International Journal of Earth Sciences

, Volume 99, Issue 1, pp 165–182 | Cite as

Cenomanian–Turonian transition in a shallow water sequence of the Sinai, Egypt

  • B. Gertsch
  • G. Keller
  • T. Adatte
  • Z. Berner
  • A. S. Kassab
  • A. A. A. Tantawy
  • A. M. El-Sabbagh
  • D. Stueben
Original Paper


Environmental and depositional changes across the Late Cenomanian oceanic anoxic event (OAE2) in the Sinai, Egypt, are examined based on biostratigraphy, mineralogy, δ13C values and phosphorus analyses. Comparison with the Pueblo, Colorado, stratotype section reveals the Whadi El Ghaib section as stratigraphically complete across the late Cenomanian–early Turonian. Foraminifera are dominated by high-stress planktic and benthic assemblages characterized by low diversity, low-oxygen and low-salinity tolerant species, which mark shallow-water oceanic dysoxic conditions during OAE2. Oyster biostromes suggest deposition occurred in less than 50 m depths in low-oxygen, brackish, and nutrient-rich waters. Their demise prior to the peak δ13C excursion is likely due to a rising sea-level. Characteristic OAE2 anoxic conditions reached this coastal region only at the end of the δ13C plateau in deeper waters near the end of the Cenomanian. Increased phosphorus accumulations before and after the δ13C excursion suggest higher oxic conditions and increased detrital input. Bulk-rock and clay mineralogy indicate humid climate conditions, increased continental runoff and a rising sea up to the first δ13C peak. Above this interval, a dryer and seasonally well-contrasted climate with intermittently dry conditions prevailed. These results reveal the globally synchronous δ13C shift, but delayed effects of OAE2 dependent on water depth.


Cenomanian–Turonian OAE 2 Paleoclimate Shallow shelf environments Egypt 



We thank Haydon Mort for advise on phosphorus methods, comments and suggestions. We thank Thomas Steuber and one anonymous reviewer for their helpful comments. This material is based upon work supported by the National Science Foundation under Grant no. 0217921.


  1. Abdel-Gawat GI (1999) Biostratigraphy and facies of the Turonian in west central Sinai, Egypt. Ann Geol Surv Egypt XXII:99–114Google Scholar
  2. Abed AM, Sadaqah R (1998) Role of upper Cretaceous oyster bioherms in the deposition and accumulation of high-grade phosphorites in central Jordan. J Sedim Res 68:1009–1020Google Scholar
  3. Adatte T, Stinnesbeck W, Keller G (1996) Lithostratigraphic and mineralogic correlations of near K/T boundary sediments northeastern Mexico: Implications for origin and nature of deposition. The Cretaceous-tertiary event and other catastrophes in Earth history, Boulder, Colorado. Geol Soc Am Spec Pap 307:211–226Google Scholar
  4. Andreu B (1989) Le Crétacé moyen de la transversale Agadir–Nador (Maroc): precisions stratigraphiques et sédimentologiques. Cretac Res 10:49–80. doi: 10.1016/0195-6671(89)90029-3 CrossRefGoogle Scholar
  5. Arthur MA, Dean WE, Pratt LM (1988) Geochemical and climatic effects of increased marine organic-carbon burial at the cenomanian turonian boundary. Nature 335:714–717. doi: 10.1038/335714a0 CrossRefGoogle Scholar
  6. Bauer J, Kuss J, Steuber T (2003) Sequence architecture and carbonate platform configuration (Late Cenomanian–Santonian), Sinai, Egypt. Sedimentology 50:387–414. doi: 10.1046/j.1365-3091.2003.00549.x CrossRefGoogle Scholar
  7. Bauer J, Marzouk AM, Steuber T, Kuss J (2001) Lithostratigraphy and biostratigraphy of the Cenomanian–Santonian strata of Sinai, Egypt. Cretac Res 22:497–526. doi: 10.1006/cres.2001.0270 CrossRefGoogle Scholar
  8. Bodin S, Godet A, Follmi KB, Vermeulen J, Arnaud H, Strasser A et al (2006) The late Hauterivian Faraoni oceanic event in the western Tethys: evidence from phosphorus burial rates. Palaeogeogr Palaeoclimatol Palaeoecol 235:238–257. doi: 10.1016/j.palaeo.2005.09.030 CrossRefGoogle Scholar
  9. Chancellor GR, Kennedy WJ, Hancock JM (1994) Turonian ammonite faunas from Central Tunisia. Spec Pap Paleontol 50:1–118Google Scholar
  10. Chamley H (1989) Clay sedimentology. Sringer, Heidelberg, 623 pGoogle Scholar
  11. Cherief OH, Al Rifaiy IA, Al Afify FI, Orabi OH (1989) Foraminiferal biostratigraphy and paleoecology of some Cenomanian–Turonian exposures in west central Sinai (Egypt). Rev Micropaleontol 31:243–262Google Scholar
  12. Cobban WA, Scott RW (1972) Stratigraphy and ammonite fauna of the graneros shale and greenhorn limestone near Pueblo, Colorado, Washington DC. US Geol Surv Prof Pap 645:1–108Google Scholar
  13. Corliss BH, Chen C (1988) Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera and ecological implications. Geology 16:716–719. doi:10.1130/0091-7613(1988)016<0716:MPONSD>2.3.CO;2CrossRefGoogle Scholar
  14. Davey SD, Jenkyns HC (1999) Carbon-isotope stratigraphy of shallow-water limestones and implications for the timing of Late Cretaceous sea-level rise and anoxic events (Cenomanian–Turonian of the peri-Adriatic carbonate platform, Croatia). Eclogae Geol Helv 92:163–170Google Scholar
  15. Dhondt AV, Malchus N, Boumaza L, Jaillard E (1999) Cretaceous oysters from North Africa: origin and distribution. Bull Soc Geol Fr 170(1):67–76Google Scholar
  16. Douglas RG, Savin SM (1978) Oxygen isotopic evidence for depth stratification of tertiary and Cretaceous planktic foraminifera. Mar Micropaleontol 3:175–196. doi: 10.1016/0377-8398(78)90004-X CrossRefGoogle Scholar
  17. Eicher DL, Worstell P (1970) Cenomanian and Turonian foraminifera from the Great Plain, United States. Micropaleontol 16:269–324. doi: 10.2307/1485079 CrossRefGoogle Scholar
  18. Elder WP (1985) Biotic pattern across the Cenomanian–Turonian extinction boundary near Pueblo, Colorado. Pratt LA, Kauffman EG, Zelt FB (eds) Fine grained deposits and biofacies of the Cretaceous Western interior seaway: evidence of cyclic sedimentary processes. Field Trip Guidebook, vol 4. Society of Economic Paleontologists and Mineralogists, Tulsa, pp 157–169Google Scholar
  19. El-Hedeny MM (2002) Cenomanian–Coniacian ammonites from west-central Sinai, Egypt, and their significance in biostratigraphy. N Jb Geol Palont Mh 7:397–425Google Scholar
  20. El-Sabbagh AM (2000) Stratigraphical and paleontological studies of the Upper Cretaceous succession in Gebel Nezzazat and Bir El-Markha areas, West-Central Sinai, Egypt. Unpublished PhD Thesis, Alexandria University, Fac Sci, Geol Dept: 209 pGoogle Scholar
  21. Erba E, Tremolada F (2004) Nannofossil carbonate fluxes during the Early Cretaceous: phytoplankton response to nutrification episodes, atmospheric CO2, and anoxia. Paleoceanography 19:1–18. doi: 10.1029/2003PA000884 CrossRefGoogle Scholar
  22. Erbacher J, Thurow J, Littke R (1996) Evolution patterns of radiolaria and organic matter variations: a new approach to identify sea-level changes in mid-Cretaceous pelagic environments. Geology 24:499–502. doi:10.1130/0091-7613(1996)024<0499:EPORAO>2.3.CO;2CrossRefGoogle Scholar
  23. Gale AS, Hardenbohl J, Hathway B, Kennedy WJ, Young JR, Phansalkar V (2002) Global correlation of cenomanian (upper Cretaceous) sequences: evidence for Milankovitch control on sea level. Geology 30:291–294. doi:10.1130/0091-7613(2002)030<0291:GCOCUC>2.0.CO;2CrossRefGoogle Scholar
  24. Gertsch B, Keller G, Adatte T, Berner Z, Stueben D, Tantawy AAAM, El-Sabbagh, AM (2008) Middle and late Cenomanian Anoxia in the shallow shelf environment in NW Morocco (in preparation)Google Scholar
  25. Ghorab MA (1961) Abnormal stratigraphic features in Ras Gharib Oilfield, Egypt. Proceedings of the Third Arab Petroleum Congress, Alexandria, Egypt, pp 1–10Google Scholar
  26. Godet A, Bodin S, Adatte T, Foellmi KB (2008) Clay mineral assemblages along the Northern Tethyan margin during the late Hauterivian–early Aptian: interactions beween climate change and carbonate platform evolution. Cretac Res (in press)Google Scholar
  27. Hallam A (1992) Phanerozoic sea level changes. Columbia press, New YorkGoogle Scholar
  28. Haq BU, Hardenbol J (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167. doi: 10.1126/science.235.4793.1156 CrossRefGoogle Scholar
  29. Hart MB (1999) The evolution and biodiversity of Cretaceous planktonic Foraminiferida. Geobios 32:247–255. doi: 10.1016/S0016-6995(99)80038-2 CrossRefGoogle Scholar
  30. Hart MB (1980) A water depth model for the evolution of the planktonic foraminifera. Nature 286:252–254. doi: 10.1038/286252a0 CrossRefGoogle Scholar
  31. Hart MB, Leary PN (1989) The stratigraphic and paleogeographic setting of the late cenomanian anoxic event. J Geol Soc Lond 146:305–310. doi: 10.1144/gsjgs.146.2.0305 CrossRefGoogle Scholar
  32. Huber BT, Norris RD, McLeod KG (2002) Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30:123–126. doi:10.1130/0091-7613(2002)030<0123:DSPROE>2.0.CO;2CrossRefGoogle Scholar
  33. Jarvis I, Gale AS, Jenkyns HC, Pearce MA (2006) Secular variation in late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma). Geol Mag 143:561–608. doi: 10.1017/S0016756806002421 CrossRefGoogle Scholar
  34. Jarvis I, Carson GA, Cooper MKE, Hart MB, Leary PN, Tocher BA et al (1988) Microfossil assemblages and the Cenomanian–Turonian (late Cretaceous) oceanic anoxic event. Cretac Res 9:3–103. doi: 10.1016/0195-6671(88)90003-1 CrossRefGoogle Scholar
  35. Jenkyns HC (1980) Cretaceous anoxic events, from continents to oceans. J Geol Soc Lond 137:171–181. doi: 10.1144/gsjgs.137.2.0171 CrossRefGoogle Scholar
  36. Jenkyns HC, Gale AS, Corfield RM (1994) Carbon- and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geol Mag 131:1–34CrossRefGoogle Scholar
  37. Kassab AS, Obaidalla NA (2001) Integrated biostratigraphy and inter-regional correlation of the Cenomanian–Turonian deposits of Wadi Feiran, Sinai, Egypt. Cretac Res 22:105–114. doi: 10.1006/cres.2000.0240 CrossRefGoogle Scholar
  38. Kassab AS (1999) Cenomanian–Turonian boundary in the Gulf of Suez region, Egypt: towards an inter-regional correlation, based on ammonites. Geological Society of Egypt. Spec Publ 2:61–98Google Scholar
  39. Kassab AI, Ismael MM (1996) Biostratigraphy of the upper Cretaceous sequence of the Gebel Musabaa Salama area, south–west Sinai, Egypt. Arab Gulf J Sci Res 14:63–78Google Scholar
  40. Kassab AI, Ismael MM (1994) Upper Cretaceous invertebrate fossils from the area northeast of Abu Zeneima, Sinai, Egypt. Neues Jahrb Geol Palaontol Abh 191:221–249Google Scholar
  41. Kassab AS (1991) Cenomanian–Coniacian biostratigraphy of the northern Eastern Desert, Egypt, based on ammonites. Newsl Stratigr 25:25–35Google Scholar
  42. Kassab AS (1985) Palaeontological and stratigraphical studies of Cretaceous sections in Wadi Tarfa and Wadi Qena, Eastern Desert, Egypt. PhD Thesis, Assiut University, Assiut: 221ppGoogle Scholar
  43. Keller G, Tantawy AA, Berner Z, Adatte T, Chellai EH, Stueben D (2008) Oceanic events and biotic effects of the Cenomanian–Turonian anoxic event, Tarfaya Basin, Morocco. Cretaceous Res. doi: 10.1016/j.cretres.2008.05.020
  44. Keller G, Berner Z, Adatte T, Stueben D (2004) Cenomanian–Turonian and delta C-13, and delta O-18, sea level and salinity variations at Pueblo, Colorado. Palaeogeogr Palaeoclimatol Palaeoecol 211:19–43. doi: 10.1016/j.palaeo.2004.04.003 CrossRefGoogle Scholar
  45. Keller G, Pardo A (2004) Age and paleoenvironment of the Cenomanian–Turonian global stratotype section and point at Pueblo, Colorado. Mar Micropaleontol 51:95–128. doi: 10.1016/j.marmicro.2003.08.004 CrossRefGoogle Scholar
  46. Keller G, Han Q, Adatte T, Burns SJ (2001) Palaeoenvironment of the Cenomanian–Turonian transition at Eastbourne, England. Cretac Res 22:391–422. doi: 10.1006/cres.2001.0264 CrossRefGoogle Scholar
  47. Kolonic S, Wagner T, Forster A, Sinninghe Damste JS, Walsworth-Bell B, Erba E et al (2005) Black shale deposition on the northwest African Shelf during the Cenomanian/Turonian oceanic anoxic event: climate coupling and global organic carbon burial. Paleoceanography 20:1–18. doi: 10.1029/2003PA000950 CrossRefGoogle Scholar
  48. Kolonic S, Damste JSS, Bottcher ME, Kuypers MMM, Kuhnt W, Beckmann B et al (2002) Geochemical characterization of Cenomanian/Turonian black shales from the Tarfaya Basin (SW Morocco)—relationships between palaeoenvironmental conditions and early sulphurization of sedimentary organic matter. J Pet Geol 25:325–350. doi: 10.1111/j.1747-5457.2002.tb00012.x CrossRefGoogle Scholar
  49. Kora M, Shahin A, Semiet A (1994) Biostratigraphy and paleoecology of some Cenomanian successions in the west-central Sinai, Egypt. Neues Jahrb Geol Palaontol Monatsh 1994:597–617Google Scholar
  50. Kora M, Hamama HH (1987) Biostratigraphy of the Cenomanian–Turonian successions of Gebel Gunna, southeastern Sinai, Egypt. Mansoura Faculty of Science. Bulletin 14:289–301Google Scholar
  51. Koutsoukos EAM, Leary PN, Hart MB (1990) Latest Cenomanian–earliest Turonian low-oxygen tolerant benthonic foraminifera: A case-study from the Sergipe basin (N.E. Brazil) and the western Anglo-Paris basin (southern England). Palaeogeogr Palaeoclimatol Palaeoecol 77:145–177. doi: 10.1016/0031-0182(90)90130-Y CrossRefGoogle Scholar
  52. Kuhnt W, Nederbragt A, Leine L (1997) Cyclicity of Cenomanian–Turonian organic-carbon-rich sediments in the Tarfaya Atlantic Coastal Basin (Morocco). Cretac Res 18:587–601. doi: 10.1006/cres.1997.0076 CrossRefGoogle Scholar
  53. Kuhnt W, Luderer F, Nederbragt S, Thurow J, Wagner T (2004) Orbital-scale record of the late Cenomanian–Turonian oceanic anoxic event (OAE-2) in the Tarfaya Basin (Morocco). Int J Earth Sci 94:147–159. doi: 10.1007/s00531-004-0440-5 CrossRefGoogle Scholar
  54. Kübler B (1983) Dosage quantitatif des minéraux majeurs des roches sédimentaires par diffraction X. Cahiers de l’Institut de Géologie Series AX no. 1.1 and 1.2:1–13Google Scholar
  55. Kübler B (1987) Cristallinité de l’illite: méthode normalisées de préparation de mesure, méthode automatique normalisées de mesure. Cahiers de l’Institut de GéologieGoogle Scholar
  56. Kübler B, Jaboyedoff M (2000) Illite Cristallinity. CR Ac Sc Paris Sci de la terre et des planètes/Earth Planet Sci 331:75–89Google Scholar
  57. Leary PN, Peryt D (1991) The Late Cenomanian oceanic anoxic event in the western Anglo-Paris Basin and southeast Danish–Polish Trough: survival strategies of and recolonization by benthonic foraminifera. Hist Boil 5:321–335CrossRefGoogle Scholar
  58. Leckie RM (1987) Paleoecology of the mid-Cretaceous planktic foraminifera: a comparison of open ocean and epicontinental sea assemblages. Micropaleontology 33:164–176. doi: 10.2307/1485491 CrossRefGoogle Scholar
  59. Leckie RM, Yuretich RF, West LOL, Finkelstein D, Schmidt M (1998) Paleoceanography of the southwestern Interior Sea during the time of the Cenomanian–Turonian boundary (late Cretaceous). Dean WE, Arthur MA (eds) Concepts in sedimentology and paleontolgy, vol 6 SEPM, USA, pp 101–126Google Scholar
  60. Leckie RM, Bralower TJ, Cashman R (2002) Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 17(3). doi: 10.1029/2001PA000623
  61. Luning S, Kolonic S, Belhadj EM, Belhadj Z, Cota L, Baric G et al (2004) Integrated depositional model for the Cenomanian–Turonian organic-rich strata in North Africa. Earth Sci Rev 64:51–117. doi: 10.1016/S0012-8252(03)00039-4 CrossRefGoogle Scholar
  62. Luning S, Marzouk AM, Morsi AM, Kuss J (1998) Sequence stratigraphy of the Upper Cretaceous of central-east Sinai, Egypt. Cretac Res 19:153–196. doi: 10.1006/cres.1997.0104 CrossRefGoogle Scholar
  63. Malchus N (1990) Revision der Kreide-Austern (Bivalvia: Pteriomorphia) Agyptens (Biostratigraphie, Systematik). Berliner Geowissenschaftliche Abh A125:231 pGoogle Scholar
  64. Marshall JD (1992) Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geol Mag 129:143–160CrossRefGoogle Scholar
  65. Meister C, Allzuma K, Mathey B (1992) Les ammonites du Niger (Afrique occidentale) et la Transgression Transsaharienne au cours du Cenomanien–Turonien. Geobios 25:55–100CrossRefGoogle Scholar
  66. Mort HP, Adatte T, Foellmi KB, Keller G, Steinmann P, Matera V et al (2007) Phosphorus and the roles of productivity and nutrient recycling during oceanic event 2. Geology 35:483–486. doi: 10.1130/G23475A.1 CrossRefGoogle Scholar
  67. Murray JW (1973) Deposition and ecology of living benthic foraminiferids. Russak and Co, Carne, pp 1–274Google Scholar
  68. Nederbragt A, Fiorentino A (1999) Stratigraphy and paleoceanography of the Cenomanian–Turonian boundary event in Oued Mellegue, northwestern Tunisia. Cretaceous Res 20:47–62CrossRefGoogle Scholar
  69. Nield EW, Tucker VCT (1985) Paleontology. An introduction. Pergamon Press, 178 pGoogle Scholar
  70. Norris RD, Bice KL, Magno EA, Wilson PA (2002) Jiggling the tropical thermostat in the Cretaceous hothouse. Geology 30:299–302CrossRefGoogle Scholar
  71. Orabi HO (1992) Cenomanian–Turonian boundary in Whadi Watir, southeastern Sinai, Gulf of Aqaba, Egypt. J Afr Earth Sci 15:281–291CrossRefGoogle Scholar
  72. Pascal AF, Mathey BJ, Alzuma K, Lang L, Meister C (1993) Late Cenomanian–Early Turonian shelf ramp, Niger, west Africa. Simo AJ, Scott RW, Masse JP (eds) Cretaceous carbonate platforms. Am Assoc Pet Geol Bull Memoir 56:145–154Google Scholar
  73. Paul CRC, Lamolda MA, Mitchell SF, Vaziri MR, Gorostidi A, Marshall JD (1999) The Cenomanian–Turonian boundary at Eastbourne (Sussex, UK): a proposed European reference section. Paleogeogr Paleoclimatol Paleoecol 150:83–121CrossRefGoogle Scholar
  74. Paul CRC, Mitchell SF, Marshall JD, Leary PN, Gale AS, Duane AM, Ditchfield PW (1994) Palaeoceanographic events in the middle Cenomanian of Northwest Europe. Cretaceous Res 15:707–738CrossRefGoogle Scholar
  75. Perty D, Lamolda M (1996) Benthonic foraminiferal mass extinction and survival assemblages from the Cenomanian–Turonian boundary event in the Menoyo section, northern Spain. Hart M (ed) Biotic recovery from mass extinction events. Geol Soc Special Publ 102:245–258Google Scholar
  76. Petters SW (1980) Foraminiferal paleoecology of Nigerian late Cretaceous epeiric seas. Ann Mus Hist Nat 6:82–133Google Scholar
  77. Philip J (2003) Peri-Tethyan neritic carbonate areas: distribution through time and driving factors. Paleogeogr Paleoclimatol Paleoecol 196:19–37CrossRefGoogle Scholar
  78. Philip JM, Airaud-Crumiere C (1991) The demise of the rudist-bearing carbonate platforms at the Cenomanian/Turonian boundary: a global control. Coral Reefs 10:115–125CrossRefGoogle Scholar
  79. Price GD, Hart MB (2002) Isotopic evidence for early to mid-Cretaceous ocean temperature variability. Mar Micropaleontol 46:45–58CrossRefGoogle Scholar
  80. Pufahl PK, James NP (2006) Monospecific Pliocene oyster buildups, Murray Basin, South Australia: brackish water end member of the reef spectrum. Paleogeogr Paleoclimatol Paleoecol 233:11–33CrossRefGoogle Scholar
  81. Robaszynski F, Gale AS (1993) The Cenomanian–Turonian boundary: a discussion held at the final session of the colloquium on the Cenomanian–Turonian events, Grenoble, 26th May 1991 (France). Cretaceous Res 14:607–611CrossRefGoogle Scholar
  82. Sageman BB, Meyers SR, Arthur MA (2006) Orbital time scale and new C-isotope record for Cenomanian–Turonian boundary stratotype. Geology 34(2):125–128CrossRefGoogle Scholar
  83. Schrag DP, DePaolo DJ, Richter FM (1995) Reconstructing past sea surface temperatures: correcting for diagenesis of bulk marine carbonate. Geochem Cosmochim Acta 59:2265–2278CrossRefGoogle Scholar
  84. Schulze F, Kuss J, Marzouk A (2005) Platform configuration, microfacies and cyclicities of the upper Albian to Turonian of west-central Jordan. Facies 50:505–527CrossRefGoogle Scholar
  85. Schulze F, Marzouk AM, Bassiouni MAA, Kuss J (2004) The late Albian–Turonian carbonate platform succession of west-central Jordan: stratigraphy and crisis. Cretaceous Res 25:709–737CrossRefGoogle Scholar
  86. Schulze F, Lewy Z, Kuss J, Gharaibeh A (2003) Cenomanian–Turonian carbonate platform deposits in west central Jordan. Int J Earth Sci (Geol Rundsch) 92:641–660CrossRefGoogle Scholar
  87. Tsikos H, Jenkyns HC, Walsworth-Bell B, Petrizzo MR, Forster A, Kolonic S, Erba E, Premoli Silva I, Baas M, Wagner T, Sinninghe Damste JS (2004) Carbon-isotope stratigraphy recorded by the Cenomanian–Turonian oceanic anoxic event: correlation and implications based on three key localities. J Geol Soc 161:711–719CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • B. Gertsch
    • 1
  • G. Keller
    • 1
  • T. Adatte
    • 2
  • Z. Berner
    • 3
  • A. S. Kassab
    • 4
  • A. A. A. Tantawy
    • 5
  • A. M. El-Sabbagh
    • 6
  • D. Stueben
    • 3
  1. 1.Department of GeosciencesPrinceton UniversityPrincetonUSA
  2. 2.Institut de géologie et paleontologyUniversité de LausanneLausanneSwitzerland
  3. 3.Institute for Mineralogy and GeochemistryUniversity of KarlsruheKarlsruheGermany
  4. 4.Department of Geology, Faculty of ScienceAssiut UniversityAssiutEgypt
  5. 5.Department of GeologySouth Valley UniversityAswanEgypt
  6. 6.Department of Geology, Faculty of ScienceAlexandria UniversityAlexandriaEgypt

Personalised recommendations