Cold-water coral banks and submarine landslides: a review

Original Paper

Abstract

This paper aims to review the relation between cold-water coral bank development and submarine landslides. Both are common features on continental margins, but so far it has not been reviewed which effect—if at all—they may have upon each other. Indirect and direct relations between coral banks and landslides are evaluated here, based on four case studies: the Magellan Mound Province in the Porcupine Seabight, where fossil coral banks appear partly on top of a buried slide deposit; the Sula Ridge Reef Complex and the Storegga landslide both off mid-Norway; and the Mauritania coral bank province, associated with the Mauritanian Slide Complex. For each of these locations, positive and negative relationships between both features are discussed, based on available datasets. Locally submarine landslides might directly favour coral bank development by creating substratum where corals can settle on, enhancing turbulence due to abrupt seabed morphological variations and, in some cases, causing fluid seepage. In turn, some of these processes may contribute to increased food availability and lower sedimentation rates. Landslides can also affect coral bank development by direct erosion of the coral banks, and by the instantaneous increase of turbidity, which may smother the corals. On the other hand, coral banks might have a stabilising function and delay or stop the headwall retrogradation of submarine landslides. Although local relationships can be deduced from these case studies, no general and direct relationship exists between submarine landslides and cold-water coral banks.

Keywords

Cold-water coral banks Submarine landslides Storegga Slide Mauritanian Slide complex Porcupine Seabight 

Notes

Acknowledgments

This study was originated in the framework of the EC FP5 RTN EURODOM and EC FP6 HERMES (contract GOCE-CT-2005-511234-1). GRC Geociències Marines (GRCGM) is funded by ‘‘Generalitat de Catalunya’’ excellence research grants program (ref. 2005 SGR-00152). GRCGM also acknowledges the support received from Landmark Graphics Corporation via the Landmark University Grant Program, and from SMT Inc. via the educational User License for Kingdom Suite interpretation software. The authors like to thank the reviewers, Martin Hovland and André Freiwald for their comments.

References

  1. Abrams MA (1992) Geophysical and geochemical evidence for subsurface hydrocarbon leakage in the Bering Sea, Alaska. Mar Petrol Geol Bull 9:208–221CrossRefGoogle Scholar
  2. Antobreh A, Krastel S (2006) Morphology, seismic characteristics and development of Cap Timiris Canyon, offshore Mauritania: a newly discovered canyon preserved-off a major arid climatic region. Mar Petrol Geol 23:37–59CrossRefGoogle Scholar
  3. Antobreh A, Krastel S (2007) Mauritania Slide Complex: morphology, seismic characterisation and processes of formation. Int J Earth Sci (Geol Rundsch) 96:451–472CrossRefGoogle Scholar
  4. Bailey W, Shannon PM, Walsh JJ, Unnithan V (2003) Distributions of faults and deep sea carbonate mounds in the Porcupine Basin, offshore Ireland. Mar Petrol Geol 20:509–522CrossRefGoogle Scholar
  5. Bondevik S, Lovholt F, Harbitz C, Mangerud J, Dawson A, Svendsen JI (2005) The Storegga Slide tsunami: comparing field observations with numerical simulations. Mar Petrol Geol 22:195–208CrossRefGoogle Scholar
  6. Bouriak S, Vanneste M, Saoutkine A (2000) Inferred gas hydrates and clay diapirs near the Storegga Slide on the southern edge of the Vøring Plateau, offshore Norway. Mar Geol 163:125–148CrossRefGoogle Scholar
  7. Brown A (2000) Evaluation of possible gas microseepage mechanisms. AAPG Bull 84:1775–1789Google Scholar
  8. Bugge T, Befring S, Belderson RH, Eidvin T, Jansen E, Kenyon NH, Holtedahl H, Sejrup HP (1987) A giant three-stage submarine slide off Norway. Geo Mar Lett 7:191–198CrossRefGoogle Scholar
  9. Bünz S, Mienert J, Berndt C (2003) Geological controls on the Storegga gas-hydrate system of the mid-Norwegian continental margin. Earth Planet Sci Lett 209:291–307CrossRefGoogle Scholar
  10. Bunz S, Mienert J, Bryn P, Berg K (2005) Fluid flow impact on slope failure from 3D seismic data: a case study in the Storegga Slide. Basin Res 17:109–122CrossRefGoogle Scholar
  11. Canals M, Lastras G, Urgeles R, Casamor JL, Mienert J, Cattaneo A, De Batist M, Haflidason H, Imbo Y, Laberg JS, Locat J, Long D, Longva O, Masson DG, Sultan N, Trincardi F, Bryn P (2004) Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: case studies form the COSTA project. Mar Geol 213:9–72CrossRefGoogle Scholar
  12. Cartwright JA, Lonergan L (1996) Volumetric contraction during the compaction of mudrocks: a mechanism for the development of regional-scale polygonal fault systems. Basin Res 8:183–193CrossRefGoogle Scholar
  13. Colman JG, Gordon DM, Lane AP, Forde MJ, Fitzpatrick JJ (2005) Carbonate mounds off Mauritania, Northwest Africa: status of deep-water corals and implications for management of fishing and oil exploration activities. In: Freiwald A, Roberts M (eds) Cold-water Corals and Ecosystems. Springer-Verlag, Berlin Heidelberg, pp 417–441CrossRefGoogle Scholar
  14. De Mol B, Van Rensbergen P, Pillen S, Van Herreweghe K, Van Rooij D, McDonnell A, Huvenne V, Ivanov M, Swennen R, Henriet J-P (2002) Large deep-water coral banks in the Porcupine Basin, southwest of Ireland. Mar Geol 188:193–231CrossRefGoogle Scholar
  15. De Mol B, Henriet J-P, Canals M (2005) Development of coral banks in Porcupine Seabight: do they have Mediterranean ancestors? In: Freiwald A, Roberts M (eds) Cold-water Corals and Ecosystems. Springer-Verlag, Berlin Heidelberg, pp 515–533CrossRefGoogle Scholar
  16. De Mol B, Kozachenko M, Wheeler A, Alvares H, Jean-Pierre H, Olu-Le Roy K (2007) Thérèse Mound: a case study of coral bank development in the Belgica Mound Province, Porcupine Seabight. Int J Earth Sci (Geol Rundsch) 96:103–120CrossRefGoogle Scholar
  17. Evans D, Harrison Z, Shannon PM, Laberg JS, Nielsen T, Ayers S, Holmes R, Hoult RJ, Lindberg B, Haflidason H, Long D, Kuijpers A, Andersen ES, Bryn P (2005) Palaeoslides and other mass failures of Pliocene to Pleistocene age along the Atlantic continental margin of NW Europe. Mar Petrol Geol 22:1131–1148CrossRefGoogle Scholar
  18. Expedition Scientists (2005) Modern carbonate mounds: Porcupine drilling. IODP Prel. Rept., 307. doi: 10.2204/iodp.pr.307.2005
  19. Fabricius KE, Wild C, Wolanski E, Abele D (2003) Effects of transparent exopolymer particles and muddy terrrigenous sediments on the survival of hard coral recruits. Estuar Coast Mar Sci 57:613–621Google Scholar
  20. Ferdelman TG, Kano A, Williams T, Henriet J-P, the IODP Expedition 307 Scientists (2006) Modern carbonate mounds: porcupine drilling. In: Proceedings of the integrated ocean drilling program, vol 307. Integrated Ocean Drilling Program Management International, Inc., College Station. doi: 10.2204/iodp.proc.307.2006
  21. Fosså JH, Mortensen PB, Furevik DM (2002) The deep-water coral Lophelia pertusa in Norwegian waters: distribution and fishery impacts. Hydrobiologia 471:1–12CrossRefGoogle Scholar
  22. Fosså JH, Lindberg B, Christensen O, Lundälv T, Svellingen I, Mortensen PB, Alvsvåg J (2005) Mapping of Lophelia reefs in Norway: experiences and survey methods. In: Freiwald A, Roberts M (eds) Cold-water corals and ecosystems. Springer, Berlin Heidelberg, pp 359–391Google Scholar
  23. Frederiksen R, Jensen A, Westerberg H (1992) The distribution of the scleractinian coral Lophelia Pertusa around the Faeroe Islands and the relation to internal tidal mixing. Sarsia 77:157–167Google Scholar
  24. Freiwald A, Wilson JB, Henrich R (1999) Grounding Pleistocene icebergs shape recent deep-water coral reefs. Sed Geol 125:1–8CrossRefGoogle Scholar
  25. Freiwald A, Hühnerbach V, Lindberg B, Wilson J, Campbell J (2002) The Sula Reef Complex, Norwegian Shelf. Facies 47:179–200CrossRefGoogle Scholar
  26. Freiwald A, Fosså JH, Grehan A, Koslow T, Roberts JM (2004) Cold-water Coral Reefs. UNEP-WCMC, CambridgeGoogle Scholar
  27. Frenz M, Wynn RB, Georgiopoulou A, Bender VB, Hough G, Masson DG, Talling PJ, Cronin BT (2008) Provenance and pathways of late Quaternary turbidites in the deep-water Agadir Basin, northwest African margin. Int J Earth Sci. doi  10.1007/s00531-008-0313-4
  28. Haflidason H, Sejrup HP, Nygard A, Mienert J, Bryn P, Lien R, Forsberg CF, Berg K, Masson D (2004) The Storegga Slide: architecture, geometry and slide development. Mar Geol 213:201–234CrossRefGoogle Scholar
  29. Haflidason H, Lien R, Sejrup HP, Forsberg CF, Bryn P (2005) The dating and morphometry of the Storegga Slide. Mar Petrol Geol 22:123–136CrossRefGoogle Scholar
  30. Hampton MA, Lee HJ, Locat J (1996) Submarine landslides. Rev Geophys 34:33–59CrossRefGoogle Scholar
  31. Henriet J-P, De Mol B, Pillen S, Vanneste M, Van Rooij D, Versteeg W, Croker PF, Shannon PM, Unnithan V, Bouriak S, Chachkine P, The Porcupine-Belgica 97 Shipboard Party (1998) Gas hydrate crystals may help build reefs. Nature 391:648–649CrossRefGoogle Scholar
  32. Henriet J-P, De Mol B, Vanneste M, Huvenne V, Van Rooij D, The “Porcupine-Belgica” 97, 98 and 99 shipboard parties (2001) Carbonate mounds and slope failures in the Porcupine Basin: a development model involving past fluid venting. In: Shannon PM, Haughton P, Corcoran D (eds) Petroleum exploration of Irelands’s offshore basins. Special Publication Geological Society of London, London, 188:375–383Google Scholar
  33. Henriet J-P, Guidard S, The ODP “Proposal 573” Team (2002) Carbonate mounds as a possible example for microbial activity. In: Wefer G et al (eds) Ocean margin systems. Springer, Heidelberg, pp 439–455Google Scholar
  34. Hovland M (2008) Deep-water coral reefs: unique biodiversity hotspots. Praxis Publishing (Springer), Chichester, pp 278Google Scholar
  35. Hovland M, Mortensen PB (1999) Norske korallrev og prosesser i havbunnen. John Grieg Forlag, Bergen, p 155Google Scholar
  36. Hovland M, Risk M (2003) Do Norwegian deep-water coral reefs rely on seeping fluids? Mar Geol 198:83–96CrossRefGoogle Scholar
  37. Hovland M, Thomsen E (1997) Cold-water corals: are they hydrocarbon seep related? Mar Geol 137:159–164CrossRefGoogle Scholar
  38. Hovland M, Croker PF, Martin M (1994) Fault-associated Seabed Mounds (Carbonate Knolls?) off Western Ireland and North-west Australia. Mar Petrol Geol 11:232–246CrossRefGoogle Scholar
  39. Hovland M, Mortensen PB, Brattegard T, Strass P, Rokengen K (1998) Ahermatypic coral banks off mid-Norway; evidence for a link with seepage of light hydrocarbons. Palaios 13:189–200CrossRefGoogle Scholar
  40. Hovland M, Gardner JV, Judd AG (2002) The significance of pockmarks to understanding fluid flow processes and geohazards. Geofluids 2:127–136CrossRefGoogle Scholar
  41. Huhnerbach V, Masson DG (2004) Landslides in the North Atlantic and its adjacent seas: an analysis of their morphology, setting and behaviour. Mar Geol 213:343–362CrossRefGoogle Scholar
  42. Huvenne VAI, Croker PF, Henriet J-P (2002) A refreshing 3D view of an ancient sediment collapse and slope failure. Terra Nova 14:33–40CrossRefGoogle Scholar
  43. Huvenne VAI, De Mol B, Henriet J-P (2003) A 3D seismic study of the morphology and spatial distribution of buried coral banks in the Porcupine Basin, SW of Ireland. Mar Geol 198:5–25CrossRefGoogle Scholar
  44. Huvenne V, Bailey W, Shannon P, Naeth J, di Primio R, Henriet J, Horsfield B, de Haas H, Wheeler A, Olu-Le Roy K (2007) The Magellan mound province in the Porcupine Basin. Int J Earth Sci (Geol Rundsch) 96:85–101CrossRefGoogle Scholar
  45. Jensen S, Neufeld JD, Birkeland N–K, Hovland M, Murrell JC (2008) Insight into the microbial community structure of a deepwater coral reef environment. Deep-Sea Research I (DSR1-D0800050R1)Google Scholar
  46. Kenyon N, Akhmetzhanov AM, Wheeler AJ, van Weering TCE, de Haas H, Ivanov MK (2003) Giant carbonate mud mound in the Southern Rockall Trough. Mar Geol 195:5–30CrossRefGoogle Scholar
  47. Laberg JS, Vorren TO, Dowdeswell JA, Kenyon NH, Taylor J (2000) The Andøya Slide and the Andøya Canyon, north-eastern Norwegian-Greenland Sea. Mar Geol 162:259–275CrossRefGoogle Scholar
  48. Laberg JS, Vorren TO, Mienert J, Evans D, Lindberg B, Ottesen D, Kenyon NH, Henriksen S (2002) Late Quaternary palaeoenvironment and chronology in the Traenadjupet Slide area offshore Norway. Mar Geol 188:35–60CrossRefGoogle Scholar
  49. Lastras G, Canals M, Urgeles R, Hughes-Clarke J-E, Acosta J (2004) Shallow slides and pockmark swarms in the Eivissa Channel, western Mediterranean Sea. Sedimentology 51:1–14CrossRefGoogle Scholar
  50. Lee H, Locat J, Dartnell P, Israel K, Wong F (1999) Regional variability of slope stability: application to the Eel margin, California. Mar Geol 154:305–321CrossRefGoogle Scholar
  51. Lindberg B, Mienert J (2005) Sedimentological ad geochemical environment of the Fugly Reef off northern Norway. In: Freiwald A, Roberts M (eds) Cold-water corals and ecosystems. Springer-Verlag, Heidelberg, pp 633–650CrossRefGoogle Scholar
  52. Locat J, Lee HJ (2002) Submarine landslides: advances and challenges. Can Geotech J 39:193–212CrossRefGoogle Scholar
  53. Masson DG (1996) Catastrophic collapse of the volcanic island of Hierro 15-ka ago and the history of landslides in the Canary Islands. Geology 24:231–234CrossRefGoogle Scholar
  54. Masson DG, Bett BJ, Billett DSM, Jacobs CL, Wheeler AJ, Wynn RB (2003) The origin of deep-water, coral-topped mounds in the northern Rockall Trough, Northeast Atlantic. Mar Geol 194:159–180CrossRefGoogle Scholar
  55. Mienert J, Weaver PPE (eds) (2003) European margin sediment dynamics, side-scan sonar and seismic images. Springer-Verlag, Berlin, pp 309Google Scholar
  56. Mienis F, van Weering T, de Haas H, de Stigter H, Huvenne V, Wheeler A (2006) Carbonate mound development at the SW Rockall Trough margin based on high resolution TOBI and seismic recording. Mar Geol 233(1–4):1–19CrossRefGoogle Scholar
  57. Mienis F, de Stigter HC, White M, Duineveld G, de Haas H, van Weering TCE (2007) Hydrodynamic controls on cold-water coral growth and carbonate-mound development at the SW and SE Rockall Trough Margin, NE Atlantic Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 54:1655–1674Google Scholar
  58. Mortensen PB (2000) Lophelia pertusa (Scleractinia) in Norwegian waters. Distribution, growth and associated fauna. Dissertation, University of Bergen, BergenGoogle Scholar
  59. Mortensen PB (2001) Aquarium observations on the deep-water coral Lophelia pertusa (L., 1758) (Scleractinia) and selected associated invertebrates. Ophelia 54:84–104Google Scholar
  60. Mortensen PB, Hovland M, Brattegard T, Farestveit R (1995) Deep water bioherms of the scleractinian coral Lophelia pertusa (L.) at 64 N on the Norwegian Shelf: Structure and associated megafauna. Sarsia, pp 145–158Google Scholar
  61. Orange DL, Greene HG, Reed D, Martin JB, McHugh CM, Ryan WBF, Maher N, Stakes D, Barry J (1999) Widespread fluid expulsion on a translational continental margin: mud volcanoes, fault zones, headless canyons, and organic-rich substrate in Monterey Bay, California. GSA Bull 111:992–1009CrossRefGoogle Scholar
  62. Parsons BS, Vogt PR, Haflidason H, Jung WY (2005) Sidescan and video exploration of the Storegga slide headwall region by submarine NR-1. Mar Geol 219:195–205CrossRefGoogle Scholar
  63. Roberts JM (2000) Coral colonies make a home on North Sea oil rigs. Reef Encount 27:17–18Google Scholar
  64. Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547CrossRefGoogle Scholar
  65. Schroeder WW, Brooke SD, Olson JB, Phaneuf B, McDonough JJ, Etnoyer P (2005) Occurrence of deep-water Lophelia pertusa and Madrepora oculata in the Gulf of Mexico. In: Freiwald A, Roberts M (eds) Cold-water corals and ecosystems. Springer-Verlag, Berlin, pp 297–307CrossRefGoogle Scholar
  66. Talling PJ, Wynn RB, Masson DG, Frenz M, Cronin BT, Schiebel R, Akhmetzhanov AM, Dallmeier-Tiessen S, Benetti S, Weaver PPE, Georgiopoulou A, Zühlsdorff C, Amy LA (2007) Onset of submarine debris flow deposition far from original giant landslide. Nature 450:541–544CrossRefGoogle Scholar
  67. Thiem Ø, Ravagnan E, Fosså JH, Berntsen J (2006) Food supply mechanisms for cold-water corals along a continental shelf edge. J Mar Syst 60:207–219CrossRefGoogle Scholar
  68. Van Rooij D, De Mol B, Huvenne V, Ivanov M, Henriet J-P (2003) Seismic evidence of current-controlled sedimentation in the Belgica Mound province, southwest of Ireland. Mar Geol 195(1–4):31–53CrossRefGoogle Scholar
  69. van Weering TCE, de Haas H, De Stigter HC, Lykke-Andersen H, Kouvaev I (2003) Structure and development of giant carbonate mounds at the SW and SE Rockall Trough margins, NE Atlantic Ocean. Mar Geol 198:67–81CrossRefGoogle Scholar
  70. Veron JEN (1995) Corals in space and time. UNSW Press, Sydney, p 321Google Scholar
  71. Weaver PPE, Wynn RB, Kenyon NH, Evans J (2000) Continental margin sedimentation, with special reference to the north-east Atlantic margin. Sedimentology 47(s1):239–256CrossRefGoogle Scholar
  72. White M (2003) Comparison of near seabed currents at two locations in the Porcupine Sea Bight: implications for benthic fauna. J Mar Biol Assoc UK 83:683–686CrossRefGoogle Scholar
  73. White M (2007) Benthic dynamics at the carbonate mound regions of the Porcupine Sea Bight continental margin. Int J Earth Sci (Geol Rundsch) 96(1):1–9CrossRefGoogle Scholar
  74. Wilson JB (1979) “Patch” development of the deep-water coral Lophelia pertusa (L.) on Rockall Bank. J Mar Biol Assoc UK 59:165–177CrossRefGoogle Scholar
  75. Wynn RB, Masson DG, Stow DAV, Weaver PPE (2000) The Northwest African slope apron: a modern analogue for deep-water systems with complex seafloor topography. Mar Petrol Geol 17:253–265CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.GRC Geociències MarinesParc Científic de Barcelona, Campus Diagonal, Universitat de BarcelonaBarcelonaSpain
  2. 2.Geology and GeophysicsNational Oceanography Centre, SouthamptonSouthamptonUK
  3. 3.GRC Geociències Marines, Departament d’Estratigrafia, Paleontologia i Geociències MarinesFacultat de Geologia, Universitat de BarcelonaBarcelonaSpain

Personalised recommendations