 61:295–321. doi: 10.1180/minmag.1997.061.405.13 CrossRefGoogle Scholar
  37. Leake BE, Woolley AR, Birch WD, Burke EAJ, Ferraris G, Grice JD, Hawthorne FC, Kisch HJ, Krivovichev VG, Schumacher JC, Stephenson NCN, Whittaker EJW (2004) Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s amphibole nomenclature. Can Mineral 41:1355–1362. doi: 10.2113/gscanmin.41.6.1355 CrossRefGoogle Scholar
  38. Mével C, Kiénast JR (1986) Jadeite-Ko solid solution and chromian sodic amphiboles in jadeitites and associated rocks from Tawmaw (Burma). Bull Mineral (Paris) 109:617–633Google Scholar
  39. Najorka J, Gottschalk M, Heinrich W (2000) Structural and thermo-dynamic properties of the synthetic tremolite-magnesiohornblende solid solutions. In: Eighth international symposium on experimental mineralogy, petrology and geochemistry. J Confer Abstracts 5-1, p 77Google Scholar
  40. Palin EJ, Guiton BS, Craig MS, Welch MD, Dove MT, Redfern SAT (2003) Computer simulation of Al–Mg ordering in glaucophane and a comparison with infrared spectroscopy. Eur J Mineral 15:893–901. doi: 10.1127/0935-1221/2003/0015-0893 CrossRefGoogle Scholar
  41. Peacock SM (1993) The importance of blueschist, eclogite dehydration reactions ieclogite dehydration reactions in subducting oceanic crust. Geol Soc Am Bull 105:684–694. doi:10.1130/0016-7606(1993)105<0684:TIOBED>2.3.CO;2Google Scholar
  42. Raudsepp M, Turnock A, Hawthorne FC, Sheriff B, Hartman JS (1987) Characterization of synthetic pargasitic amphiboles NaCa2Mg4M3+Si6Al2O22(OH, F)2; (M3+ = Al, Cr, Ga, Sc, In) by infrared spectroscopy, Rietveld structure refinement and 27Al, 29Si, and 19F MAS-NMR spectroscopy. Am Mineral 72:580–593Google Scholar
  43. Reece JJ, Redfern SAT, Welch MD, Henderson CMB, McCammon CA (2002) Temperature-dependent Fe2+–Mn2+ order–disorder behaviour in amphiboles. Phys Chem Miner 29:562–570. doi: 10.1007/s00269-002-0267-1 CrossRefGoogle Scholar
  44. Robert JL, Della Ventura GC, Thauvin JL (1989) The infrared OH-stretching region of synthetic richiterites in the system Na2O–K2O–CaO–MgO–SiO2–H2O-HF. Eur J Mineral 1:203–211Google Scholar
  45. Robert JL, Della Ventura G, Raudsepp M, Hawthorne FC (1993) Rietveld structure refinement of synthetic strontium-rich potassium-richterites. Eur J Mineral 5:199–206Google Scholar
  46. Skogby H, Rossmann GR (1991) The intensity of amphibole OH bands in the infrared absorption spectrum. Phys Chem Miner 18:64–68. doi: 10.1007/BF00199045 CrossRefGoogle Scholar
  47. Wei CJ, Powell R, Zhang LF (2003) Eclogites from the south Tianshan, NW China: petrological characteristic and calculated mineral equilibria in the Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O system. J Metamorph Geol 21:163–179. doi: 10.1046/j.1525-1314.2003.00435.x CrossRefGoogle Scholar
  48. Welch MD, Kolodziejski W, Klinowski J (1994) A multinuclear NMR study of synthetic pargasite. Am Mineral 79:261–268Google Scholar
  49. Zack T, John T (2007) An evaluation of reactive fluid flow and trace element mobility in subducting slabs. Chem Geol 239:199–216. doi: 10.1016/j.chemgeo.2006.10.020 CrossRefGoogle Scholar
  50. Zack T, Foley SF, Rivers T (2002) Equilibrium and disequilibrium trace element partitioning in hydrous eclogites (Trescolmen, Central Alps). J Petrol 43:1947–1974. doi: 10.1093/petrology/43.10.1947 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Wen Su
    • 1
    • 2
    • 3
  • Ming Zhang
    • 3
  • Simon A. T. Redfern
    • 3
  • Jun Gao
    • 1
  • Reiner Klemd
    • 4
  1. 1.Chinese Academy of SciencesState Key Laboratory of Lithospheric Evolution, Institute of Geology and GeophysicsBeijingChina
  2. 2.State Key Laboratory for Mineral Deposits ResearchNanjing UniversityNanjingChina
  3. 3.Department of Earth SciencesUniversity of CambridgeCambridgeUK
  4. 4.Institute of MineralogyWuerzburg UniversityWuerzburgGermany

Personalised recommendations